blob: e3d246463441f3753a6383d6ace1e201ae6f37e2 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2017 Intel Corp.
* Copyright 2019 Google LLC
*
* Taken partly from coreboot gpio.c
*
* Pinctrl is modelled as a separate device-tree node and device for each
* 'community' (basically a set of GPIOs). The separate devices work together
* and many functions permit any PINCTRL device to be provided as a parameter,
* since the pad numbering is unique across all devices.
*
* Each pinctrl has a single child GPIO device to handle GPIO access and
* therefore there is a simple GPIO driver included in this file.
*/
#define LOG_CATEGORY UCLASS_GPIO
#include <common.h>
#include <dm.h>
#include <irq.h>
#include <log.h>
#include <malloc.h>
#include <p2sb.h>
#include <spl.h>
#include <asm-generic/gpio.h>
#include <asm/intel_pinctrl.h>
#include <asm/intel_pinctrl_defs.h>
#include <asm/arch/gpio.h>
#include <asm/itss.h>
#include <dm/device-internal.h>
#include <dt-bindings/gpio/gpio.h>
#include <linux/err.h>
#define GPIO_DW_SIZE(x) (sizeof(u32) * (x))
#define PAD_CFG_OFFSET(x, dw_num) ((x) + GPIO_DW_SIZE(dw_num))
#define PAD_CFG0_OFFSET(x) PAD_CFG_OFFSET(x, 0)
#define PAD_CFG1_OFFSET(x) PAD_CFG_OFFSET(x, 1)
#define MISCCFG_GPE0_DW0_SHIFT 8
#define MISCCFG_GPE0_DW0_MASK (0xf << MISCCFG_GPE0_DW0_SHIFT)
#define MISCCFG_GPE0_DW1_SHIFT 12
#define MISCCFG_GPE0_DW1_MASK (0xf << MISCCFG_GPE0_DW1_SHIFT)
#define MISCCFG_GPE0_DW2_SHIFT 16
#define MISCCFG_GPE0_DW2_MASK (0xf << MISCCFG_GPE0_DW2_SHIFT)
#define GPI_SMI_STS_OFFSET(comm, group) ((comm)->gpi_smi_sts_reg_0 + \
((group) * sizeof(u32)))
#define GPI_SMI_EN_OFFSET(comm, group) ((comm)->gpi_smi_en_reg_0 + \
((group) * sizeof(u32)))
#define GPI_IS_OFFSET(comm, group) ((comm)->gpi_int_sts_reg_0 + \
((group) * sizeof(uint32_t)))
#define GPI_IE_OFFSET(comm, group) ((comm)->gpi_int_en_reg_0 + \
((group) * sizeof(uint32_t)))
/**
* relative_pad_in_comm() - Get the relative position of a GPIO
*
* This finds the position of a GPIO within a community
*
* @comm: Community to search
* @gpio: Pad number to look up (assumed to be valid)
* @return offset, 0 for first GPIO in community
*/
static size_t relative_pad_in_comm(const struct pad_community *comm,
uint gpio)
{
return gpio - comm->first_pad;
}
/**
* pinctrl_group_index() - Find group for a a pad
*
* Find the group within the community that the pad is a part of
*
* @comm: Community to search
* @relative_pad: Pad to look up
* @return group number if found (see community_n_groups, etc.), or
* -ESPIPE if no groups, or -ENOENT if not found
*/
static int pinctrl_group_index(const struct pad_community *comm,
uint relative_pad)
{
int i;
if (!comm->groups)
return -ESPIPE;
/* find the base pad number for this pad's group */
for (i = 0; i < comm->num_groups; i++) {
if (relative_pad >= comm->groups[i].first_pad &&
relative_pad < comm->groups[i].first_pad +
comm->groups[i].size)
return i;
}
return -ENOENT;
}
static int pinctrl_group_index_scaled(const struct pad_community *comm,
uint relative_pad, size_t scale)
{
int ret;
ret = pinctrl_group_index(comm, relative_pad);
if (ret < 0)
return ret;
return ret * scale;
}
static int pinctrl_within_group(const struct pad_community *comm,
uint relative_pad)
{
int ret;
ret = pinctrl_group_index(comm, relative_pad);
if (ret < 0)
return ret;
return relative_pad - comm->groups[ret].first_pad;
}
static u32 pinctrl_bitmask_within_group(const struct pad_community *comm,
uint relative_pad)
{
return 1U << pinctrl_within_group(comm, relative_pad);
}
/**
* pinctrl_get_device() - Find the device for a particular pad
*
* Each pinctr, device is attached to one community and this supports a number
* of pads. This function finds the device which controls a particular pad.
*
* @pad: Pad to check
* @devp: Returns the device for that pad
* @return 0 if OK, -ENOTBLK if no device was found for the given pin
*/
static int pinctrl_get_device(uint pad, struct udevice **devp)
{
struct udevice *dev;
/*
* We have to probe each one of these since the community link is only
* attached in intel_pinctrl_ofdata_to_platdata().
*/
uclass_foreach_dev_probe(UCLASS_PINCTRL, dev) {
struct intel_pinctrl_priv *priv = dev_get_priv(dev);
const struct pad_community *comm = priv->comm;
if (pad >= comm->first_pad && pad <= comm->last_pad) {
*devp = dev;
return 0;
}
}
log_debug("pad %d not found\n", pad);
return -ENOTBLK;
}
int intel_pinctrl_get_pad(uint pad, struct udevice **devp, uint *offsetp)
{
const struct pad_community *comm;
struct intel_pinctrl_priv *priv;
struct udevice *dev;
int ret;
ret = pinctrl_get_device(pad, &dev);
if (ret)
return log_msg_ret("pad", ret);
priv = dev_get_priv(dev);
comm = priv->comm;
*devp = dev;
*offsetp = relative_pad_in_comm(comm, pad);
return 0;
}
static int pinctrl_configure_owner(struct udevice *dev,
const struct pad_config *cfg,
const struct pad_community *comm)
{
u32 hostsw_own;
u16 hostsw_own_offset;
int pin;
int ret;
pin = relative_pad_in_comm(comm, cfg->pad);
/*
* Based on the gpio pin number configure the corresponding bit in
* HOSTSW_OWN register. Value of 0x1 indicates GPIO Driver onwership.
*/
hostsw_own_offset = comm->host_own_reg_0;
ret = pinctrl_group_index_scaled(comm, pin, sizeof(u32));
if (ret < 0)
return ret;
hostsw_own_offset += ret;
hostsw_own = pcr_read32(dev, hostsw_own_offset);
/*
*The 4th bit in pad_config 1 (RO) is used to indicate if the pad
* needs GPIO driver ownership. Set the bit if GPIO driver ownership
* requested, otherwise clear the bit.
*/
if (cfg->pad_config[1] & PAD_CFG1_GPIO_DRIVER)
hostsw_own |= pinctrl_bitmask_within_group(comm, pin);
else
hostsw_own &= ~pinctrl_bitmask_within_group(comm, pin);
pcr_write32(dev, hostsw_own_offset, hostsw_own);
return 0;
}
static int gpi_enable_smi(struct udevice *dev, const struct pad_config *cfg,
const struct pad_community *comm)
{
u32 value;
u16 sts_reg;
u16 en_reg;
int group;
int pin;
int ret;
if ((cfg->pad_config[0] & PAD_CFG0_ROUTE_SMI) != PAD_CFG0_ROUTE_SMI)
return 0;
pin = relative_pad_in_comm(comm, cfg->pad);
ret = pinctrl_group_index(comm, pin);
if (ret < 0)
return ret;
group = ret;
sts_reg = GPI_SMI_STS_OFFSET(comm, group);
value = pcr_read32(dev, sts_reg);
/* Write back 1 to reset the sts bits */
pcr_write32(dev, sts_reg, value);
/* Set enable bits */
en_reg = GPI_SMI_EN_OFFSET(comm, group);
pcr_setbits32(dev, en_reg, pinctrl_bitmask_within_group(comm, pin));
return 0;
}
static int pinctrl_configure_itss(struct udevice *dev,
const struct pad_config *cfg,
uint pad_cfg_offset)
{
struct intel_pinctrl_priv *priv = dev_get_priv(dev);
if (!priv->itss_pol_cfg)
return -ENOSYS;
int irq;
/*
* Set up ITSS polarity if pad is routed to APIC.
*
* The ITSS takes only active high interrupt signals. Therefore,
* if the pad configuration indicates an inversion assume the
* intent is for the ITSS polarity. Before forwarding on the
* request to the APIC there's an inversion setting for how the
* signal is forwarded to the APIC. Honor the inversion setting
* in the GPIO pad configuration so that a hardware active low
* signal looks that way to the APIC (double inversion).
*/
if (!(cfg->pad_config[0] & PAD_CFG0_ROUTE_IOAPIC))
return 0;
irq = pcr_read32(dev, PAD_CFG1_OFFSET(pad_cfg_offset));
irq &= PAD_CFG1_IRQ_MASK;
if (!irq) {
log_err("GPIO %u doesn't support APIC routing\n", cfg->pad);
return -EPROTONOSUPPORT;
}
irq_set_polarity(priv->itss, irq,
cfg->pad_config[0] & PAD_CFG0_RX_POL_INVERT);
return 0;
}
/* Number of DWx config registers can be different for different SOCs */
static uint pad_config_offset(struct intel_pinctrl_priv *priv, uint pad)
{
const struct pad_community *comm = priv->comm;
size_t offset;
offset = relative_pad_in_comm(comm, pad);
offset *= GPIO_DW_SIZE(priv->num_cfgs);
return offset + comm->pad_cfg_base;
}
static int pinctrl_pad_reset_config_override(const struct pad_community *comm,
u32 config_value)
{
const struct reset_mapping *rst_map = comm->reset_map;
int i;
/* Logical reset values equal chipset values */
if (!rst_map || !comm->num_reset_vals)
return config_value;
for (i = 0; i < comm->num_reset_vals; i++, rst_map++) {
if ((config_value & PAD_CFG0_RESET_MASK) == rst_map->logical) {
config_value &= ~PAD_CFG0_RESET_MASK;
config_value |= rst_map->chipset;
return config_value;
}
}
log_err("Logical-to-Chipset mapping not found\n");
return -ENOENT;
}
static const int mask[4] = {
PAD_CFG0_TX_STATE |
PAD_CFG0_TX_DISABLE | PAD_CFG0_RX_DISABLE | PAD_CFG0_MODE_MASK |
PAD_CFG0_ROUTE_MASK | PAD_CFG0_RXTENCFG_MASK |
PAD_CFG0_RXINV_MASK | PAD_CFG0_PREGFRXSEL |
PAD_CFG0_TRIG_MASK | PAD_CFG0_RXRAW1_MASK |
PAD_CFG0_RXPADSTSEL_MASK | PAD_CFG0_RESET_MASK,
#ifdef CONFIG_INTEL_PINCTRL_IOSTANDBY
PAD_CFG1_IOSTERM_MASK | PAD_CFG1_PULL_MASK | PAD_CFG1_IOSSTATE_MASK,
#else
PAD_CFG1_IOSTERM_MASK | PAD_CFG1_PULL_MASK,
#endif
PAD_CFG2_DEBOUNCE_MASK,
0,
};
/**
* pinctrl_configure_pad() - Configure a pad
*
* @dev: Pinctrl device containing the pad (see pinctrl_get_device())
* @cfg: Configuration to apply
* @return 0 if OK, -ve on error
*/
static int pinctrl_configure_pad(struct udevice *dev,
const struct pad_config *cfg)
{
struct intel_pinctrl_priv *priv = dev_get_priv(dev);
const struct pad_community *comm = priv->comm;
uint config_offset;
u32 pad_conf, soc_pad_conf;
int ret;
int i;
if (IS_ERR(comm))
return PTR_ERR(comm);
config_offset = pad_config_offset(priv, cfg->pad);
for (i = 0; i < priv->num_cfgs; i++) {
pad_conf = pcr_read32(dev, PAD_CFG_OFFSET(config_offset, i));
soc_pad_conf = cfg->pad_config[i];
if (i == 0) {
ret = pinctrl_pad_reset_config_override(comm,
soc_pad_conf);
if (ret < 0)
return ret;
soc_pad_conf = ret;
}
soc_pad_conf &= mask[i];
soc_pad_conf |= pad_conf & ~mask[i];
log_debug("pinctrl_padcfg [0x%02x, %02zd] DW%d [0x%08x : 0x%08x : 0x%08x]\n",
comm->port, relative_pad_in_comm(comm, cfg->pad), i,
pad_conf,/* old value */
/* value passed from pinctrl table */
cfg->pad_config[i],
soc_pad_conf); /*new value*/
pcr_write32(dev, PAD_CFG_OFFSET(config_offset, i),
soc_pad_conf);
}
ret = pinctrl_configure_itss(dev, cfg, config_offset);
if (ret && ret != -ENOSYS)
return log_msg_ret("itss config failed", ret);
ret = pinctrl_configure_owner(dev, cfg, comm);
if (ret)
return ret;
ret = gpi_enable_smi(dev, cfg, comm);
if (ret)
return ret;
return 0;
}
u32 intel_pinctrl_get_config_reg_offset(struct udevice *dev, uint offset)
{
struct intel_pinctrl_priv *priv = dev_get_priv(dev);
const struct pad_community *comm = priv->comm;
uint config_offset;
assert(device_get_uclass_id(dev) == UCLASS_PINCTRL);
config_offset = comm->pad_cfg_base + offset *
GPIO_DW_SIZE(priv->num_cfgs);
return config_offset;
}
u32 intel_pinctrl_get_config_reg_addr(struct udevice *dev, uint offset)
{
uint config_offset = intel_pinctrl_get_config_reg_offset(dev, offset);
return (u32)(ulong)pcr_reg_address(dev, config_offset);
}
u32 intel_pinctrl_get_config_reg(struct udevice *dev, uint offset)
{
uint config_offset = intel_pinctrl_get_config_reg_offset(dev, offset);
return pcr_read32(dev, config_offset);
}
int intel_pinctrl_get_acpi_pin(struct udevice *dev, uint offset)
{
struct intel_pinctrl_priv *priv = dev_get_priv(dev);
const struct pad_community *comm = priv->comm;
int group;
if (IS_ENABLED(CONFIG_INTEL_PINCTRL_MULTI_ACPI_DEVICES))
return offset;
group = pinctrl_group_index(comm, offset);
/* If pad base is not set then use GPIO number as ACPI pin number */
if (comm->groups[group].acpi_pad_base == PAD_BASE_NONE)
return comm->first_pad + offset;
/*
* If this group has a non-zero pad base then compute the ACPI pin
* number from the pad base and the relative pad in the group.
*/
return comm->groups[group].acpi_pad_base +
pinctrl_within_group(comm, offset);
}
int pinctrl_route_gpe(struct udevice *itss, uint gpe0b, uint gpe0c, uint gpe0d)
{
struct udevice *pinctrl_dev;
u32 misccfg_value;
u32 misccfg_clr;
int ret;
/*
* Get the group here for community specific MISCCFG register.
* If any of these returns -1 then there is some error in devicetree
* where the group is probably hardcoded and does not comply with the
* PMC group defines. So we return from here and MISCFG is set to
* default.
*/
ret = irq_route_pmc_gpio_gpe(itss, gpe0b);
if (ret)
return ret;
gpe0b = ret;
ret = irq_route_pmc_gpio_gpe(itss, gpe0c);
if (ret)
return ret;
gpe0c = ret;
ret = irq_route_pmc_gpio_gpe(itss, gpe0d);
if (ret)
return ret;
gpe0d = ret;
misccfg_value = gpe0b << MISCCFG_GPE0_DW0_SHIFT;
misccfg_value |= gpe0c << MISCCFG_GPE0_DW1_SHIFT;
misccfg_value |= gpe0d << MISCCFG_GPE0_DW2_SHIFT;
/* Program GPIO_MISCCFG */
misccfg_clr = MISCCFG_GPE0_DW2_MASK | MISCCFG_GPE0_DW1_MASK |
MISCCFG_GPE0_DW0_MASK;
log_debug("misccfg_clr:%x misccfg_value:%x\n", misccfg_clr,
misccfg_value);
uclass_foreach_dev_probe(UCLASS_PINCTRL, pinctrl_dev) {
pcr_clrsetbits32(pinctrl_dev, GPIO_MISCCFG, misccfg_clr,
misccfg_value);
}
return 0;
}
int pinctrl_gpi_clear_int_cfg(void)
{
struct udevice *dev;
struct uclass *uc;
int ret;
ret = uclass_get(UCLASS_PINCTRL, &uc);
if (ret)
return log_msg_ret("pinctrl uc", ret);
uclass_foreach_dev(dev, uc) {
struct intel_pinctrl_priv *priv = dev_get_priv(dev);
const struct pad_community *comm = priv->comm;
uint sts_value;
int group;
for (group = 0; group < comm->num_gpi_regs; group++) {
/* Clear the enable register */
pcr_write32(dev, GPI_IE_OFFSET(comm, group), 0);
/* Read and clear the set status register bits*/
sts_value = pcr_read32(dev,
GPI_IS_OFFSET(comm, group));
pcr_write32(dev, GPI_IS_OFFSET(comm, group), sts_value);
}
}
return 0;
}
int pinctrl_config_pads(struct udevice *dev, u32 *pads, int pads_count)
{
struct intel_pinctrl_priv *priv = dev_get_priv(dev);
const u32 *ptr;
int i;
log_debug("%s: pads_count=%d\n", __func__, pads_count);
for (ptr = pads, i = 0; i < pads_count;
ptr += 1 + priv->num_cfgs, i++) {
struct udevice *pad_dev = NULL;
struct pad_config *cfg;
int ret;
cfg = (struct pad_config *)ptr;
ret = pinctrl_get_device(cfg->pad, &pad_dev);
if (ret)
return ret;
ret = pinctrl_configure_pad(pad_dev, cfg);
if (ret)
return ret;
}
return 0;
}
int pinctrl_read_pads(struct udevice *dev, ofnode node, const char *prop,
u32 **padsp, int *pad_countp)
{
struct intel_pinctrl_priv *priv = dev_get_priv(dev);
u32 *pads;
int size;
int ret;
*padsp = NULL;
*pad_countp = 0;
size = ofnode_read_size(node, prop);
if (size < 0)
return 0;
pads = malloc(size);
if (!pads)
return -ENOMEM;
size /= sizeof(fdt32_t);
ret = ofnode_read_u32_array(node, prop, pads, size);
if (ret) {
free(pads);
return ret;
}
*pad_countp = size / (1 + priv->num_cfgs);
*padsp = pads;
return 0;
}
int pinctrl_count_pads(struct udevice *dev, u32 *pads, int size)
{
struct intel_pinctrl_priv *priv = dev_get_priv(dev);
int count = 0;
int i;
for (i = 0; i < size;) {
u32 val;
int j;
for (val = j = 0; j < priv->num_cfgs + 1; j++)
val |= pads[i + j];
if (!val)
break;
count++;
i += priv->num_cfgs + 1;
}
return count;
}
int pinctrl_config_pads_for_node(struct udevice *dev, ofnode node)
{
int pads_count;
u32 *pads;
int ret;
if (device_get_uclass_id(dev) != UCLASS_PINCTRL)
return log_msg_ret("uclass", -EPROTONOSUPPORT);
ret = pinctrl_read_pads(dev, node, "pads", &pads, &pads_count);
if (ret)
return log_msg_ret("no pads", ret);
ret = pinctrl_config_pads(dev, pads, pads_count);
free(pads);
if (ret)
return log_msg_ret("pad config", ret);
return 0;
}
int intel_pinctrl_ofdata_to_platdata(struct udevice *dev,
const struct pad_community *comm,
int num_cfgs)
{
struct p2sb_child_platdata *pplat = dev_get_parent_platdata(dev);
struct intel_pinctrl_priv *priv = dev_get_priv(dev);
if (!comm) {
log_err("Cannot find community for pid %d\n", pplat->pid);
return -EDOM;
}
priv->comm = comm;
priv->num_cfgs = num_cfgs;
return 0;
}
int intel_pinctrl_probe(struct udevice *dev)
{
struct intel_pinctrl_priv *priv = dev_get_priv(dev);
int ret;
priv->itss_pol_cfg = true;
ret = irq_first_device_type(X86_IRQT_ITSS, &priv->itss);
if (ret)
return log_msg_ret("Cannot find ITSS", ret);
return 0;
}
const struct pinctrl_ops intel_pinctrl_ops = {
/* No operations are supported, but DM expects this to be present */
};