blob: 3081763400b25fcf9351dffca012cb422bca7002 [file] [log] [blame]
// SPDX-License-Identifier: BSD-3-Clause AND GPL-2.0
/*
* Clock and reset drivers for Qualcomm platforms Global Clock
* Controller (GCC).
*
* (C) Copyright 2015 Mateusz Kulikowski <mateusz.kulikowski@gmail.com>
* (C) Copyright 2020 Sartura Ltd. (reset driver)
* Author: Robert Marko <robert.marko@sartura.hr>
* (C) Copyright 2022 Linaro Ltd. (reset driver)
* Author: Sumit Garg <sumit.garg@linaro.org>
*
* Based on Little Kernel driver, simplified
*/
#include <common.h>
#include <clk-uclass.h>
#include <dm.h>
#include <dm/device-internal.h>
#include <dm/lists.h>
#include <errno.h>
#include <asm/io.h>
#include <linux/bug.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <reset-uclass.h>
#include "clock-qcom.h"
#include "debugcc/debugcc.h"
/* CBCR register fields */
#define CBCR_BRANCH_ENABLE_BIT BIT(0)
#define CBCR_BRANCH_OFF_BIT BIT(31)
/* Enable clock controlled by CBC soft macro */
void clk_enable_cbc(phys_addr_t cbcr)
{
setbits_le32(cbcr, CBCR_BRANCH_ENABLE_BIT);
while (readl(cbcr) & CBCR_BRANCH_OFF_BIT)
;
}
void gdsc_enable(phys_addr_t gdscr)
{
uint32_t count;
clrbits_le32(gdscr, GDSC_SW_COLLAPSE);
for (count = 0; count < 1500; count++) {
if (readl(gdscr) & GDSC_PWR_ON)
break;
udelay(1);
}
WARN(count == 1500, "WARNING: GDSC @ %#llx stuck at off\n", gdscr);
}
void clk_enable_gpll0(phys_addr_t base, const struct pll_vote_clk *gpll0)
{
if (readl(base + gpll0->status) & gpll0->status_bit)
return; /* clock already enabled */
setbits_le32(base + gpll0->ena_vote, gpll0->vote_bit);
while ((readl(base + gpll0->status) & gpll0->status_bit) == 0)
;
}
#define BRANCH_ON_VAL (0)
#define BRANCH_NOC_FSM_ON_VAL BIT(29)
#define BRANCH_CHECK_MASK GENMASK(31, 28)
void clk_enable_vote_clk(phys_addr_t base, const struct vote_clk *vclk)
{
u32 val;
setbits_le32(base + vclk->ena_vote, vclk->vote_bit);
do {
val = readl(base + vclk->cbcr_reg);
val &= BRANCH_CHECK_MASK;
} while ((val != BRANCH_ON_VAL) && (val != BRANCH_NOC_FSM_ON_VAL));
}
#define APPS_CMD_RCGR_UPDATE BIT(0)
/* Update clock command via CMD_RCGR */
void clk_bcr_update(phys_addr_t apps_cmd_rcgr)
{
u32 count;
setbits_le32(apps_cmd_rcgr, APPS_CMD_RCGR_UPDATE);
/* Wait for frequency to be updated. */
for (count = 0; count < 50000; count++) {
if (!(readl(apps_cmd_rcgr) & APPS_CMD_RCGR_UPDATE))
break;
udelay(1);
}
WARN(count == 50000, "WARNING: RCG @ %#llx [%#010x] stuck at off\n",
apps_cmd_rcgr, readl(apps_cmd_rcgr));
}
#define CFG_SRC_DIV_MASK 0b11111
#define CFG_SRC_SEL_SHIFT 8
#define CFG_SRC_SEL_MASK (0x7 << CFG_SRC_SEL_SHIFT)
#define CFG_MODE_SHIFT 12
#define CFG_MODE_MASK (0x3 << CFG_MODE_SHIFT)
#define CFG_MODE_DUAL_EDGE (0x2 << CFG_MODE_SHIFT)
#define CFG_HW_CLK_CTRL_MASK BIT(20)
/*
* root set rate for clocks with half integer and MND divider
* div should be pre-calculated ((div * 2) - 1)
*/
void clk_rcg_set_rate_mnd(phys_addr_t base, uint32_t cmd_rcgr,
int div, int m, int n, int source, u8 mnd_width)
{
u32 cfg;
/* M value for MND divider. */
u32 m_val = m;
u32 n_minus_m = n - m;
/* NOT(N-M) value for MND divider. */
u32 n_val = ~n_minus_m * !!(n);
/* NOT 2D value for MND divider. */
u32 d_val = ~(clamp_t(u32, n, m, n_minus_m));
u32 mask = BIT(mnd_width) - 1;
debug("m %#x n %#x d %#x div %#x mask %#x\n", m_val, n_val, d_val, div, mask);
/* Program MND values */
writel(m_val & mask, base + cmd_rcgr + RCG_M_REG);
writel(n_val & mask, base + cmd_rcgr + RCG_N_REG);
writel(d_val & mask, base + cmd_rcgr + RCG_D_REG);
/* setup src select and divider */
cfg = readl(base + cmd_rcgr + RCG_CFG_REG);
cfg &= ~(CFG_SRC_SEL_MASK | CFG_MODE_MASK | CFG_HW_CLK_CTRL_MASK);
cfg |= source & CFG_SRC_SEL_MASK; /* Select clock source */
if (div)
cfg |= div & CFG_SRC_DIV_MASK;
if (n && n != m)
cfg |= CFG_MODE_DUAL_EDGE;
writel(cfg, base + cmd_rcgr + RCG_CFG_REG); /* Write new clock configuration */
/* Inform h/w to start using the new config. */
clk_bcr_update(base + cmd_rcgr);
}
/* root set rate for clocks with half integer and mnd_width=0 */
void clk_rcg_set_rate(phys_addr_t base, uint32_t cmd_rcgr, int div,
int source)
{
u32 cfg;
/* setup src select and divider */
cfg = readl(base + cmd_rcgr + RCG_CFG_REG);
cfg &= ~(CFG_SRC_SEL_MASK | CFG_MODE_MASK | CFG_HW_CLK_CTRL_MASK);
cfg |= source & CFG_CLK_SRC_MASK; /* Select clock source */
/*
* Set the divider; HW permits fraction dividers (+0.5), but
* for simplicity, we will support integers only
*/
if (div)
cfg |= (2 * div - 1) & CFG_SRC_DIV_MASK;
writel(cfg, base + cmd_rcgr + RCG_CFG_REG); /* Write new clock configuration */
/* Inform h/w to start using the new config. */
clk_bcr_update(base + cmd_rcgr);
}
const struct freq_tbl *qcom_find_freq(const struct freq_tbl *f, uint rate)
{
if (!f)
return NULL;
if (!f->freq)
return f;
for (; f->freq; f++)
if (rate <= f->freq)
return f;
/* Default to our fastest rate */
return f - 1;
}
static int msm_clk_probe(struct udevice *dev)
{
struct msm_clk_data *data = (struct msm_clk_data *)dev_get_driver_data(dev);
struct msm_clk_priv *priv = dev_get_priv(dev);
priv->base = dev_read_addr(dev);
if (priv->base == FDT_ADDR_T_NONE)
return -EINVAL;
priv->data = data;
return 0;
}
static ulong msm_clk_set_rate(struct clk *clk, ulong rate)
{
struct msm_clk_data *data = (struct msm_clk_data *)dev_get_driver_data(clk->dev);
if (data->set_rate)
return data->set_rate(clk, rate);
return 0;
}
static int msm_clk_enable(struct clk *clk)
{
struct msm_clk_data *data = (struct msm_clk_data *)dev_get_driver_data(clk->dev);
if (data->enable)
return data->enable(clk);
return 0;
}
static void dump_gplls(struct udevice *dev, phys_addr_t base) {
static phys_addr_t gplls[] = {
0x00100000,
0x00101000,
0x00102000,
0x00103000,
0x00176000,
0x00174000,
0x00113000,
0x0011a000,
0x0011b000,
0x0011c000,
0x0011d000,
0x0014a000,
};
uint32_t i;
bool locked;
uint64_t l, a, xo_rate = 19200000;
struct clk clk;
int ret;
u32 pll_branch = readl(0x00152018);
ret = clk_get_by_name(dev, "xo_board", &clk);
if (ret < 0) {
ret = clk_get_by_name(dev, "xo-board", &clk);
if (ret < 0)
printf("Can't find XO clock, XO_BOARD rate may be wrong\n");
}
if (ret >= 0)
xo_rate = clk_get_rate(&clk);
printf("| GPLL | LOCKED | GATE | XO_BOARD | PLL_L | ALPHA |\n");
printf("+--------+--------+------+-----------+------------+----------------+\n");
for (i = 0; i < ARRAY_SIZE(gplls); i++) {
locked = !!(readl(gplls[i]) & BIT(31));
l = readl(gplls[i] + 4) & (BIT(16)-1);
a = readq(gplls[i] + 40) & (BIT(16)-1);
printf("| GPLL%-2d | %-6s | %-4s | %9llu * (%#-9llx + %#-13llx * 2 ** -40 ) / 1000000\n",
i, locked ? "X" : "", pll_branch & BIT(i) ? "X" : "", xo_rate, l, a);
}
}
static void dump_rcgs(void) {
static phys_addr_t rcgs[] = {
// 0x0010f018, // RB2
// 0x0010f030,
// 0x0010f05c,
// RB5
// 0x00175024, // GCC_UFS_CARD_AXI_CMD_RCGR
// 0x0017506c, // GCC_UFS_CARD_ICE_CORE_CMD_RCGR
// 0x00175084, // GCC_UFS_CARD_UNIPRO_CORE_CMD_RCGR
// 0x001750a0, // GCC_UFS_CARD_PHY_AUX_CMD_RCGR
// 0x00177024, // GCC_UFS_PHY_AXI_CMD_RCGR
// 0x0017706c, // GCC_UFS_PHY_ICE_CORE_CMD_RCGR
// 0x00177084, // GCC_UFS_PHY_UNIPRO_CORE_CMD_RCGR
// 0x001770a0, // GCC_UFS_PHY_PHY_AUX_CMD_RCGR
0x0011400c, // GCC_SDCC2_APPS_CMD_RCGR
//0x001184D0
// RB3
//0x00118148
};
static const char * const rcg_names[] = {
// "USB30_PRIM_MASTER", // RB2
// "USB30_PRIM_MOCK_UTMI",
// "USB3_PRIM_PHY_AUX",
// RB5
// "GCC_UFS_CARD_AXI_CMD_RCGR",
// "GCC_UFS_CARD_ICE_CORE_CMD_RCGR",
// "GCC_UFS_CARD_UNIPRO_CORE_CMD_RCGR",
// "GCC_UFS_CARD_PHY_AUX_CMD_RCGR",
// "GCC_UFS_PHY_AXI_CMD_RCGR",
// "GCC_UFS_PHY_ICE_CORE_CMD_RCGR",
// "GCC_UFS_PHY_UNIPRO_CORE_CMD_RCGR",
// "GCC_UFS_PHY_PHY_AUX_CMD_RCGR",
"GCC_SDCC2_APPS_CMD_RCGR",
//"UART",
};
int i;
uint32_t cmd;
uint32_t cfg;
uint32_t not_n_minus_m;
uint32_t src, m, n, div;
bool root_on, d_odd;
printf("\nRCGs:\n");
for (i = 0; i < ARRAY_SIZE(rcgs); i++) {
cmd = readl(rcgs[i]);
cfg = readl(rcgs[i] + 0x4);
m = readl(rcgs[i] + 0x8);
not_n_minus_m = readl(rcgs[i] + 0xc);
root_on = !(cmd & BIT(31)); // ROOT_OFF
src = (cfg >> 8) & 7;
if (not_n_minus_m)
n = (~not_n_minus_m & 0xffff) + m;
else
n = 0;
div = ((cfg & 0b11111) + 1) / 2;
d_odd = ((cfg & 0b11111) + 1) % 2 == 1;
printf("%#010x %#010x %#010x %#010x %#010x\n", cmd, cfg, m, not_n_minus_m, readl(rcgs[i] + 0x10));
printf("%-32s: %-1s src %d | input_freq * (%#x/%#x) * (1/%d%s)",
rcg_names[i], root_on ? "X" : "", src, m ?: 1, n ?: 1, div, d_odd ? ".5" : "");
printf(" [%#010X]\n", cmd);
}
printf("\n");
}
static void msm_dump_clks(struct udevice *dev)
{
struct msm_clk_data *data = (struct msm_clk_data *)dev_get_driver_data(dev);
struct msm_clk_priv *priv = dev_get_priv(dev);
const struct gate_clk *sclk;
const struct qcom_reset_map *rst;
int val, i;
if (!data->clks) {
printf("No clocks\n");
return;
}
for (i = 0; i < data->num_clks; i++) {
sclk = &data->clks[i];
if (!sclk->name)
continue;
printf("%-32s: ", sclk->name);
val = readl(priv->base + sclk->reg) & sclk->en_val;
printf("%s\n", val ? "ON" : "");
}
for (i = 0; i < data->num_resets; i++) {
rst = &data->resets[i];
printf("%#05x: ", rst->reg);
val = readl(priv->base + rst->reg);
printf("%s\n", val > 0 ? "ON" : "");
}
dump_gplls(dev, priv->base);
dump_rcgs();
}
static void msm_debug_clks(struct udevice *dev, int argc, char *const argv[])
{
if (!IS_ENABLED(CONFIG_CLK_QCOM_DEBUG)) {
printf("Enable CONFIG_CLK_QCOM_DEBUG to debug GCC\n");
return;
}
qcom_debugcc_run(argc, argv);
}
static struct clk_ops msm_clk_ops = {
.set_rate = msm_clk_set_rate,
.enable = msm_clk_enable,
.dump_clks = msm_dump_clks,
.debug_clks = msm_debug_clks,
};
U_BOOT_DRIVER(qcom_clk) = {
.name = "qcom_clk",
.id = UCLASS_CLK,
.ops = &msm_clk_ops,
.priv_auto = sizeof(struct msm_clk_priv),
.probe = msm_clk_probe,
};
int qcom_cc_bind(struct udevice *parent)
{
struct msm_clk_data *data = (struct msm_clk_data *)dev_get_driver_data(parent);
struct udevice *clkdev, *rstdev;
struct driver *drv;
int ret;
/* Get a handle to the common clk handler */
drv = lists_driver_lookup_name("qcom_clk");
if (!drv)
return -ENOENT;
/* Register the clock controller */
ret = device_bind_with_driver_data(parent, drv, "qcom_clk", (ulong)data,
dev_ofnode(parent), &clkdev);
if (ret)
return ret;
/* Bail out early if resets are not specified for this platform */
if (!data->resets)
return ret;
/* Get a handle to the common reset handler */
drv = lists_driver_lookup_name("qcom_reset");
if (!drv)
return -ENOENT;
/* Register the reset controller */
ret = device_bind_with_driver_data(parent, drv, "qcom_reset", (ulong)data,
dev_ofnode(parent), &rstdev);
if (ret)
device_unbind(clkdev);
return ret;
}
static int qcom_reset_set(struct reset_ctl *rst, bool assert)
{
struct msm_clk_data *data = (struct msm_clk_data *)dev_get_driver_data(rst->dev);
void __iomem *base = dev_get_priv(rst->dev);
const struct qcom_reset_map *map;
u32 value;
map = &data->resets[rst->id];
value = readl(base + map->reg);
if (assert)
value |= BIT(map->bit);
else
value &= ~BIT(map->bit);
writel(value, base + map->reg);
return 0;
}
static int qcom_reset_assert(struct reset_ctl *rst)
{
return qcom_reset_set(rst, true);
}
static int qcom_reset_deassert(struct reset_ctl *rst)
{
return qcom_reset_set(rst, false);
}
static const struct reset_ops qcom_reset_ops = {
.rst_assert = qcom_reset_assert,
.rst_deassert = qcom_reset_deassert,
};
static int qcom_reset_probe(struct udevice *dev)
{
/* Set our priv pointer to the base address */
dev_set_priv(dev, (void *)dev_read_addr(dev));
return 0;
}
U_BOOT_DRIVER(qcom_reset) = {
.name = "qcom_reset",
.id = UCLASS_RESET,
.ops = &qcom_reset_ops,
.probe = qcom_reset_probe,
};