| /* |
| * Copyright (c) 2013, Google Inc. |
| * |
| * SPDX-License-Identifier: GPL-2.0+ |
| */ |
| |
| #ifndef USE_HOSTCC |
| #include <common.h> |
| #include <fdtdec.h> |
| #include <asm/types.h> |
| #include <asm/byteorder.h> |
| #include <asm/errno.h> |
| #include <asm/types.h> |
| #include <asm/unaligned.h> |
| #else |
| #include "fdt_host.h" |
| #include "mkimage.h" |
| #include <fdt_support.h> |
| #endif |
| #include <u-boot/rsa.h> |
| #include <u-boot/sha1.h> |
| #include <u-boot/sha256.h> |
| |
| #define UINT64_MULT32(v, multby) (((uint64_t)(v)) * ((uint32_t)(multby))) |
| |
| #define get_unaligned_be32(a) fdt32_to_cpu(*(uint32_t *)a) |
| #define put_unaligned_be32(a, b) (*(uint32_t *)(b) = cpu_to_fdt32(a)) |
| |
| /* Default public exponent for backward compatibility */ |
| #define RSA_DEFAULT_PUBEXP 65537 |
| |
| /** |
| * subtract_modulus() - subtract modulus from the given value |
| * |
| * @key: Key containing modulus to subtract |
| * @num: Number to subtract modulus from, as little endian word array |
| */ |
| static void subtract_modulus(const struct rsa_public_key *key, uint32_t num[]) |
| { |
| int64_t acc = 0; |
| uint i; |
| |
| for (i = 0; i < key->len; i++) { |
| acc += (uint64_t)num[i] - key->modulus[i]; |
| num[i] = (uint32_t)acc; |
| acc >>= 32; |
| } |
| } |
| |
| /** |
| * greater_equal_modulus() - check if a value is >= modulus |
| * |
| * @key: Key containing modulus to check |
| * @num: Number to check against modulus, as little endian word array |
| * @return 0 if num < modulus, 1 if num >= modulus |
| */ |
| static int greater_equal_modulus(const struct rsa_public_key *key, |
| uint32_t num[]) |
| { |
| uint32_t i; |
| |
| for (i = key->len - 1; i >= 0; i--) { |
| if (num[i] < key->modulus[i]) |
| return 0; |
| if (num[i] > key->modulus[i]) |
| return 1; |
| } |
| |
| return 1; /* equal */ |
| } |
| |
| /** |
| * montgomery_mul_add_step() - Perform montgomery multiply-add step |
| * |
| * Operation: montgomery result[] += a * b[] / n0inv % modulus |
| * |
| * @key: RSA key |
| * @result: Place to put result, as little endian word array |
| * @a: Multiplier |
| * @b: Multiplicand, as little endian word array |
| */ |
| static void montgomery_mul_add_step(const struct rsa_public_key *key, |
| uint32_t result[], const uint32_t a, const uint32_t b[]) |
| { |
| uint64_t acc_a, acc_b; |
| uint32_t d0; |
| uint i; |
| |
| acc_a = (uint64_t)a * b[0] + result[0]; |
| d0 = (uint32_t)acc_a * key->n0inv; |
| acc_b = (uint64_t)d0 * key->modulus[0] + (uint32_t)acc_a; |
| for (i = 1; i < key->len; i++) { |
| acc_a = (acc_a >> 32) + (uint64_t)a * b[i] + result[i]; |
| acc_b = (acc_b >> 32) + (uint64_t)d0 * key->modulus[i] + |
| (uint32_t)acc_a; |
| result[i - 1] = (uint32_t)acc_b; |
| } |
| |
| acc_a = (acc_a >> 32) + (acc_b >> 32); |
| |
| result[i - 1] = (uint32_t)acc_a; |
| |
| if (acc_a >> 32) |
| subtract_modulus(key, result); |
| } |
| |
| /** |
| * montgomery_mul() - Perform montgomery mutitply |
| * |
| * Operation: montgomery result[] = a[] * b[] / n0inv % modulus |
| * |
| * @key: RSA key |
| * @result: Place to put result, as little endian word array |
| * @a: Multiplier, as little endian word array |
| * @b: Multiplicand, as little endian word array |
| */ |
| static void montgomery_mul(const struct rsa_public_key *key, |
| uint32_t result[], uint32_t a[], const uint32_t b[]) |
| { |
| uint i; |
| |
| for (i = 0; i < key->len; ++i) |
| result[i] = 0; |
| for (i = 0; i < key->len; ++i) |
| montgomery_mul_add_step(key, result, a[i], b); |
| } |
| |
| /** |
| * num_pub_exponent_bits() - Number of bits in the public exponent |
| * |
| * @key: RSA key |
| * @num_bits: Storage for the number of public exponent bits |
| */ |
| static int num_public_exponent_bits(const struct rsa_public_key *key, |
| int *num_bits) |
| { |
| uint64_t exponent; |
| int exponent_bits; |
| const uint max_bits = (sizeof(exponent) * 8); |
| |
| exponent = key->exponent; |
| exponent_bits = 0; |
| |
| if (!exponent) { |
| *num_bits = exponent_bits; |
| return 0; |
| } |
| |
| for (exponent_bits = 1; exponent_bits < max_bits + 1; ++exponent_bits) |
| if (!(exponent >>= 1)) { |
| *num_bits = exponent_bits; |
| return 0; |
| } |
| |
| return -EINVAL; |
| } |
| |
| /** |
| * is_public_exponent_bit_set() - Check if a bit in the public exponent is set |
| * |
| * @key: RSA key |
| * @pos: The bit position to check |
| */ |
| static int is_public_exponent_bit_set(const struct rsa_public_key *key, |
| int pos) |
| { |
| return key->exponent & (1ULL << pos); |
| } |
| |
| /** |
| * pow_mod() - in-place public exponentiation |
| * |
| * @key: RSA key |
| * @inout: Big-endian word array containing value and result |
| */ |
| static int pow_mod(const struct rsa_public_key *key, uint32_t *inout) |
| { |
| uint32_t *result, *ptr; |
| uint i; |
| int j, k; |
| |
| /* Sanity check for stack size - key->len is in 32-bit words */ |
| if (key->len > RSA_MAX_KEY_BITS / 32) { |
| debug("RSA key words %u exceeds maximum %d\n", key->len, |
| RSA_MAX_KEY_BITS / 32); |
| return -EINVAL; |
| } |
| |
| uint32_t val[key->len], acc[key->len], tmp[key->len]; |
| uint32_t a_scaled[key->len]; |
| result = tmp; /* Re-use location. */ |
| |
| /* Convert from big endian byte array to little endian word array. */ |
| for (i = 0, ptr = inout + key->len - 1; i < key->len; i++, ptr--) |
| val[i] = get_unaligned_be32(ptr); |
| |
| if (0 != num_public_exponent_bits(key, &k)) |
| return -EINVAL; |
| |
| if (k < 2) { |
| debug("Public exponent is too short (%d bits, minimum 2)\n", |
| k); |
| return -EINVAL; |
| } |
| |
| if (!is_public_exponent_bit_set(key, 0)) { |
| debug("LSB of RSA public exponent must be set.\n"); |
| return -EINVAL; |
| } |
| |
| /* the bit at e[k-1] is 1 by definition, so start with: C := M */ |
| montgomery_mul(key, acc, val, key->rr); /* acc = a * RR / R mod n */ |
| /* retain scaled version for intermediate use */ |
| memcpy(a_scaled, acc, key->len * sizeof(a_scaled[0])); |
| |
| for (j = k - 2; j > 0; --j) { |
| montgomery_mul(key, tmp, acc, acc); /* tmp = acc^2 / R mod n */ |
| |
| if (is_public_exponent_bit_set(key, j)) { |
| /* acc = tmp * val / R mod n */ |
| montgomery_mul(key, acc, tmp, a_scaled); |
| } else { |
| /* e[j] == 0, copy tmp back to acc for next operation */ |
| memcpy(acc, tmp, key->len * sizeof(acc[0])); |
| } |
| } |
| |
| /* the bit at e[0] is always 1 */ |
| montgomery_mul(key, tmp, acc, acc); /* tmp = acc^2 / R mod n */ |
| montgomery_mul(key, acc, tmp, val); /* acc = tmp * a / R mod M */ |
| memcpy(result, acc, key->len * sizeof(result[0])); |
| |
| /* Make sure result < mod; result is at most 1x mod too large. */ |
| if (greater_equal_modulus(key, result)) |
| subtract_modulus(key, result); |
| |
| /* Convert to bigendian byte array */ |
| for (i = key->len - 1, ptr = inout; (int)i >= 0; i--, ptr++) |
| put_unaligned_be32(result[i], ptr); |
| return 0; |
| } |
| |
| static int rsa_verify_key(const struct rsa_public_key *key, const uint8_t *sig, |
| const uint32_t sig_len, const uint8_t *hash, |
| struct checksum_algo *algo) |
| { |
| const uint8_t *padding; |
| int pad_len; |
| int ret; |
| |
| if (!key || !sig || !hash || !algo) |
| return -EIO; |
| |
| if (sig_len != (key->len * sizeof(uint32_t))) { |
| debug("Signature is of incorrect length %d\n", sig_len); |
| return -EINVAL; |
| } |
| |
| debug("Checksum algorithm: %s", algo->name); |
| |
| /* Sanity check for stack size */ |
| if (sig_len > RSA_MAX_SIG_BITS / 8) { |
| debug("Signature length %u exceeds maximum %d\n", sig_len, |
| RSA_MAX_SIG_BITS / 8); |
| return -EINVAL; |
| } |
| |
| uint32_t buf[sig_len / sizeof(uint32_t)]; |
| |
| memcpy(buf, sig, sig_len); |
| |
| ret = pow_mod(key, buf); |
| if (ret) |
| return ret; |
| |
| padding = algo->rsa_padding; |
| pad_len = algo->pad_len - algo->checksum_len; |
| |
| /* Check pkcs1.5 padding bytes. */ |
| if (memcmp(buf, padding, pad_len)) { |
| debug("In RSAVerify(): Padding check failed!\n"); |
| return -EINVAL; |
| } |
| |
| /* Check hash. */ |
| if (memcmp((uint8_t *)buf + pad_len, hash, sig_len - pad_len)) { |
| debug("In RSAVerify(): Hash check failed!\n"); |
| return -EACCES; |
| } |
| |
| return 0; |
| } |
| |
| static void rsa_convert_big_endian(uint32_t *dst, const uint32_t *src, int len) |
| { |
| int i; |
| |
| for (i = 0; i < len; i++) |
| dst[i] = fdt32_to_cpu(src[len - 1 - i]); |
| } |
| |
| static int rsa_verify_with_keynode(struct image_sign_info *info, |
| const void *hash, uint8_t *sig, uint sig_len, int node) |
| { |
| const void *blob = info->fdt_blob; |
| struct rsa_public_key key; |
| const void *modulus, *rr; |
| const uint64_t *public_exponent; |
| int length; |
| int ret; |
| |
| if (node < 0) { |
| debug("%s: Skipping invalid node", __func__); |
| return -EBADF; |
| } |
| if (!fdt_getprop(blob, node, "rsa,n0-inverse", NULL)) { |
| debug("%s: Missing rsa,n0-inverse", __func__); |
| return -EFAULT; |
| } |
| key.len = fdtdec_get_int(blob, node, "rsa,num-bits", 0); |
| key.n0inv = fdtdec_get_int(blob, node, "rsa,n0-inverse", 0); |
| public_exponent = fdt_getprop(blob, node, "rsa,exponent", &length); |
| if (!public_exponent || length < sizeof(*public_exponent)) |
| key.exponent = RSA_DEFAULT_PUBEXP; |
| else |
| key.exponent = fdt64_to_cpu(*public_exponent); |
| modulus = fdt_getprop(blob, node, "rsa,modulus", NULL); |
| rr = fdt_getprop(blob, node, "rsa,r-squared", NULL); |
| if (!key.len || !modulus || !rr) { |
| debug("%s: Missing RSA key info", __func__); |
| return -EFAULT; |
| } |
| |
| /* Sanity check for stack size */ |
| if (key.len > RSA_MAX_KEY_BITS || key.len < RSA_MIN_KEY_BITS) { |
| debug("RSA key bits %u outside allowed range %d..%d\n", |
| key.len, RSA_MIN_KEY_BITS, RSA_MAX_KEY_BITS); |
| return -EFAULT; |
| } |
| key.len /= sizeof(uint32_t) * 8; |
| uint32_t key1[key.len], key2[key.len]; |
| |
| key.modulus = key1; |
| key.rr = key2; |
| rsa_convert_big_endian(key.modulus, modulus, key.len); |
| rsa_convert_big_endian(key.rr, rr, key.len); |
| if (!key.modulus || !key.rr) { |
| debug("%s: Out of memory", __func__); |
| return -ENOMEM; |
| } |
| |
| debug("key length %d\n", key.len); |
| ret = rsa_verify_key(&key, sig, sig_len, hash, info->algo->checksum); |
| if (ret) { |
| printf("%s: RSA failed to verify: %d\n", __func__, ret); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| int rsa_verify(struct image_sign_info *info, |
| const struct image_region region[], int region_count, |
| uint8_t *sig, uint sig_len) |
| { |
| const void *blob = info->fdt_blob; |
| /* Reserve memory for maximum checksum-length */ |
| uint8_t hash[info->algo->checksum->pad_len]; |
| int ndepth, noffset; |
| int sig_node, node; |
| char name[100]; |
| int ret; |
| |
| /* |
| * Verify that the checksum-length does not exceed the |
| * rsa-signature-length |
| */ |
| if (info->algo->checksum->checksum_len > |
| info->algo->checksum->pad_len) { |
| debug("%s: invlaid checksum-algorithm %s for %s\n", |
| __func__, info->algo->checksum->name, info->algo->name); |
| return -EINVAL; |
| } |
| |
| sig_node = fdt_subnode_offset(blob, 0, FIT_SIG_NODENAME); |
| if (sig_node < 0) { |
| debug("%s: No signature node found\n", __func__); |
| return -ENOENT; |
| } |
| |
| /* Calculate checksum with checksum-algorithm */ |
| info->algo->checksum->calculate(region, region_count, hash); |
| |
| /* See if we must use a particular key */ |
| if (info->required_keynode != -1) { |
| ret = rsa_verify_with_keynode(info, hash, sig, sig_len, |
| info->required_keynode); |
| if (!ret) |
| return ret; |
| } |
| |
| /* Look for a key that matches our hint */ |
| snprintf(name, sizeof(name), "key-%s", info->keyname); |
| node = fdt_subnode_offset(blob, sig_node, name); |
| ret = rsa_verify_with_keynode(info, hash, sig, sig_len, node); |
| if (!ret) |
| return ret; |
| |
| /* No luck, so try each of the keys in turn */ |
| for (ndepth = 0, noffset = fdt_next_node(info->fit, sig_node, &ndepth); |
| (noffset >= 0) && (ndepth > 0); |
| noffset = fdt_next_node(info->fit, noffset, &ndepth)) { |
| if (ndepth == 1 && noffset != node) { |
| ret = rsa_verify_with_keynode(info, hash, sig, sig_len, |
| noffset); |
| if (!ret) |
| break; |
| } |
| } |
| |
| return ret; |
| } |