blob: f48054de6ba9bce1f149f9d0f27de92a1074c4eb [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0 */
/*
* (C) Copyright 2015
* Texas Instruments Incorporated - http://www.ti.com/
*/
#ifndef _RPROC_H_
#define _RPROC_H_
/*
* Note: The platform data support is not meant for use with newer
* platforms. This is meant only for legacy devices. This mode of
* initialization *will* be eventually removed once all necessary
* platforms have moved to dm/fdt.
*/
#include <dm/platdata.h> /* For platform data support - non dt world */
/**
* struct fw_rsc_hdr - firmware resource entry header
* @type: resource type
* @data: resource data
*
* Every resource entry begins with a 'struct fw_rsc_hdr' header providing
* its @type. The content of the entry itself will immediately follow
* this header, and it should be parsed according to the resource type.
*/
struct fw_rsc_hdr {
u32 type;
u8 data[0];
};
/**
* enum fw_resource_type - types of resource entries
*
* @RSC_CARVEOUT: request for allocation of a physically contiguous
* memory region.
* @RSC_DEVMEM: request to iommu_map a memory-based peripheral.
* @RSC_TRACE: announces the availability of a trace buffer into which
* the remote processor will be writing logs.
* @RSC_VDEV: declare support for a virtio device, and serve as its
* virtio header.
* @RSC_PRELOAD_VENDOR: a vendor resource type that needs to be handled by
* remoteproc implementations before loading
* @RSC_POSTLOAD_VENDOR: a vendor resource type that needs to be handled by
* remoteproc implementations after loading
* @RSC_LAST: just keep this one at the end
*
* For more details regarding a specific resource type, please see its
* dedicated structure below.
*
* Please note that these values are used as indices to the rproc_handle_rsc
* lookup table, so please keep them sane. Moreover, @RSC_LAST is used to
* check the validity of an index before the lookup table is accessed, so
* please update it as needed.
*/
enum fw_resource_type {
RSC_CARVEOUT = 0,
RSC_DEVMEM = 1,
RSC_TRACE = 2,
RSC_VDEV = 3,
RSC_PRELOAD_VENDOR = 4,
RSC_POSTLOAD_VENDOR = 5,
RSC_LAST = 6,
};
#define FW_RSC_ADDR_ANY (-1)
/**
* struct fw_rsc_carveout - physically contiguous memory request
* @da: device address
* @pa: physical address
* @len: length (in bytes)
* @flags: iommu protection flags
* @reserved: reserved (must be zero)
* @name: human-readable name of the requested memory region
*
* This resource entry requests the host to allocate a physically contiguous
* memory region.
*
* These request entries should precede other firmware resource entries,
* as other entries might request placing other data objects inside
* these memory regions (e.g. data/code segments, trace resource entries, ...).
*
* Allocating memory this way helps utilizing the reserved physical memory
* (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
* needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
* pressure is important; it may have a substantial impact on performance.
*
* If the firmware is compiled with static addresses, then @da should specify
* the expected device address of this memory region. If @da is set to
* FW_RSC_ADDR_ANY, then the host will dynamically allocate it, and then
* overwrite @da with the dynamically allocated address.
*
* We will always use @da to negotiate the device addresses, even if it
* isn't using an iommu. In that case, though, it will obviously contain
* physical addresses.
*
* Some remote processors needs to know the allocated physical address
* even if they do use an iommu. This is needed, e.g., if they control
* hardware accelerators which access the physical memory directly (this
* is the case with OMAP4 for instance). In that case, the host will
* overwrite @pa with the dynamically allocated physical address.
* Generally we don't want to expose physical addresses if we don't have to
* (remote processors are generally _not_ trusted), so we might want to
* change this to happen _only_ when explicitly required by the hardware.
*
* @flags is used to provide IOMMU protection flags, and @name should
* (optionally) contain a human readable name of this carveout region
* (mainly for debugging purposes).
*/
struct fw_rsc_carveout {
u32 da;
u32 pa;
u32 len;
u32 flags;
u32 reserved;
u8 name[32];
};
/**
* struct fw_rsc_devmem - iommu mapping request
* @da: device address
* @pa: physical address
* @len: length (in bytes)
* @flags: iommu protection flags
* @reserved: reserved (must be zero)
* @name: human-readable name of the requested region to be mapped
*
* This resource entry requests the host to iommu map a physically contiguous
* memory region. This is needed in case the remote processor requires
* access to certain memory-based peripherals; _never_ use it to access
* regular memory.
*
* This is obviously only needed if the remote processor is accessing memory
* via an iommu.
*
* @da should specify the required device address, @pa should specify
* the physical address we want to map, @len should specify the size of
* the mapping and @flags is the IOMMU protection flags. As always, @name may
* (optionally) contain a human readable name of this mapping (mainly for
* debugging purposes).
*
* Note: at this point we just "trust" those devmem entries to contain valid
* physical addresses, but this isn't safe and will be changed: eventually we
* want remoteproc implementations to provide us ranges of physical addresses
* the firmware is allowed to request, and not allow firmwares to request
* access to physical addresses that are outside those ranges.
*/
struct fw_rsc_devmem {
u32 da;
u32 pa;
u32 len;
u32 flags;
u32 reserved;
u8 name[32];
};
/**
* struct fw_rsc_trace - trace buffer declaration
* @da: device address
* @len: length (in bytes)
* @reserved: reserved (must be zero)
* @name: human-readable name of the trace buffer
*
* This resource entry provides the host information about a trace buffer
* into which the remote processor will write log messages.
*
* @da specifies the device address of the buffer, @len specifies
* its size, and @name may contain a human readable name of the trace buffer.
*
* After booting the remote processor, the trace buffers are exposed to the
* user via debugfs entries (called trace0, trace1, etc..).
*/
struct fw_rsc_trace {
u32 da;
u32 len;
u32 reserved;
u8 name[32];
};
/**
* struct fw_rsc_vdev_vring - vring descriptor entry
* @da: device address
* @align: the alignment between the consumer and producer parts of the vring
* @num: num of buffers supported by this vring (must be power of two)
* @notifyid is a unique rproc-wide notify index for this vring. This notify
* index is used when kicking a remote processor, to let it know that this
* vring is triggered.
* @pa: physical address
*
* This descriptor is not a resource entry by itself; it is part of the
* vdev resource type (see below).
*
* Note that @da should either contain the device address where
* the remote processor is expecting the vring, or indicate that
* dynamically allocation of the vring's device address is supported.
*/
struct fw_rsc_vdev_vring {
u32 da;
u32 align;
u32 num;
u32 notifyid;
u32 pa;
};
/**
* struct fw_rsc_vdev - virtio device header
* @id: virtio device id (as in virtio_ids.h)
* @notifyid is a unique rproc-wide notify index for this vdev. This notify
* index is used when kicking a remote processor, to let it know that the
* status/features of this vdev have changes.
* @dfeatures specifies the virtio device features supported by the firmware
* @gfeatures is a place holder used by the host to write back the
* negotiated features that are supported by both sides.
* @config_len is the size of the virtio config space of this vdev. The config
* space lies in the resource table immediate after this vdev header.
* @status is a place holder where the host will indicate its virtio progress.
* @num_of_vrings indicates how many vrings are described in this vdev header
* @reserved: reserved (must be zero)
* @vring is an array of @num_of_vrings entries of 'struct fw_rsc_vdev_vring'.
*
* This resource is a virtio device header: it provides information about
* the vdev, and is then used by the host and its peer remote processors
* to negotiate and share certain virtio properties.
*
* By providing this resource entry, the firmware essentially asks remoteproc
* to statically allocate a vdev upon registration of the rproc (dynamic vdev
* allocation is not yet supported).
*
* Note: unlike virtualization systems, the term 'host' here means
* the Linux side which is running remoteproc to control the remote
* processors. We use the name 'gfeatures' to comply with virtio's terms,
* though there isn't really any virtualized guest OS here: it's the host
* which is responsible for negotiating the final features.
* Yeah, it's a bit confusing.
*
* Note: immediately following this structure is the virtio config space for
* this vdev (which is specific to the vdev; for more info, read the virtio
* spec). the size of the config space is specified by @config_len.
*/
struct fw_rsc_vdev {
u32 id;
u32 notifyid;
u32 dfeatures;
u32 gfeatures;
u32 config_len;
u8 status;
u8 num_of_vrings;
u8 reserved[2];
struct fw_rsc_vdev_vring vring[0];
};
/**
* struct rproc_mem_entry - memory entry descriptor
* @va: virtual address
* @dma: dma address
* @len: length, in bytes
* @da: device address
* @priv: associated data
* @name: associated memory region name (optional)
* @node: list node
*/
struct rproc_mem_entry {
void *va;
dma_addr_t dma;
int len;
u32 da;
void *priv;
char name[32];
struct list_head node;
};
struct rproc;
typedef u32(*init_func_proto) (u32 core_id, struct rproc *cfg);
struct l3_map {
u32 priv_addr;
u32 l3_addr;
u32 len;
};
struct rproc_intmem_to_l3_mapping {
u32 num_entries;
struct l3_map mappings[16];
};
/**
* enum rproc_crash_type - remote processor crash types
* @RPROC_MMUFAULT: iommu fault
* @RPROC_WATCHDOG: watchdog bite
* @RPROC_FATAL_ERROR fatal error
*
* Each element of the enum is used as an array index. So that, the value of
* the elements should be always something sane.
*
* Feel free to add more types when needed.
*/
enum rproc_crash_type {
RPROC_MMUFAULT,
RPROC_WATCHDOG,
RPROC_FATAL_ERROR,
};
/* we currently support only two vrings per rvdev */
#define RVDEV_NUM_VRINGS 2
#define RPMSG_NUM_BUFS (512)
#define RPMSG_BUF_SIZE (512)
#define RPMSG_TOTAL_BUF_SPACE (RPMSG_NUM_BUFS * RPMSG_BUF_SIZE)
/**
* struct rproc_vring - remoteproc vring state
* @va: virtual address
* @dma: dma address
* @len: length, in bytes
* @da: device address
* @align: vring alignment
* @notifyid: rproc-specific unique vring index
* @rvdev: remote vdev
* @vq: the virtqueue of this vring
*/
struct rproc_vring {
void *va;
dma_addr_t dma;
int len;
u32 da;
u32 align;
int notifyid;
struct rproc_vdev *rvdev;
struct virtqueue *vq;
};
/** struct rproc - structure with all processor specific information for
* loading remotecore from boot loader.
*
* @num_iommus: Number of IOMMUs for this remote core. Zero indicates that the
* processor does not have an IOMMU.
*
* @cma_base: Base address of the carveout for this remotecore.
*
* @cma_size: Length of the carveout in bytes.
*
* @page_table_addr: array with the physical address of the page table. We are
* using the same page table for both IOMMU's. There is currently no strong
* usecase for maintaining different page tables for different MMU's servicing
* the same CPU.
*
* @mmu_base_addr: base address of the MMU
*
* @entry_point: address that is the entry point for the remote core. This
* address is in the memory view of the remotecore.
*
* @load_addr: Address to which the bootloader loads the firmware from
* persistent storage before invoking the ELF loader. Keeping this address
* configurable allows future optimizations such as loading the firmware from
* storage for remotecore2 via EDMA while the CPU is processing the ELF image
* of remotecore1. This address is in the memory view of the A15.
*
* @firmware_name: Name of the file that is expected to contain the ELF image.
*
* @has_rsc_table: Flag populated after parsing the ELF binary on target.
*/
struct rproc {
u32 num_iommus;
unsigned long cma_base;
u32 cma_size;
unsigned long page_table_addr;
unsigned long mmu_base_addr[2];
unsigned long load_addr;
unsigned long entry_point;
char *core_name;
char *firmware_name;
char *ptn;
init_func_proto start_clocks;
init_func_proto config_mmu;
init_func_proto config_peripherals;
init_func_proto start_core;
u32 has_rsc_table;
struct rproc_intmem_to_l3_mapping *intmem_to_l3_mapping;
u32 trace_pa;
u32 trace_len;
};
extern struct rproc *rproc_cfg_arr[2];
/**
* enum rproc_mem_type - What type of memory model does the rproc use
* @RPROC_INTERNAL_MEMORY_MAPPED: Remote processor uses own memory and is memory
* mapped to the host processor over an address range.
*
* Please note that this is an enumeration of memory model of different types
* of remote processors. Few of the remote processors do have own internal
* memories, while others use external memory for instruction and data.
*/
enum rproc_mem_type {
RPROC_INTERNAL_MEMORY_MAPPED = 0,
};
/**
* struct dm_rproc_uclass_pdata - platform data for a CPU
* @name: Platform-specific way of naming the Remote proc
* @mem_type: one of 'enum rproc_mem_type'
* @driver_plat_data: driver specific platform data that may be needed.
*
* This can be accessed with dev_get_uclass_plat() for any UCLASS_REMOTEPROC
* device.
*
*/
struct dm_rproc_uclass_pdata {
const char *name;
enum rproc_mem_type mem_type;
void *driver_plat_data;
};
/**
* struct dm_rproc_ops - Driver model remote proc operations.
*
* This defines the operations provided by remote proc driver.
*/
struct dm_rproc_ops {
/**
* init() - Initialize the remoteproc device (optional)
*
* This is called after the probe is completed allowing the remote
* processor drivers to split up the initializations between probe and
* init if needed.
*
* @dev: Remote proc device
* @return 0 if all ok, else appropriate error value.
*/
int (*init)(struct udevice *dev);
/**
* load() - Load the remoteproc device using data provided (mandatory)
*
* Load the remoteproc device with an image, do not start the device.
*
* @dev: Remote proc device
* @addr: Address of the image to be loaded
* @size: Size of the image to be loaded
* @return 0 if all ok, else appropriate error value.
*/
int (*load)(struct udevice *dev, ulong addr, ulong size);
/**
* start() - Start the remoteproc device (mandatory)
*
* @dev: Remote proc device
* @return 0 if all ok, else appropriate error value.
*/
int (*start)(struct udevice *dev);
/**
* stop() - Stop the remoteproc device (optional)
*
* @dev: Remote proc device
* @return 0 if all ok, else appropriate error value.
*/
int (*stop)(struct udevice *dev);
/**
* reset() - Reset the remoteproc device (optional)
*
* @dev: Remote proc device
* @return 0 if all ok, else appropriate error value.
*/
int (*reset)(struct udevice *dev);
/**
* is_running() - Check if the remote processor is running (optional)
*
* @dev: Remote proc device
* @return 0 if running, 1 if not running, -ve on error.
*/
int (*is_running)(struct udevice *dev);
/**
* ping() - Ping the remote device for basic communication (optional)
*
* @dev: Remote proc device
* @return 0 on success, 1 if not responding, -ve on other errors.
*/
int (*ping)(struct udevice *dev);
/**
* device_to_virt() - Return translated virtual address (optional)
*
* Translate a device address (remote processor view) to virtual
* address (main processor view).
*
* @dev: Remote proc device
* @da: Device address
* @size: Size of the memory region @da is pointing to
* @return virtual address.
*/
void * (*device_to_virt)(struct udevice *dev, ulong da, ulong size);
int (*add_res)(struct udevice *dev,
struct rproc_mem_entry *mapping);
void * (*alloc_mem)(struct udevice *dev, unsigned long len,
unsigned long align);
unsigned int (*config_pagetable)(struct udevice *dev, unsigned int virt,
unsigned int phys, unsigned int len);
};
/* Accessor */
#define rproc_get_ops(dev) ((struct dm_rproc_ops *)(dev)->driver->ops)
#if CONFIG_IS_ENABLED(REMOTEPROC)
/**
* rproc_init() - Initialize all bound remote proc devices
* Return: 0 if all ok, else appropriate error value.
*/
int rproc_init(void);
/**
* rproc_dev_init() - Initialize a remote proc device based on id
* @id: id of the remote processor
* Return: 0 if all ok, else appropriate error value.
*/
int rproc_dev_init(int id);
/**
* rproc_is_initialized() - check to see if remoteproc devices are initialized
* Return: true if all devices are initialized, false otherwise.
*/
bool rproc_is_initialized(void);
/**
* rproc_load() - load binary or elf to a remote processor
* @id: id of the remote processor
* @addr: address in memory where the image is located
* @size: size of the image
* Return: 0 if all ok, else appropriate error value.
*/
int rproc_load(int id, ulong addr, ulong size);
/**
* rproc_start() - Start a remote processor
* @id: id of the remote processor
* Return: 0 if all ok, else appropriate error value.
*/
int rproc_start(int id);
/**
* rproc_stop() - Stop a remote processor
* @id: id of the remote processor
* Return: 0 if all ok, else appropriate error value.
*/
int rproc_stop(int id);
/**
* rproc_reset() - reset a remote processor
* @id: id of the remote processor
* Return: 0 if all ok, else appropriate error value.
*/
int rproc_reset(int id);
/**
* rproc_ping() - ping a remote processor to check if it can communicate
* @id: id of the remote processor
* Return: 0 if all ok, else appropriate error value.
*
* NOTE: this might need communication path available, which is not implemented
* as part of remoteproc framework - hook on to appropriate bus architecture to
* do the same
*/
int rproc_ping(int id);
/**
* rproc_is_running() - check to see if remote processor is running
* @id: id of the remote processor
* Return: 0 if running, 1 if not running, -ve on error.
*
* NOTE: this may not involve actual communication capability of the remote
* processor, but just ensures that it is out of reset and executing code.
*/
int rproc_is_running(int id);
/**
* rproc_elf32_sanity_check() - Verify if an image is a valid ELF32 one
*
* Check if a valid ELF32 image exists at the given memory location. Verify
* basic ELF32 format requirements like magic number and sections size.
*
* @addr: address of the image to verify
* @size: size of the image
* Return: 0 if the image looks good, else appropriate error value.
*/
int rproc_elf32_sanity_check(ulong addr, ulong size);
/**
* rproc_elf64_sanity_check() - Verify if an image is a valid ELF32 one
*
* Check if a valid ELF64 image exists at the given memory location. Verify
* basic ELF64 format requirements like magic number and sections size.
*
* @addr: address of the image to verify
* @size: size of the image
* Return: 0 if the image looks good, else appropriate error value.
*/
int rproc_elf64_sanity_check(ulong addr, ulong size);
/**
* rproc_elf32_load_image() - load an ELF32 image
* @dev: device loading the ELF32 image
* @addr: valid ELF32 image address
* @size: size of the image
* Return: 0 if the image is successfully loaded, else appropriate error value.
*/
int rproc_elf32_load_image(struct udevice *dev, unsigned long addr, ulong size);
/**
* rproc_elf64_load_image() - load an ELF64 image
* @dev: device loading the ELF64 image
* @addr: valid ELF64 image address
* @size: size of the image
* Return: 0 if the image is successfully loaded, else appropriate error value.
*/
int rproc_elf64_load_image(struct udevice *dev, ulong addr, ulong size);
/**
* rproc_elf_load_image() - load an ELF image
* @dev: device loading the ELF image
* @addr: valid ELF image address
* @size: size of the image
*
* Auto detects if the image is ELF32 or ELF64 image and load accordingly.
* Return: 0 if the image is successfully loaded, else appropriate error value.
*/
int rproc_elf_load_image(struct udevice *dev, unsigned long addr, ulong size);
/**
* rproc_elf_get_boot_addr() - Get rproc's boot address.
* @dev: device loading the ELF image
* @addr: valid ELF image address
*
* This function returns the entry point address of the ELF
* image.
*/
ulong rproc_elf_get_boot_addr(struct udevice *dev, ulong addr);
/**
* rproc_elf32_load_rsc_table() - load the resource table from an ELF32 image
*
* Search for the resource table in an ELF32 image, and if found, copy it to
* device memory.
*
* @dev: device loading the resource table
* @fw_addr: ELF image address
* @fw_size: size of the ELF image
* @rsc_addr: pointer to the found resource table address. Updated on
* operation success
* @rsc_size: pointer to the found resource table size. Updated on operation
* success
*
* Return: 0 if a valid resource table is successfully loaded, -ENODATA if there
* is no resource table (which is optional), or another appropriate error value.
*/
int rproc_elf32_load_rsc_table(struct udevice *dev, ulong fw_addr,
ulong fw_size, ulong *rsc_addr, ulong *rsc_size);
/**
* rproc_elf64_load_rsc_table() - load the resource table from an ELF64 image
*
* Search for the resource table in an ELF64 image, and if found, copy it to
* device memory.
*
* @dev: device loading the resource table
* @fw_addr: ELF image address
* @fw_size: size of the ELF image
* @rsc_addr: pointer to the found resource table address. Updated on
* operation success
* @rsc_size: pointer to the found resource table size. Updated on operation
* success
*
* Return: 0 if a valid resource table is successfully loaded, -ENODATA if there
* is no resource table (which is optional), or another appropriate error value.
*/
int rproc_elf64_load_rsc_table(struct udevice *dev, ulong fw_addr,
ulong fw_size, ulong *rsc_addr, ulong *rsc_size);
/**
* rproc_elf_load_rsc_table() - load the resource table from an ELF image
*
* Auto detects if the image is ELF32 or ELF64 image and search accordingly for
* the resource table, and if found, copy it to device memory.
*
* @dev: device loading the resource table
* @fw_addr: ELF image address
* @fw_size: size of the ELF image
* @rsc_addr: pointer to the found resource table address. Updated on
* operation success
* @rsc_size: pointer to the found resource table size. Updated on operation
* success
*
* Return: 0 if a valid resource table is successfully loaded, -ENODATA if there
* is no resource table (which is optional), or another appropriate error value.
*/
int rproc_elf_load_rsc_table(struct udevice *dev, ulong fw_addr,
ulong fw_size, ulong *rsc_addr, ulong *rsc_size);
unsigned long rproc_parse_resource_table(struct udevice *dev,
struct rproc *cfg);
struct resource_table *rproc_find_resource_table(struct udevice *dev,
unsigned int addr,
int *tablesz);
#else
static inline int rproc_init(void) { return -ENOSYS; }
static inline int rproc_dev_init(int id) { return -ENOSYS; }
static inline bool rproc_is_initialized(void) { return false; }
static inline int rproc_load(int id, ulong addr, ulong size) { return -ENOSYS; }
static inline int rproc_start(int id) { return -ENOSYS; }
static inline int rproc_stop(int id) { return -ENOSYS; }
static inline int rproc_reset(int id) { return -ENOSYS; }
static inline int rproc_ping(int id) { return -ENOSYS; }
static inline int rproc_is_running(int id) { return -ENOSYS; }
static inline int rproc_elf32_sanity_check(ulong addr,
ulong size) { return -ENOSYS; }
static inline int rproc_elf64_sanity_check(ulong addr,
ulong size) { return -ENOSYS; }
static inline int rproc_elf_sanity_check(ulong addr,
ulong size) { return -ENOSYS; }
static inline int rproc_elf32_load_image(struct udevice *dev,
unsigned long addr, ulong size)
{ return -ENOSYS; }
static inline int rproc_elf64_load_image(struct udevice *dev, ulong addr,
ulong size)
{ return -ENOSYS; }
static inline int rproc_elf_load_image(struct udevice *dev, ulong addr,
ulong size)
{ return -ENOSYS; }
static inline ulong rproc_elf_get_boot_addr(struct udevice *dev, ulong addr)
{ return 0; }
static inline int rproc_elf32_load_rsc_table(struct udevice *dev, ulong fw_addr,
ulong fw_size, ulong *rsc_addr,
ulong *rsc_size)
{ return -ENOSYS; }
static inline int rproc_elf64_load_rsc_table(struct udevice *dev, ulong fw_addr,
ulong fw_size, ulong *rsc_addr,
ulong *rsc_size)
{ return -ENOSYS; }
static inline int rproc_elf_load_rsc_table(struct udevice *dev, ulong fw_addr,
ulong fw_size, ulong *rsc_addr,
ulong *rsc_size)
{ return -ENOSYS; }
#endif
#endif /* _RPROC_H_ */