| /* |
| * SEC Descriptor Construction Library |
| * Basic job descriptor construction |
| * |
| * Copyright 2014 Freescale Semiconductor, Inc. |
| * |
| * SPDX-License-Identifier: GPL-2.0+ |
| * |
| */ |
| |
| #include <common.h> |
| #include <fsl_sec.h> |
| #include "desc_constr.h" |
| #include "jobdesc.h" |
| #include "rsa_caam.h" |
| |
| #if defined(CONFIG_MX6) || defined(CONFIG_MX7) |
| /*! |
| * Secure memory run command |
| * |
| * @param sec_mem_cmd Secure memory command register |
| * @return cmd_status Secure memory command status register |
| */ |
| uint32_t secmem_set_cmd(uint32_t sec_mem_cmd) |
| { |
| uint32_t temp_reg; |
| |
| ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR; |
| uint32_t sm_vid = SM_VERSION(sec_in32(&sec->smvid)); |
| uint32_t jr_id = 0; |
| |
| sec_out32(CAAM_SMCJR(sm_vid, jr_id), sec_mem_cmd); |
| |
| do { |
| temp_reg = sec_in32(CAAM_SMCSJR(sm_vid, jr_id)); |
| } while (temp_reg & CMD_COMPLETE); |
| |
| return temp_reg; |
| } |
| |
| /*! |
| * CAAM page allocation: |
| * Allocates a partition from secure memory, with the id |
| * equal to partition_num. This will de-allocate the page |
| * if it is already allocated. The partition will have |
| * full access permissions. The permissions are set before, |
| * running a job descriptor. A memory page of secure RAM |
| * is allocated for the partition. |
| * |
| * @param page Number of the page to allocate. |
| * @param partition Number of the partition to allocate. |
| * @return 0 on success, ERROR_IN_PAGE_ALLOC otherwise |
| */ |
| int caam_page_alloc(uint8_t page_num, uint8_t partition_num) |
| { |
| uint32_t temp_reg; |
| |
| ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR; |
| uint32_t sm_vid = SM_VERSION(sec_in32(&sec->smvid)); |
| uint32_t jr_id = 0; |
| |
| /* |
| * De-Allocate partition_num if already allocated to ARM core |
| */ |
| if (sec_in32(CAAM_SMPO_0) & PARTITION_OWNER(partition_num)) { |
| temp_reg = secmem_set_cmd(PARTITION(partition_num) | |
| CMD_PART_DEALLOC); |
| if (temp_reg & SMCSJR_AERR) { |
| printf("Error: De-allocation status 0x%X\n", temp_reg); |
| return ERROR_IN_PAGE_ALLOC; |
| } |
| } |
| |
| /* set the access rights to allow full access */ |
| sec_out32(CAAM_SMAG1JR(sm_vid, jr_id, partition_num), 0xF); |
| sec_out32(CAAM_SMAG2JR(sm_vid, jr_id, partition_num), 0xF); |
| sec_out32(CAAM_SMAPJR(sm_vid, jr_id, partition_num), 0xFF); |
| |
| /* Now need to allocate partition_num of secure RAM. */ |
| /* De-Allocate page_num by starting with a page inquiry command */ |
| temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_INQUIRY); |
| |
| /* if the page is owned, de-allocate it */ |
| if ((temp_reg & SMCSJR_PO) == PAGE_OWNED) { |
| temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_PAGE_DEALLOC); |
| if (temp_reg & SMCSJR_AERR) { |
| printf("Error: Allocation status 0x%X\n", temp_reg); |
| return ERROR_IN_PAGE_ALLOC; |
| } |
| } |
| |
| /* Allocate page_num to partition_num */ |
| temp_reg = secmem_set_cmd(PAGE(page_num) | PARTITION(partition_num) |
| | CMD_PAGE_ALLOC); |
| if (temp_reg & SMCSJR_AERR) { |
| printf("Error: Allocation status 0x%X\n", temp_reg); |
| return ERROR_IN_PAGE_ALLOC; |
| } |
| /* page inquiry command to ensure that the page was allocated */ |
| temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_INQUIRY); |
| |
| /* if the page is not owned => problem */ |
| if ((temp_reg & SMCSJR_PO) != PAGE_OWNED) { |
| printf("Allocation of page %d in partition %d failed 0x%X\n", |
| temp_reg, page_num, partition_num); |
| |
| return ERROR_IN_PAGE_ALLOC; |
| } |
| |
| return 0; |
| } |
| |
| int inline_cnstr_jobdesc_blob_dek(uint32_t *desc, const uint8_t *plain_txt, |
| uint8_t *dek_blob, uint32_t in_sz) |
| { |
| ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR; |
| uint32_t sm_vid = SM_VERSION(sec_in32(&sec->smvid)); |
| uint32_t jr_id = 0; |
| |
| uint32_t ret = 0; |
| u32 aad_w1, aad_w2; |
| /* output blob will have 32 bytes key blob in beginning and |
| * 16 byte HMAC identifier at end of data blob */ |
| uint32_t out_sz = in_sz + KEY_BLOB_SIZE + MAC_SIZE; |
| /* Setting HDR for blob */ |
| uint8_t wrapped_key_hdr[8] = {HDR_TAG, 0x00, WRP_HDR_SIZE + out_sz, |
| HDR_PAR, HAB_MOD, HAB_ALG, in_sz, HAB_FLG}; |
| |
| /* initialize the blob array */ |
| memset(dek_blob, 0, out_sz + 8); |
| /* Copy the header into the DEK blob buffer */ |
| memcpy(dek_blob, wrapped_key_hdr, sizeof(wrapped_key_hdr)); |
| |
| /* allocating secure memory */ |
| ret = caam_page_alloc(PAGE_1, PARTITION_1); |
| if (ret) |
| return ret; |
| |
| /* Write DEK to secure memory */ |
| memcpy((uint32_t *)SEC_MEM_PAGE1, (uint32_t *)plain_txt, in_sz); |
| |
| unsigned long start = (unsigned long)SEC_MEM_PAGE1 & |
| ~(ARCH_DMA_MINALIGN - 1); |
| unsigned long end = ALIGN(start + 0x1000, ARCH_DMA_MINALIGN); |
| flush_dcache_range(start, end); |
| |
| /* Now configure the access rights of the partition */ |
| sec_out32(CAAM_SMAG1JR(sm_vid, jr_id, PARTITION_1), KS_G1); |
| sec_out32(CAAM_SMAG2JR(sm_vid, jr_id, PARTITION_1), 0); |
| sec_out32(CAAM_SMAPJR(sm_vid, jr_id, PARTITION_1), PERM); |
| |
| /* construct aad for AES */ |
| aad_w1 = (in_sz << OP_ALG_ALGSEL_SHIFT) | KEY_AES_SRC | LD_CCM_MODE; |
| aad_w2 = 0x0; |
| |
| init_job_desc(desc, 0); |
| |
| append_cmd(desc, CMD_LOAD | CLASS_2 | KEY_IMM | KEY_ENC | |
| (0x0c << LDST_OFFSET_SHIFT) | 0x08); |
| |
| append_u32(desc, aad_w1); |
| |
| append_u32(desc, aad_w2); |
| |
| append_cmd_ptr(desc, (dma_addr_t)SEC_MEM_PAGE1, in_sz, CMD_SEQ_IN_PTR); |
| |
| append_cmd_ptr(desc, (dma_addr_t)dek_blob + 8, out_sz, CMD_SEQ_OUT_PTR); |
| |
| append_operation(desc, OP_TYPE_ENCAP_PROTOCOL | OP_PCLID_BLOB | |
| OP_PCLID_SECMEM); |
| |
| return ret; |
| } |
| #endif |
| |
| void inline_cnstr_jobdesc_hash(uint32_t *desc, |
| const uint8_t *msg, uint32_t msgsz, uint8_t *digest, |
| u32 alg_type, uint32_t alg_size, int sg_tbl) |
| { |
| /* SHA 256 , output is of length 32 words */ |
| uint32_t storelen = alg_size; |
| u32 options; |
| dma_addr_t dma_addr_in, dma_addr_out; |
| |
| dma_addr_in = virt_to_phys((void *)msg); |
| dma_addr_out = virt_to_phys((void *)digest); |
| |
| init_job_desc(desc, 0); |
| append_operation(desc, OP_TYPE_CLASS2_ALG | |
| OP_ALG_AAI_HASH | OP_ALG_AS_INITFINAL | |
| OP_ALG_ENCRYPT | OP_ALG_ICV_OFF | alg_type); |
| |
| options = LDST_CLASS_2_CCB | FIFOLD_TYPE_MSG | FIFOLD_TYPE_LAST2; |
| if (sg_tbl) |
| options |= FIFOLDST_SGF; |
| if (msgsz > 0xffff) { |
| options |= FIFOLDST_EXT; |
| append_fifo_load(desc, dma_addr_in, 0, options); |
| append_cmd(desc, msgsz); |
| } else { |
| append_fifo_load(desc, dma_addr_in, msgsz, options); |
| } |
| |
| append_store(desc, dma_addr_out, storelen, |
| LDST_CLASS_2_CCB | LDST_SRCDST_BYTE_CONTEXT); |
| } |
| #ifndef CONFIG_SPL_BUILD |
| void inline_cnstr_jobdesc_blob_encap(uint32_t *desc, uint8_t *key_idnfr, |
| uint8_t *plain_txt, uint8_t *enc_blob, |
| uint32_t in_sz) |
| { |
| dma_addr_t dma_addr_key_idnfr, dma_addr_in, dma_addr_out; |
| uint32_t key_sz = KEY_IDNFR_SZ_BYTES; |
| /* output blob will have 32 bytes key blob in beginning and |
| * 16 byte HMAC identifier at end of data blob */ |
| uint32_t out_sz = in_sz + KEY_BLOB_SIZE + MAC_SIZE; |
| |
| dma_addr_key_idnfr = virt_to_phys((void *)key_idnfr); |
| dma_addr_in = virt_to_phys((void *)plain_txt); |
| dma_addr_out = virt_to_phys((void *)enc_blob); |
| |
| init_job_desc(desc, 0); |
| |
| append_key(desc, dma_addr_key_idnfr, key_sz, CLASS_2); |
| |
| append_seq_in_ptr(desc, dma_addr_in, in_sz, 0); |
| |
| append_seq_out_ptr(desc, dma_addr_out, out_sz, 0); |
| |
| append_operation(desc, OP_TYPE_ENCAP_PROTOCOL | OP_PCLID_BLOB); |
| } |
| |
| void inline_cnstr_jobdesc_blob_decap(uint32_t *desc, uint8_t *key_idnfr, |
| uint8_t *enc_blob, uint8_t *plain_txt, |
| uint32_t out_sz) |
| { |
| dma_addr_t dma_addr_key_idnfr, dma_addr_in, dma_addr_out; |
| uint32_t key_sz = KEY_IDNFR_SZ_BYTES; |
| uint32_t in_sz = out_sz + KEY_BLOB_SIZE + MAC_SIZE; |
| |
| dma_addr_key_idnfr = virt_to_phys((void *)key_idnfr); |
| dma_addr_in = virt_to_phys((void *)enc_blob); |
| dma_addr_out = virt_to_phys((void *)plain_txt); |
| |
| init_job_desc(desc, 0); |
| |
| append_key(desc, dma_addr_key_idnfr, key_sz, CLASS_2); |
| |
| append_seq_in_ptr(desc, dma_addr_in, in_sz, 0); |
| |
| append_seq_out_ptr(desc, dma_addr_out, out_sz, 0); |
| |
| append_operation(desc, OP_TYPE_DECAP_PROTOCOL | OP_PCLID_BLOB); |
| } |
| #endif |
| /* |
| * Descriptor to instantiate RNG State Handle 0 in normal mode and |
| * load the JDKEK, TDKEK and TDSK registers |
| */ |
| void inline_cnstr_jobdesc_rng_instantiation(uint32_t *desc) |
| { |
| u32 *jump_cmd; |
| |
| init_job_desc(desc, 0); |
| |
| /* INIT RNG in non-test mode */ |
| append_operation(desc, OP_TYPE_CLASS1_ALG | OP_ALG_ALGSEL_RNG | |
| OP_ALG_AS_INIT); |
| |
| /* wait for done */ |
| jump_cmd = append_jump(desc, JUMP_CLASS_CLASS1); |
| set_jump_tgt_here(desc, jump_cmd); |
| |
| /* |
| * load 1 to clear written reg: |
| * resets the done interrrupt and returns the RNG to idle. |
| */ |
| append_load_imm_u32(desc, 1, LDST_SRCDST_WORD_CLRW); |
| |
| /* generate secure keys (non-test) */ |
| append_operation(desc, OP_TYPE_CLASS1_ALG | OP_ALG_ALGSEL_RNG | |
| OP_ALG_RNG4_SK); |
| } |
| |
| /* Change key size to bytes form bits in calling function*/ |
| void inline_cnstr_jobdesc_pkha_rsaexp(uint32_t *desc, |
| struct pk_in_params *pkin, uint8_t *out, |
| uint32_t out_siz) |
| { |
| dma_addr_t dma_addr_e, dma_addr_a, dma_addr_n, dma_addr_out; |
| |
| dma_addr_e = virt_to_phys((void *)pkin->e); |
| dma_addr_a = virt_to_phys((void *)pkin->a); |
| dma_addr_n = virt_to_phys((void *)pkin->n); |
| dma_addr_out = virt_to_phys((void *)out); |
| |
| init_job_desc(desc, 0); |
| append_key(desc, dma_addr_e, pkin->e_siz, KEY_DEST_PKHA_E | CLASS_1); |
| |
| append_fifo_load(desc, dma_addr_a, |
| pkin->a_siz, LDST_CLASS_1_CCB | FIFOLD_TYPE_PK_A); |
| |
| append_fifo_load(desc, dma_addr_n, |
| pkin->n_siz, LDST_CLASS_1_CCB | FIFOLD_TYPE_PK_N); |
| |
| append_operation(desc, OP_TYPE_PK | OP_ALG_PK | OP_ALG_PKMODE_MOD_EXPO); |
| |
| append_fifo_store(desc, dma_addr_out, out_siz, |
| LDST_CLASS_1_CCB | FIFOST_TYPE_PKHA_B); |
| } |