blob: 0c2b2b57054098f392c3f84773388c8a353a4041 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* BTRFS filesystem implementation for U-Boot
*
* 2017 Marek Behun, CZ.NIC, marek.behun@nic.cz
*/
#include <linux/kernel.h>
#include <malloc.h>
#include <memalign.h>
#include "btrfs.h"
#include "disk-io.h"
#include "volumes.h"
u64 __btrfs_lookup_inode_ref(struct __btrfs_root *root, u64 inr,
struct btrfs_inode_ref *refp, char *name)
{
struct __btrfs_path path;
struct btrfs_key *key;
struct btrfs_inode_ref *ref;
u64 res = -1ULL;
key = btrfs_search_tree_key_type(root, inr, BTRFS_INODE_REF_KEY,
&path);
if (!key)
return -1ULL;
ref = btrfs_path_item_ptr(&path, struct btrfs_inode_ref);
btrfs_inode_ref_to_cpu(ref);
if (refp)
*refp = *ref;
if (name) {
if (ref->name_len > BTRFS_NAME_LEN) {
printf("%s: inode name too long: %u\n", __func__,
ref->name_len);
goto out;
}
memcpy(name, ref + 1, ref->name_len);
}
res = key->offset;
out:
__btrfs_free_path(&path);
return res;
}
int __btrfs_lookup_inode(const struct __btrfs_root *root,
struct btrfs_key *location,
struct btrfs_inode_item *item,
struct __btrfs_root *new_root)
{
struct __btrfs_root tmp_root = *root;
struct __btrfs_path path;
int res = -1;
if (location->type == BTRFS_ROOT_ITEM_KEY) {
if (btrfs_find_root(location->objectid, &tmp_root, NULL))
return -1;
location->objectid = tmp_root.root_dirid;
location->type = BTRFS_INODE_ITEM_KEY;
location->offset = 0;
}
if (btrfs_search_tree(&tmp_root, location, &path))
return res;
if (__btrfs_comp_keys(location, btrfs_path_leaf_key(&path)))
goto out;
if (item) {
*item = *btrfs_path_item_ptr(&path, struct btrfs_inode_item);
btrfs_inode_item_to_cpu(item);
}
if (new_root)
*new_root = tmp_root;
res = 0;
out:
__btrfs_free_path(&path);
return res;
}
/*
* Read the content of symlink inode @ino of @root, into @target.
* NOTE: @target will not be \0 termiated, caller should handle it properly.
*
* Return the number of read data.
* Return <0 for error.
*/
int btrfs_readlink(struct btrfs_root *root, u64 ino, char *target)
{
struct btrfs_path path;
struct btrfs_key key;
struct btrfs_file_extent_item *fi;
int ret;
key.objectid = ino;
key.type = BTRFS_EXTENT_DATA_KEY;
key.offset = 0;
btrfs_init_path(&path);
ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
if (ret < 0)
return ret;
if (ret > 0) {
ret = -ENOENT;
goto out;
}
fi = btrfs_item_ptr(path.nodes[0], path.slots[0],
struct btrfs_file_extent_item);
if (btrfs_file_extent_type(path.nodes[0], fi) !=
BTRFS_FILE_EXTENT_INLINE) {
ret = -EUCLEAN;
error("Extent for symlink %llu must be INLINE type!", ino);
goto out;
}
if (btrfs_file_extent_compression(path.nodes[0], fi) !=
BTRFS_COMPRESS_NONE) {
ret = -EUCLEAN;
error("Extent for symlink %llu must not be compressed!", ino);
goto out;
}
if (btrfs_file_extent_ram_bytes(path.nodes[0], fi) >=
root->fs_info->sectorsize) {
ret = -EUCLEAN;
error("Symlink %llu extent data too large (%llu)!\n",
ino, btrfs_file_extent_ram_bytes(path.nodes[0], fi));
goto out;
}
read_extent_buffer(path.nodes[0], target,
btrfs_file_extent_inline_start(fi),
btrfs_file_extent_ram_bytes(path.nodes[0], fi));
ret = btrfs_file_extent_ram_bytes(path.nodes[0], fi);
out:
btrfs_release_path(&path);
return ret;
}
int __btrfs_readlink(const struct __btrfs_root *root, u64 inr, char *target)
{
struct btrfs_root *subvolume;
struct btrfs_fs_info *fs_info = current_fs_info;
struct btrfs_key key;
int ret;
ASSERT(fs_info);
key.objectid = root->objectid;
key.type = BTRFS_ROOT_ITEM_KEY;
key.offset = (u64)-1;
subvolume = btrfs_read_fs_root(fs_info, &key);
if (IS_ERR(subvolume))
return -1;
ret = btrfs_readlink(subvolume, inr, target);
if (ret < 0)
return -1;
target[ret] = '\0';
return 0;
}
static int lookup_root_ref(struct btrfs_fs_info *fs_info,
u64 rootid, u64 *root_ret, u64 *dir_ret)
{
struct btrfs_root *root = fs_info->tree_root;
struct btrfs_root_ref *root_ref;
struct btrfs_path path;
struct btrfs_key key;
int ret;
btrfs_init_path(&path);
key.objectid = rootid;
key.type = BTRFS_ROOT_BACKREF_KEY;
key.offset = (u64)-1;
ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
if (ret < 0)
return ret;
/* Should not happen */
if (ret == 0) {
ret = -EUCLEAN;
goto out;
}
ret = btrfs_previous_item(root, &path, rootid, BTRFS_ROOT_BACKREF_KEY);
if (ret < 0)
goto out;
if (ret > 0) {
ret = -ENOENT;
goto out;
}
btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
root_ref = btrfs_item_ptr(path.nodes[0], path.slots[0],
struct btrfs_root_ref);
*root_ret = key.offset;
*dir_ret = btrfs_root_ref_dirid(path.nodes[0], root_ref);
out:
btrfs_release_path(&path);
return ret;
}
/*
* To get the parent inode of @ino of @root.
*
* @root_ret and @ino_ret will be filled.
*
* NOTE: This function is not reliable. It can only get one parent inode.
* The get the proper parent inode, we need a full VFS inodes stack to
* resolve properly.
*/
static int get_parent_inode(struct btrfs_root *root, u64 ino,
struct btrfs_root **root_ret, u64 *ino_ret)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_path path;
struct btrfs_key key;
int ret;
if (ino == BTRFS_FIRST_FREE_OBJECTID) {
u64 parent_root = -1;
/* It's top level already, no more parent */
if (root->root_key.objectid == BTRFS_FS_TREE_OBJECTID) {
*root_ret = fs_info->fs_root;
*ino_ret = BTRFS_FIRST_FREE_OBJECTID;
return 0;
}
ret = lookup_root_ref(fs_info, root->root_key.objectid,
&parent_root, ino_ret);
if (ret < 0)
return ret;
key.objectid = parent_root;
key.type = BTRFS_ROOT_ITEM_KEY;
key.offset = (u64)-1;
*root_ret = btrfs_read_fs_root(fs_info, &key);
if (IS_ERR(*root_ret))
return PTR_ERR(*root_ret);
return 0;
}
btrfs_init_path(&path);
key.objectid = ino;
key.type = BTRFS_INODE_REF_KEY;
key.offset = (u64)-1;
ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
if (ret < 0)
return ret;
/* Should not happen */
if (ret == 0) {
ret = -EUCLEAN;
goto out;
}
ret = btrfs_previous_item(root, &path, ino, BTRFS_INODE_REF_KEY);
if (ret < 0)
goto out;
if (ret > 0) {
ret = -ENOENT;
goto out;
}
btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
*root_ret = root;
*ino_ret = key.offset;
out:
btrfs_release_path(&path);
return ret;
}
/* inr must be a directory (for regular files with multiple hard links this
function returns only one of the parents of the file) */
static u64 __get_parent_inode(struct __btrfs_root *root, u64 inr,
struct btrfs_inode_item *inode_item)
{
struct btrfs_key key;
u64 res;
if (inr == BTRFS_FIRST_FREE_OBJECTID) {
if (root->objectid != btrfs_info.fs_root.objectid) {
u64 parent;
struct btrfs_root_ref ref;
parent = btrfs_lookup_root_ref(root->objectid, &ref,
NULL);
if (parent == -1ULL)
return -1ULL;
if (btrfs_find_root(parent, root, NULL))
return -1ULL;
inr = ref.dirid;
}
if (inode_item) {
key.objectid = inr;
key.type = BTRFS_INODE_ITEM_KEY;
key.offset = 0;
if (__btrfs_lookup_inode(root, &key, inode_item, NULL))
return -1ULL;
}
return inr;
}
res = __btrfs_lookup_inode_ref(root, inr, NULL, NULL);
if (res == -1ULL)
return -1ULL;
if (inode_item) {
key.objectid = res;
key.type = BTRFS_INODE_ITEM_KEY;
key.offset = 0;
if (__btrfs_lookup_inode(root, &key, inode_item, NULL))
return -1ULL;
}
return res;
}
static inline int next_length(const char *path)
{
int res = 0;
while (*path != '\0' && *path != '/') {
++res;
++path;
if (res > BTRFS_NAME_LEN)
break;
}
return res;
}
static inline const char *skip_current_directories(const char *cur)
{
while (1) {
if (cur[0] == '/')
++cur;
else if (cur[0] == '.' && cur[1] == '/')
cur += 2;
else
break;
}
return cur;
}
/*
* Resolve one filename of @ino of @root.
*
* key_ret: The child key (either INODE_ITEM or ROOT_ITEM type)
* type_ret: BTRFS_FT_* of the child inode.
*
* Return 0 with above members filled.
* Return <0 for error.
*/
static int resolve_one_filename(struct btrfs_root *root, u64 ino,
const char *name, int namelen,
struct btrfs_key *key_ret, u8 *type_ret)
{
struct btrfs_dir_item *dir_item;
struct btrfs_path path;
int ret = 0;
btrfs_init_path(&path);
dir_item = btrfs_lookup_dir_item(NULL, root, &path, ino, name,
namelen, 0);
if (IS_ERR(dir_item)) {
ret = PTR_ERR(dir_item);
goto out;
}
btrfs_dir_item_key_to_cpu(path.nodes[0], dir_item, key_ret);
*type_ret = btrfs_dir_type(path.nodes[0], dir_item);
out:
btrfs_release_path(&path);
return ret;
}
/*
* Resolve a full path @filename. The start point is @ino of @root.
*
* The result will be filled into @root_ret, @ino_ret and @type_ret.
*/
int btrfs_lookup_path(struct btrfs_root *root, u64 ino, const char *filename,
struct btrfs_root **root_ret, u64 *ino_ret,
u8 *type_ret, int symlink_limit)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_root *next_root;
struct btrfs_key key;
const char *cur = filename;
u64 next_ino;
u8 next_type;
u8 type;
int len;
int ret = 0;
/* If the path is absolute path, also search from fs root */
if (*cur == '/') {
root = fs_info->fs_root;
ino = btrfs_root_dirid(&root->root_item);
type = BTRFS_FT_DIR;
}
while (*cur != '\0') {
cur = skip_current_directories(cur);
len = next_length(cur);
if (len > BTRFS_NAME_LEN) {
error("%s: Name too long at \"%.*s\"", __func__,
BTRFS_NAME_LEN, cur);
return -ENAMETOOLONG;
}
if (len == 1 && cur[0] == '.')
break;
if (len == 2 && cur[0] == '.' && cur[1] == '.') {
/* Go one level up */
ret = get_parent_inode(root, ino, &next_root, &next_ino);
if (ret < 0)
return ret;
root = next_root;
ino = next_ino;
goto next;
}
if (!*cur)
break;
ret = resolve_one_filename(root, ino, cur, len, &key, &type);
if (ret < 0)
return ret;
if (key.type == BTRFS_ROOT_ITEM_KEY) {
/* Child inode is a subvolume */
next_root = btrfs_read_fs_root(fs_info, &key);
if (IS_ERR(next_root))
return PTR_ERR(next_root);
root = next_root;
ino = btrfs_root_dirid(&root->root_item);
} else if (type == BTRFS_FT_SYMLINK && symlink_limit >= 0) {
/* Child inode is a symlink */
char *target;
if (symlink_limit == 0) {
error("%s: Too much symlinks!", __func__);
return -EMLINK;
}
target = malloc(fs_info->sectorsize);
if (!target)
return -ENOMEM;
ret = btrfs_readlink(root, key.objectid, target);
if (ret < 0) {
free(target);
return ret;
}
target[ret] = '\0';
ret = btrfs_lookup_path(root, ino, target, &next_root,
&next_ino, &next_type,
symlink_limit);
if (ret < 0)
return ret;
root = next_root;
ino = next_ino;
type = next_type;
} else {
/* Child inode is an inode */
ino = key.objectid;
}
next:
cur += len;
}
if (!ret) {
*root_ret = root;
*ino_ret = ino;
*type_ret = type;
}
return ret;
}
u64 __btrfs_lookup_path(struct __btrfs_root *root, u64 inr, const char *path,
u8 *type_p, struct btrfs_inode_item *inode_item_p,
int symlink_limit)
{
struct btrfs_dir_item item;
struct btrfs_inode_item inode_item;
u8 type = BTRFS_FT_DIR;
int len, have_inode = 0;
const char *cur = path;
if (*cur == '/') {
++cur;
inr = root->root_dirid;
}
do {
cur = skip_current_directories(cur);
len = next_length(cur);
if (len > BTRFS_NAME_LEN) {
printf("%s: Name too long at \"%.*s\"\n", __func__,
BTRFS_NAME_LEN, cur);
return -1ULL;
}
if (len == 1 && cur[0] == '.')
break;
if (len == 2 && cur[0] == '.' && cur[1] == '.') {
cur += 2;
inr = __get_parent_inode(root, inr, &inode_item);
if (inr == -1ULL)
return -1ULL;
type = BTRFS_FT_DIR;
continue;
}
if (!*cur)
break;
if (__btrfs_lookup_dir_item(root, inr, cur, len, &item))
return -1ULL;
type = item.type;
have_inode = 1;
if (__btrfs_lookup_inode(root, (struct btrfs_key *)&item.location,
&inode_item, root))
return -1ULL;
if (item.type == BTRFS_FT_SYMLINK && symlink_limit >= 0) {
char *target;
if (!symlink_limit) {
printf("%s: Too much symlinks!\n", __func__);
return -1ULL;
}
target = malloc(min(inode_item.size + 1,
(u64) btrfs_info.sb.sectorsize));
if (!target)
return -1ULL;
if (__btrfs_readlink(root, item.location.objectid,
target)) {
free(target);
return -1ULL;
}
inr = __btrfs_lookup_path(root, inr, target, &type,
&inode_item, symlink_limit - 1);
free(target);
if (inr == -1ULL)
return -1ULL;
} else if (item.type != BTRFS_FT_DIR && cur[len]) {
printf("%s: \"%.*s\" not a directory\n", __func__,
(int) (cur - path + len), path);
return -1ULL;
} else {
inr = item.location.objectid;
}
cur += len;
} while (*cur);
if (type_p)
*type_p = type;
if (inode_item_p) {
if (!have_inode) {
struct btrfs_key key;
key.objectid = inr;
key.type = BTRFS_INODE_ITEM_KEY;
key.offset = 0;
if (__btrfs_lookup_inode(root, &key, &inode_item, NULL))
return -1ULL;
}
*inode_item_p = inode_item;
}
return inr;
}
u64 __btrfs_file_read(const struct __btrfs_root *root, u64 inr, u64 offset,
u64 size, char *buf)
{
struct __btrfs_path path;
struct btrfs_key key;
struct btrfs_file_extent_item *extent;
int res = 0;
u64 rd, rd_all = -1ULL;
key.objectid = inr;
key.type = BTRFS_EXTENT_DATA_KEY;
key.offset = offset;
if (btrfs_search_tree(root, &key, &path))
return -1ULL;
if (__btrfs_comp_keys(&key, btrfs_path_leaf_key(&path)) < 0) {
if (btrfs_prev_slot(&path))
goto out;
if (btrfs_comp_keys_type(&key, btrfs_path_leaf_key(&path)))
goto out;
}
rd_all = 0;
do {
if (btrfs_comp_keys_type(&key, btrfs_path_leaf_key(&path)))
break;
extent = btrfs_path_item_ptr(&path,
struct btrfs_file_extent_item);
if (extent->type == BTRFS_FILE_EXTENT_INLINE) {
btrfs_file_extent_item_to_cpu_inl(extent);
rd = __btrfs_read_extent_inline(&path, extent, offset,
size, buf);
} else {
btrfs_file_extent_item_to_cpu(extent);
rd = __btrfs_read_extent_reg(&path, extent, offset, size,
buf);
}
if (rd == -1ULL) {
printf("%s: Error reading extent\n", __func__);
rd_all = -1;
goto out;
}
offset = 0;
buf += rd;
rd_all += rd;
size -= rd;
if (!size)
break;
} while (!(res = btrfs_next_slot(&path)));
if (res)
return -1ULL;
out:
__btrfs_free_path(&path);
return rd_all;
}
/*
* Read out inline extent.
*
* Since inline extent should only exist for offset 0, no need for extra
* parameters.
* Truncating should be handled by the caller.
*
* Return the number of bytes read.
* Return <0 for error.
*/
int btrfs_read_extent_inline(struct btrfs_path *path,
struct btrfs_file_extent_item *fi, char *dest)
{
struct extent_buffer *leaf = path->nodes[0];
int slot = path->slots[0];
char *cbuf = NULL;
char *dbuf = NULL;
u32 csize;
u32 dsize;
int ret;
csize = btrfs_file_extent_inline_item_len(leaf, btrfs_item_nr(slot));
if (btrfs_file_extent_compression(leaf, fi) == BTRFS_COMPRESS_NONE) {
/* Uncompressed, just read it out */
read_extent_buffer(leaf, dest,
btrfs_file_extent_inline_start(fi),
csize);
return csize;
}
/* Compressed extent, prepare the compressed and data buffer */
dsize = btrfs_file_extent_ram_bytes(leaf, fi);
cbuf = malloc(csize);
dbuf = malloc(dsize);
if (!cbuf || !dbuf) {
ret = -ENOMEM;
goto out;
}
read_extent_buffer(leaf, cbuf, btrfs_file_extent_inline_start(fi),
csize);
ret = btrfs_decompress(btrfs_file_extent_compression(leaf, fi),
cbuf, csize, dbuf, dsize);
if (ret < 0 || ret != dsize) {
ret = -EIO;
goto out;
}
memcpy(dest, dbuf, dsize);
ret = dsize;
out:
free(cbuf);
free(dbuf);
return ret;
}
/*
* Read out regular extent.
*
* Truncating should be handled by the caller.
*
* @offset and @len should not cross the extent boundary.
* Return the number of bytes read.
* Return <0 for error.
*/
int btrfs_read_extent_reg(struct btrfs_path *path,
struct btrfs_file_extent_item *fi, u64 offset,
int len, char *dest)
{
struct extent_buffer *leaf = path->nodes[0];
struct btrfs_fs_info *fs_info = leaf->fs_info;
struct btrfs_key key;
u64 extent_num_bytes;
u64 disk_bytenr;
u64 read;
char *cbuf = NULL;
char *dbuf = NULL;
u32 csize;
u32 dsize;
bool finished = false;
int num_copies;
int i;
int slot = path->slots[0];
int ret;
btrfs_item_key_to_cpu(leaf, &key, slot);
extent_num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
ASSERT(IS_ALIGNED(offset, fs_info->sectorsize) &&
IS_ALIGNED(len, fs_info->sectorsize));
ASSERT(offset >= key.offset &&
offset + len <= key.offset + extent_num_bytes);
/* Preallocated or hole , fill @dest with zero */
if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_PREALLOC ||
btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
memset(dest, 0, len);
return len;
}
if (btrfs_file_extent_compression(leaf, fi) == BTRFS_COMPRESS_NONE) {
u64 logical;
logical = btrfs_file_extent_disk_bytenr(leaf, fi) +
btrfs_file_extent_offset(leaf, fi) +
offset - key.offset;
read = len;
num_copies = btrfs_num_copies(fs_info, logical, len);
for (i = 1; i <= num_copies; i++) {
ret = read_extent_data(fs_info, dest, logical, &read, i);
if (ret < 0 || read != len)
continue;
finished = true;
break;
}
if (!finished)
return -EIO;
return len;
}
csize = btrfs_file_extent_disk_num_bytes(leaf, fi);
dsize = btrfs_file_extent_ram_bytes(leaf, fi);
disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
num_copies = btrfs_num_copies(fs_info, disk_bytenr, csize);
cbuf = malloc_cache_aligned(csize);
dbuf = malloc_cache_aligned(dsize);
if (!cbuf || !dbuf) {
ret = -ENOMEM;
goto out;
}
/* For compressed extent, we must read the whole on-disk extent */
for (i = 1; i <= num_copies; i++) {
read = csize;
ret = read_extent_data(fs_info, cbuf, disk_bytenr,
&read, i);
if (ret < 0 || read != csize)
continue;
finished = true;
break;
}
if (!finished) {
ret = -EIO;
goto out;
}
ret = btrfs_decompress(btrfs_file_extent_compression(leaf, fi), cbuf,
csize, dbuf, dsize);
if (ret != dsize) {
ret = -EIO;
goto out;
}
/* Then copy the needed part */
memcpy(dest, dbuf + btrfs_file_extent_offset(leaf, fi), len);
ret = len;
out:
free(cbuf);
free(dbuf);
return ret;
}
/*
* Get the first file extent that covers bytenr @file_offset.
*
* @file_offset must be aligned to sectorsize.
*
* return 0 for found, and path points to the file extent.
* return >0 for not found, and fill @next_offset.
* @next_offset can be 0 if there is no next file extent.
* return <0 for error.
*/
static int lookup_data_extent(struct btrfs_root *root, struct btrfs_path *path,
u64 ino, u64 file_offset, u64 *next_offset)
{
struct btrfs_key key;
struct btrfs_file_extent_item *fi;
u8 extent_type;
int ret = 0;
ASSERT(IS_ALIGNED(file_offset, root->fs_info->sectorsize));
key.objectid = ino;
key.type = BTRFS_EXTENT_DATA_KEY;
key.offset = file_offset;
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
/* Error or we're already at the file extent */
if (ret <= 0)
return ret;
if (ret > 0) {
/* Check previous file extent */
ret = btrfs_previous_item(root, path, ino,
BTRFS_EXTENT_DATA_KEY);
if (ret < 0)
return ret;
if (ret > 0)
goto check_next;
}
/* Now the key.offset must be smaller than @file_offset */
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
if (key.objectid != ino ||
key.type != BTRFS_EXTENT_DATA_KEY)
goto check_next;
fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
struct btrfs_file_extent_item);
extent_type = btrfs_file_extent_type(path->nodes[0], fi);
if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
if (file_offset == 0)
return 0;
/* Inline extent should be the only extent, no next extent. */
*next_offset = 0;
return 1;
}
/* This file extent covers @file_offset */
if (key.offset <= file_offset && key.offset +
btrfs_file_extent_num_bytes(path->nodes[0], fi) > file_offset)
return 0;
check_next:
ret = btrfs_next_item(root, path);
if (ret < 0)
return ret;
if (ret > 0) {
*next_offset = 0;
return 1;
}
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
struct btrfs_file_extent_item);
/* Next next data extent */
if (key.objectid != ino ||
key.type != BTRFS_EXTENT_DATA_KEY) {
*next_offset = 0;
return 1;
}
/* Current file extent already beyond @file_offset */
if (key.offset > file_offset) {
*next_offset = key.offset;
return 1;
}
/* This file extent covers @file_offset */
if (key.offset <= file_offset && key.offset +
btrfs_file_extent_num_bytes(path->nodes[0], fi) > file_offset)
return 0;
/* This file extent ends before @file_offset, check next */
ret = btrfs_next_item(root, path);
if (ret < 0)
return ret;
if (ret > 0) {
*next_offset = 0;
return 1;
}
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
if (key.type != BTRFS_EXTENT_DATA_KEY || key.objectid != ino) {
*next_offset = 0;
return 1;
}
*next_offset = key.offset;
return 1;
}
static int read_and_truncate_page(struct btrfs_path *path,
struct btrfs_file_extent_item *fi,
int start, int len, char *dest)
{
struct extent_buffer *leaf = path->nodes[0];
struct btrfs_fs_info *fs_info = leaf->fs_info;
u64 aligned_start = round_down(start, fs_info->sectorsize);
u8 extent_type;
char *buf;
int page_off = start - aligned_start;
int page_len = fs_info->sectorsize - page_off;
int ret;
ASSERT(start + len <= aligned_start + fs_info->sectorsize);
buf = malloc_cache_aligned(fs_info->sectorsize);
if (!buf)
return -ENOMEM;
extent_type = btrfs_file_extent_type(leaf, fi);
if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
ret = btrfs_read_extent_inline(path, fi, buf);
memcpy(dest, buf + page_off, min(page_len, ret));
free(buf);
return len;
}
ret = btrfs_read_extent_reg(path, fi,
round_down(start, fs_info->sectorsize),
fs_info->sectorsize, buf);
if (ret < 0) {
free(buf);
return ret;
}
memcpy(dest, buf + page_off, page_len);
free(buf);
return len;
}
int btrfs_file_read(struct btrfs_root *root, u64 ino, u64 file_offset, u64 len,
char *dest)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_file_extent_item *fi;
struct btrfs_path path;
struct btrfs_key key;
u64 aligned_start = round_down(file_offset, fs_info->sectorsize);
u64 aligned_end = round_down(file_offset + len, fs_info->sectorsize);
u64 next_offset;
u64 cur = aligned_start;
int ret = 0;
btrfs_init_path(&path);
/* Set the whole dest all zero, so we won't need to bother holes */
memset(dest, 0, len);
/* Read out the leading unaligned part */
if (aligned_start != file_offset) {
ret = lookup_data_extent(root, &path, ino, aligned_start,
&next_offset);
if (ret < 0)
goto out;
if (ret == 0) {
/* Read the unaligned part out*/
fi = btrfs_item_ptr(path.nodes[0], path.slots[0],
struct btrfs_file_extent_item);
ret = read_and_truncate_page(&path, fi, file_offset,
round_up(file_offset, fs_info->sectorsize) -
file_offset, dest);
if (ret < 0)
goto out;
cur += fs_info->sectorsize;
} else {
/* The whole file is a hole */
if (!next_offset) {
memset(dest, 0, len);
return len;
}
cur = next_offset;
}
}
/* Read the aligned part */
while (cur < aligned_end) {
u64 extent_num_bytes;
u8 type;
btrfs_release_path(&path);
ret = lookup_data_extent(root, &path, ino, cur, &next_offset);
if (ret < 0)
goto out;
if (ret > 0) {
/* No next, direct exit */
if (!next_offset) {
ret = 0;
goto out;
}
}
fi = btrfs_item_ptr(path.nodes[0], path.slots[0],
struct btrfs_file_extent_item);
btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
type = btrfs_file_extent_type(path.nodes[0], fi);
if (type == BTRFS_FILE_EXTENT_INLINE) {
ret = btrfs_read_extent_inline(&path, fi, dest);
goto out;
}
/* Skip holes, as we have zeroed the dest */
if (type == BTRFS_FILE_EXTENT_PREALLOC ||
btrfs_file_extent_disk_bytenr(path.nodes[0], fi) == 0) {
cur = key.offset + btrfs_file_extent_num_bytes(
path.nodes[0], fi);
continue;
}
/* Read the remaining part of the extent */
extent_num_bytes = btrfs_file_extent_num_bytes(path.nodes[0],
fi);
ret = btrfs_read_extent_reg(&path, fi, cur,
min(extent_num_bytes, aligned_end - cur),
dest + cur - file_offset);
if (ret < 0)
goto out;
cur += min(extent_num_bytes, aligned_end - cur);
}
/* Read the tailing unaligned part*/
if (file_offset + len != aligned_end) {
btrfs_release_path(&path);
ret = lookup_data_extent(root, &path, ino, aligned_end,
&next_offset);
/* <0 is error, >0 means no extent */
if (ret)
goto out;
fi = btrfs_item_ptr(path.nodes[0], path.slots[0],
struct btrfs_file_extent_item);
ret = read_and_truncate_page(&path, fi, aligned_end,
file_offset + len - aligned_end,
dest + aligned_end - file_offset);
}
out:
btrfs_release_path(&path);
if (ret < 0)
return ret;
return len;
}