blob: 17a47edadbb8fbc7032fde9e28bf72e730f2f685 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* From coreboot southbridge/intel/bd82x6x/lpc.c
*
* Copyright (C) 2008-2009 coresystems GmbH
*/
#include <dm.h>
#include <errno.h>
#include <fdtdec.h>
#include <log.h>
#include <rtc.h>
#include <pci.h>
#include <asm/global_data.h>
#include <asm/intel_regs.h>
#include <asm/interrupt.h>
#include <asm/io.h>
#include <asm/ioapic.h>
#include <asm/lpc_common.h>
#include <asm/pci.h>
#include <asm/arch/pch.h>
DECLARE_GLOBAL_DATA_PTR;
#define NMI_OFF 0
#define ENABLE_ACPI_MODE_IN_COREBOOT 0
#define TEST_SMM_FLASH_LOCKDOWN 0
static int pch_enable_apic(struct udevice *pch)
{
u32 reg32;
int i;
/* Enable ACPI I/O and power management. Set SCI IRQ to IRQ9 */
dm_pci_write_config8(pch, ACPI_CNTL, 0x80);
writel(0, IO_APIC_INDEX);
writel(1 << 25, IO_APIC_DATA);
/* affirm full set of redirection table entries ("write once") */
writel(1, IO_APIC_INDEX);
reg32 = readl(IO_APIC_DATA);
writel(1, IO_APIC_INDEX);
writel(reg32, IO_APIC_DATA);
writel(0, IO_APIC_INDEX);
reg32 = readl(IO_APIC_DATA);
debug("PCH APIC ID = %x\n", (reg32 >> 24) & 0x0f);
if (reg32 != (1 << 25)) {
printf("APIC Error - cannot write to registers\n");
return -EPERM;
}
debug("Dumping IOAPIC registers\n");
for (i = 0; i < 3; i++) {
writel(i, IO_APIC_INDEX);
debug(" reg 0x%04x:", i);
reg32 = readl(IO_APIC_DATA);
debug(" 0x%08x\n", reg32);
}
/* Select Boot Configuration register. */
writel(3, IO_APIC_INDEX);
/* Use Processor System Bus to deliver interrupts. */
writel(1, IO_APIC_DATA);
return 0;
}
static void pch_enable_serial_irqs(struct udevice *pch)
{
u32 value;
/* Set packet length and toggle silent mode bit for one frame. */
value = (1 << 7) | (1 << 6) | ((21 - 17) << 2) | (0 << 0);
#ifdef CONFIG_SERIRQ_CONTINUOUS_MODE
dm_pci_write_config8(pch, SERIRQ_CNTL, value);
#else
dm_pci_write_config8(pch, SERIRQ_CNTL, value | (1 << 6));
#endif
}
static int pch_pirq_init(struct udevice *pch)
{
uint8_t route[8], *ptr;
if (fdtdec_get_byte_array(gd->fdt_blob, dev_of_offset(pch),
"intel,pirq-routing", route, sizeof(route)))
return -EINVAL;
ptr = route;
dm_pci_write_config8(pch, PIRQA_ROUT, *ptr++);
dm_pci_write_config8(pch, PIRQB_ROUT, *ptr++);
dm_pci_write_config8(pch, PIRQC_ROUT, *ptr++);
dm_pci_write_config8(pch, PIRQD_ROUT, *ptr++);
dm_pci_write_config8(pch, PIRQE_ROUT, *ptr++);
dm_pci_write_config8(pch, PIRQF_ROUT, *ptr++);
dm_pci_write_config8(pch, PIRQG_ROUT, *ptr++);
dm_pci_write_config8(pch, PIRQH_ROUT, *ptr++);
/*
* TODO(sjg@chromium.org): U-Boot does not set up the interrupts
* here. It's unclear if it is needed
*/
return 0;
}
static int pch_gpi_routing(struct udevice *pch)
{
u8 route[16];
u32 reg;
int gpi;
if (fdtdec_get_byte_array(gd->fdt_blob, dev_of_offset(pch),
"intel,gpi-routing", route, sizeof(route)))
return -EINVAL;
for (reg = 0, gpi = 0; gpi < ARRAY_SIZE(route); gpi++)
reg |= route[gpi] << (gpi * 2);
dm_pci_write_config32(pch, 0xb8, reg);
return 0;
}
static int pch_power_options(struct udevice *pch)
{
const void *blob = gd->fdt_blob;
int node = dev_of_offset(pch);
u8 reg8;
u16 reg16, pmbase;
u32 reg32;
const char *state;
int pwr_on;
int nmi_option;
int ret;
/*
* Which state do we want to goto after g3 (power restored)?
* 0 == S0 Full On
* 1 == S5 Soft Off
*
* If the option is not existent (Laptops), use Kconfig setting.
* TODO(sjg@chromium.org): Make this configurable
*/
pwr_on = MAINBOARD_POWER_ON;
dm_pci_read_config16(pch, GEN_PMCON_3, &reg16);
reg16 &= 0xfffe;
switch (pwr_on) {
case MAINBOARD_POWER_OFF:
reg16 |= 1;
state = "off";
break;
case MAINBOARD_POWER_ON:
reg16 &= ~1;
state = "on";
break;
case MAINBOARD_POWER_KEEP:
reg16 &= ~1;
state = "state keep";
break;
default:
state = "undefined";
}
reg16 &= ~(3 << 4); /* SLP_S4# Assertion Stretch 4s */
reg16 |= (1 << 3); /* SLP_S4# Assertion Stretch Enable */
reg16 &= ~(1 << 10);
reg16 |= (1 << 11); /* SLP_S3# Min Assertion Width 50ms */
reg16 |= (1 << 12); /* Disable SLP stretch after SUS well */
dm_pci_write_config16(pch, GEN_PMCON_3, reg16);
debug("Set power %s after power failure.\n", state);
/* Set up NMI on errors. */
reg8 = inb(0x61);
reg8 &= 0x0f; /* Higher Nibble must be 0 */
reg8 &= ~(1 << 3); /* IOCHK# NMI Enable */
reg8 |= (1 << 2); /* PCI SERR# Disable for now */
outb(reg8, 0x61);
reg8 = inb(0x70);
/* TODO(sjg@chromium.org): Make this configurable */
nmi_option = NMI_OFF;
if (nmi_option) {
debug("NMI sources enabled.\n");
reg8 &= ~(1 << 7); /* Set NMI. */
} else {
debug("NMI sources disabled.\n");
/* Can't mask NMI from PCI-E and NMI_NOW */
reg8 |= (1 << 7);
}
outb(reg8, 0x70);
/* Enable CPU_SLP# and Intel Speedstep, set SMI# rate down */
dm_pci_read_config16(pch, GEN_PMCON_1, &reg16);
reg16 &= ~(3 << 0); /* SMI# rate 1 minute */
reg16 &= ~(1 << 10); /* Disable BIOS_PCI_EXP_EN for native PME */
#if DEBUG_PERIODIC_SMIS
/* Set DEBUG_PERIODIC_SMIS in pch.h to debug using periodic SMIs */
reg16 |= (3 << 0); /* Periodic SMI every 8s */
#endif
dm_pci_write_config16(pch, GEN_PMCON_1, reg16);
/* Set the board's GPI routing. */
ret = pch_gpi_routing(pch);
if (ret)
return ret;
dm_pci_read_config16(pch, 0x40, &pmbase);
pmbase &= 0xfffe;
writel(fdtdec_get_int(blob, node, "intel,gpe0-enable", 0),
(ulong)pmbase + GPE0_EN);
writew(fdtdec_get_int(blob, node, "intel,alt-gp-smi-enable", 0),
(ulong)pmbase + ALT_GP_SMI_EN);
/* Set up power management block and determine sleep mode */
reg32 = inl(pmbase + 0x04); /* PM1_CNT */
reg32 &= ~(7 << 10); /* SLP_TYP */
reg32 |= (1 << 0); /* SCI_EN */
outl(reg32, pmbase + 0x04);
/* Clear magic status bits to prevent unexpected wake */
setbits_le32(RCB_REG(0x3310), (1 << 4) | (1 << 5) | (1 << 0));
clrbits_le32(RCB_REG(0x3f02), 0xf);
return 0;
}
static void pch_rtc_init(struct udevice *pch)
{
int rtc_failed;
u8 reg8;
dm_pci_read_config8(pch, GEN_PMCON_3, &reg8);
rtc_failed = reg8 & RTC_BATTERY_DEAD;
if (rtc_failed) {
reg8 &= ~RTC_BATTERY_DEAD;
dm_pci_write_config8(pch, GEN_PMCON_3, reg8);
}
debug("rtc_failed = 0x%x\n", rtc_failed);
/* TODO: Handle power failure */
if (rtc_failed)
printf("RTC power failed\n");
}
/* CougarPoint PCH Power Management init */
static void cpt_pm_init(struct udevice *pch)
{
debug("CougarPoint PM init\n");
dm_pci_write_config8(pch, 0xa9, 0x47);
setbits_le32(RCB_REG(0x2238), (1 << 6) | (1 << 0));
setbits_le32(RCB_REG(0x228c), 1 << 0);
setbits_le32(RCB_REG(0x1100), (1 << 13) | (1 << 14));
setbits_le32(RCB_REG(0x0900), 1 << 14);
writel(0xc0388400, RCB_REG(0x2304));
setbits_le32(RCB_REG(0x2314), (1 << 5) | (1 << 18));
setbits_le32(RCB_REG(0x2320), (1 << 15) | (1 << 1));
clrsetbits_le32(RCB_REG(0x3314), ~0x1f, 0xf);
writel(0x050f0000, RCB_REG(0x3318));
writel(0x04000000, RCB_REG(0x3324));
setbits_le32(RCB_REG(0x3340), 0xfffff);
setbits_le32(RCB_REG(0x3344), 1 << 1);
writel(0x0001c000, RCB_REG(0x3360));
writel(0x00061100, RCB_REG(0x3368));
writel(0x7f8fdfff, RCB_REG(0x3378));
writel(0x000003fc, RCB_REG(0x337c));
writel(0x00001000, RCB_REG(0x3388));
writel(0x0001c000, RCB_REG(0x3390));
writel(0x00000800, RCB_REG(0x33a0));
writel(0x00001000, RCB_REG(0x33b0));
writel(0x00093900, RCB_REG(0x33c0));
writel(0x24653002, RCB_REG(0x33cc));
writel(0x062108fe, RCB_REG(0x33d0));
clrsetbits_le32(RCB_REG(0x33d4), 0x0fff0fff, 0x00670060);
writel(0x01010000, RCB_REG(0x3a28));
writel(0x01010404, RCB_REG(0x3a2c));
writel(0x01041041, RCB_REG(0x3a80));
clrsetbits_le32(RCB_REG(0x3a84), 0x0000ffff, 0x00001001);
setbits_le32(RCB_REG(0x3a84), 1 << 24); /* SATA 2/3 disabled */
setbits_le32(RCB_REG(0x3a88), 1 << 0); /* SATA 4/5 disabled */
writel(0x00000001, RCB_REG(0x3a6c));
clrsetbits_le32(RCB_REG(0x2344), ~0x00ffff00, 0xff00000c);
clrsetbits_le32(RCB_REG(0x80c), 0xff << 20, 0x11 << 20);
writel(0, RCB_REG(0x33c8));
setbits_le32(RCB_REG(0x21b0), 0xf);
}
/* PantherPoint PCH Power Management init */
static void ppt_pm_init(struct udevice *pch)
{
debug("PantherPoint PM init\n");
dm_pci_write_config8(pch, 0xa9, 0x47);
setbits_le32(RCB_REG(0x2238), 1 << 0);
setbits_le32(RCB_REG(0x228c), 1 << 0);
setbits_le16(RCB_REG(0x1100), (1 << 13) | (1 << 14));
setbits_le16(RCB_REG(0x0900), 1 << 14);
writel(0xc03b8400, RCB_REG(0x2304));
setbits_le32(RCB_REG(0x2314), (1 << 5) | (1 << 18));
setbits_le32(RCB_REG(0x2320), (1 << 15) | (1 << 1));
clrsetbits_le32(RCB_REG(0x3314), 0x1f, 0xf);
writel(0x054f0000, RCB_REG(0x3318));
writel(0x04000000, RCB_REG(0x3324));
setbits_le32(RCB_REG(0x3340), 0xfffff);
setbits_le32(RCB_REG(0x3344), (1 << 1) | (1 << 0));
writel(0x0001c000, RCB_REG(0x3360));
writel(0x00061100, RCB_REG(0x3368));
writel(0x7f8fdfff, RCB_REG(0x3378));
writel(0x000003fd, RCB_REG(0x337c));
writel(0x00001000, RCB_REG(0x3388));
writel(0x0001c000, RCB_REG(0x3390));
writel(0x00000800, RCB_REG(0x33a0));
writel(0x00001000, RCB_REG(0x33b0));
writel(0x00093900, RCB_REG(0x33c0));
writel(0x24653002, RCB_REG(0x33cc));
writel(0x067388fe, RCB_REG(0x33d0));
clrsetbits_le32(RCB_REG(0x33d4), 0x0fff0fff, 0x00670060);
writel(0x01010000, RCB_REG(0x3a28));
writel(0x01010404, RCB_REG(0x3a2c));
writel(0x01040000, RCB_REG(0x3a80));
clrsetbits_le32(RCB_REG(0x3a84), 0x0000ffff, 0x00001001);
/* SATA 2/3 disabled */
setbits_le32(RCB_REG(0x3a84), 1 << 24);
/* SATA 4/5 disabled */
setbits_le32(RCB_REG(0x3a88), 1 << 0);
writel(0x00000001, RCB_REG(0x3a6c));
clrsetbits_le32(RCB_REG(0x2344), 0xff0000ff, 0xff00000c);
clrsetbits_le32(RCB_REG(0x80c), 0xff << 20, 0x11 << 20);
setbits_le32(RCB_REG(0x33a4), (1 << 0));
writel(0, RCB_REG(0x33c8));
setbits_le32(RCB_REG(0x21b0), 0xf);
}
static void enable_hpet(void)
{
/* Move HPET to default address 0xfed00000 and enable it */
clrsetbits_le32(RCB_REG(HPTC), 3 << 0, 1 << 7);
}
static void enable_clock_gating(struct udevice *pch)
{
u32 reg32;
u16 reg16;
setbits_le32(RCB_REG(0x2234), 0xf);
dm_pci_read_config16(pch, GEN_PMCON_1, &reg16);
reg16 |= (1 << 2) | (1 << 11);
dm_pci_write_config16(pch, GEN_PMCON_1, reg16);
pch_iobp_update(pch, 0xeb007f07, ~0U, 1 << 31);
pch_iobp_update(pch, 0xeb004000, ~0U, 1 << 7);
pch_iobp_update(pch, 0xec007f07, ~0U, 1 << 31);
pch_iobp_update(pch, 0xec004000, ~0U, 1 << 7);
reg32 = readl(RCB_REG(CG));
reg32 |= (1 << 31);
reg32 |= (1 << 29) | (1 << 28);
reg32 |= (1 << 27) | (1 << 26) | (1 << 25) | (1 << 24);
reg32 |= (1 << 16);
reg32 |= (1 << 17);
reg32 |= (1 << 18);
reg32 |= (1 << 22);
reg32 |= (1 << 23);
reg32 &= ~(1 << 20);
reg32 |= (1 << 19);
reg32 |= (1 << 0);
reg32 |= (0xf << 1);
writel(reg32, RCB_REG(CG));
setbits_le32(RCB_REG(0x38c0), 0x7);
setbits_le32(RCB_REG(0x36d4), 0x6680c004);
setbits_le32(RCB_REG(0x3564), 0x3);
}
static void pch_disable_smm_only_flashing(struct udevice *pch)
{
u8 reg8;
debug("Enabling BIOS updates outside of SMM... ");
dm_pci_read_config8(pch, 0xdc, &reg8); /* BIOS_CNTL */
reg8 &= ~(1 << 5);
dm_pci_write_config8(pch, 0xdc, reg8);
}
static void pch_fixups(struct udevice *pch)
{
u8 gen_pmcon_2;
/* Indicate DRAM init done for MRC S3 to know it can resume */
dm_pci_read_config8(pch, GEN_PMCON_2, &gen_pmcon_2);
gen_pmcon_2 |= (1 << 7);
dm_pci_write_config8(pch, GEN_PMCON_2, gen_pmcon_2);
/* Enable DMI ASPM in the PCH */
clrbits_le32(RCB_REG(0x2304), 1 << 10);
setbits_le32(RCB_REG(0x21a4), (1 << 11) | (1 << 10));
setbits_le32(RCB_REG(0x21a8), 0x3);
}
static void set_spi_speed(void)
{
u32 fdod;
/* Observe SPI Descriptor Component Section 0 */
writel(0x1000, RCB_REG(SPI_DESC_COMP0));
/* Extract the1 Write/Erase SPI Frequency from descriptor */
fdod = readl(RCB_REG(SPI_FREQ_WR_ERA));
fdod >>= 24;
fdod &= 7;
/* Set Software Sequence frequency to match */
clrsetbits_8(RCB_REG(SPI_FREQ_SWSEQ), 7, fdod);
}
static int lpc_init_extra(struct udevice *dev)
{
struct udevice *pch = dev->parent;
debug("pch: lpc_init\n");
dm_pci_write_bar32(pch, 0, 0);
dm_pci_write_bar32(pch, 1, 0xff800000);
dm_pci_write_bar32(pch, 2, 0xfec00000);
dm_pci_write_bar32(pch, 3, 0x800);
dm_pci_write_bar32(pch, 4, 0x900);
/* Set the value for PCI command register. */
dm_pci_write_config16(pch, PCI_COMMAND, 0x000f);
/* IO APIC initialization. */
pch_enable_apic(pch);
pch_enable_serial_irqs(pch);
/* Setup the PIRQ. */
pch_pirq_init(pch);
/* Setup power options. */
pch_power_options(pch);
/* Initialize power management */
switch (pch_silicon_type(pch)) {
case PCH_TYPE_CPT: /* CougarPoint */
cpt_pm_init(pch);
break;
case PCH_TYPE_PPT: /* PantherPoint */
ppt_pm_init(pch);
break;
default:
printf("Unknown Chipset: %s\n", pch->name);
return -ENOSYS;
}
/* Initialize the real time clock. */
pch_rtc_init(pch);
/* Initialize the High Precision Event Timers, if present. */
enable_hpet();
/* Initialize Clock Gating */
enable_clock_gating(pch);
pch_disable_smm_only_flashing(pch);
pch_fixups(pch);
return 0;
}
static int bd82x6x_lpc_early_init(struct udevice *dev)
{
set_spi_speed();
/* Setting up Southbridge. In the northbridge code. */
debug("Setting up static southbridge registers\n");
dm_pci_write_config32(dev->parent, PCH_RCBA_BASE,
RCB_BASE_ADDRESS | 1);
dm_pci_write_config32(dev->parent, PMBASE, DEFAULT_PMBASE | 1);
/* Enable ACPI BAR */
dm_pci_write_config8(dev->parent, ACPI_CNTL, 0x80);
debug("Disabling watchdog reboot\n");
setbits_le32(RCB_REG(GCS), 1 >> 5); /* No reset */
outw(1 << 11, DEFAULT_PMBASE | 0x60 | 0x08); /* halt timer */
dm_pci_write_config32(dev->parent, GPIO_BASE, DEFAULT_GPIOBASE | 1);
dm_pci_write_config32(dev->parent, GPIO_CNTL, 0x10);
return 0;
}
static int bd82x6x_lpc_probe(struct udevice *dev)
{
int ret;
if (!(gd->flags & GD_FLG_RELOC)) {
ret = lpc_common_early_init(dev);
if (ret) {
debug("%s: lpc_early_init() failed\n", __func__);
return ret;
}
return bd82x6x_lpc_early_init(dev);
}
return lpc_init_extra(dev);
}
static const struct udevice_id bd82x6x_lpc_ids[] = {
{ .compatible = "intel,bd82x6x-lpc" },
{ }
};
U_BOOT_DRIVER(bd82x6x_lpc_drv) = {
.name = "lpc",
.id = UCLASS_LPC,
.of_match = bd82x6x_lpc_ids,
.probe = bd82x6x_lpc_probe,
};