blob: 20a675c010d562e8c4a61b271b6d09d9c40f42cf [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2014 - 2015 Xilinx, Inc.
* Michal Simek <michal.simek@amd.com>
*/
#include <config.h>
#include <command.h>
#include <cpu_func.h>
#include <debug_uart.h>
#include <dfu.h>
#include <env.h>
#include <env_internal.h>
#include <init.h>
#include <log.h>
#include <net.h>
#include <sata.h>
#include <ahci.h>
#include <scsi.h>
#include <soc.h>
#include <spl.h>
#include <malloc.h>
#include <memalign.h>
#include <wdt.h>
#include <asm/arch/clk.h>
#include <asm/arch/hardware.h>
#include <asm/arch/sys_proto.h>
#include <asm/arch/psu_init_gpl.h>
#include <asm/cache.h>
#include <asm/global_data.h>
#include <asm/io.h>
#include <asm/ptrace.h>
#include <dm/device.h>
#include <dm/uclass.h>
#include <usb.h>
#include <dwc3-uboot.h>
#include <zynqmppl.h>
#include <zynqmp_firmware.h>
#include <g_dnl.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/sizes.h>
#include "../common/board.h"
#include "pm_cfg_obj.h"
DECLARE_GLOBAL_DATA_PTR;
#if CONFIG_IS_ENABLED(FPGA) && defined(CONFIG_FPGA_ZYNQMPPL)
static xilinx_desc zynqmppl = {
xilinx_zynqmp, csu_dma, 1, &zynqmp_op, 0, &zynqmp_op, NULL,
ZYNQMP_FPGA_FLAGS
};
#endif
int __maybe_unused psu_uboot_init(void)
{
int ret;
ret = psu_init();
if (ret)
return ret;
/*
* PS_SYSMON_ANALOG_BUS register determines mapping between SysMon
* supply sense channel to SysMon supply registers inside the IP.
* This register must be programmed to complete SysMon IP
* configuration. The default register configuration after
* power-up is incorrect. Hence, fix this by writing the
* correct value - 0x3210.
*/
writel(ZYNQMP_PS_SYSMON_ANALOG_BUS_VAL,
ZYNQMP_AMS_PS_SYSMON_ANALOG_BUS);
/* Disable secure access for boot devices */
writel(0x04920492, ZYNQMP_IOU_SECURE_SLCR);
writel(0x00920492, ZYNQMP_IOU_SECURE_SLCR + 4);
/* Enable CCI PMU events */
writel(ZYNQMP_CCI_REG_CCI_MISC_CTRL_NIDEN,
ZYNQMP_CCI_REG_CCI_MISC_CTRL);
/* Delay is required for clocks to be propagated */
udelay(1000000);
return 0;
}
#if !defined(CONFIG_SPL_BUILD)
# if defined(CONFIG_DEBUG_UART_BOARD_INIT)
void board_debug_uart_init(void)
{
# if defined(CONFIG_ZYNQMP_PSU_INIT_ENABLED)
psu_uboot_init();
# endif
}
# endif
# if defined(CONFIG_BOARD_EARLY_INIT_F)
int board_early_init_f(void)
{
int ret = 0;
# if defined(CONFIG_ZYNQMP_PSU_INIT_ENABLED) && !defined(CONFIG_DEBUG_UART_BOARD_INIT)
ret = psu_uboot_init();
# endif
return ret;
}
# endif
#endif
static int multi_boot(void)
{
u32 multiboot = 0;
int ret;
ret = zynqmp_mmio_read((ulong)&csu_base->multi_boot, &multiboot);
if (ret)
return -EINVAL;
return multiboot;
}
#if defined(CONFIG_SPL_BUILD)
static void restore_jtag(void)
{
if (current_el() != 3)
return;
writel(CSU_JTAG_SEC_GATE_DISABLE, &csu_base->jtag_sec);
writel(CSU_JTAG_DAP_ENABLE_DEBUG, &csu_base->jtag_dap_cfg);
writel(CSU_JTAG_CHAIN_WR_SETUP, &csu_base->jtag_chain_status_wr);
writel(CRLAPB_DBG_LPD_CTRL_SETUP_CLK, &crlapb_base->dbg_lpd_ctrl);
writel(CRLAPB_RST_LPD_DBG_RESET, &crlapb_base->rst_lpd_dbg);
writel(CSU_PCAP_PROG_RELEASE_PL, &csu_base->pcap_prog);
}
#endif
static void print_secure_boot(void)
{
u32 status = 0;
if (zynqmp_mmio_read((ulong)&csu_base->status, &status))
return;
printf("Secure Boot:\t%sauthenticated, %sencrypted\n",
status & ZYNQMP_CSU_STATUS_AUTHENTICATED ? "" : "not ",
status & ZYNQMP_CSU_STATUS_ENCRYPTED ? "" : "not ");
}
int board_init(void)
{
#if CONFIG_IS_ENABLED(FPGA) && defined(CONFIG_FPGA_ZYNQMPPL)
struct udevice *soc;
char name[SOC_MAX_STR_SIZE];
int ret;
#endif
#if defined(CONFIG_SPL_BUILD)
/* Check *at build time* if the filename is an non-empty string */
if (sizeof(CONFIG_ZYNQMP_SPL_PM_CFG_OBJ_FILE) > 1)
zynqmp_pmufw_load_config_object(zynqmp_pm_cfg_obj,
zynqmp_pm_cfg_obj_size);
printf("Silicon version:\t%d\n", zynqmp_get_silicon_version());
/* the CSU disables the JTAG interface when secure boot is enabled */
if (CONFIG_IS_ENABLED(ZYNQMP_RESTORE_JTAG))
restore_jtag();
#else
if (CONFIG_IS_ENABLED(DM_I2C) && CONFIG_IS_ENABLED(I2C_EEPROM))
xilinx_read_eeprom();
#endif
printf("EL Level:\tEL%d\n", current_el());
#if CONFIG_IS_ENABLED(FPGA) && defined(CONFIG_FPGA_ZYNQMPPL)
ret = soc_get(&soc);
if (!ret) {
ret = soc_get_machine(soc, name, sizeof(name));
if (ret >= 0) {
zynqmppl.name = strdup(name);
fpga_init();
fpga_add(fpga_xilinx, &zynqmppl);
}
}
#endif
/* display secure boot information */
print_secure_boot();
if (current_el() == 3)
printf("Multiboot:\t%d\n", multi_boot());
return 0;
}
int board_early_init_r(void)
{
u32 val;
if (current_el() != 3)
return 0;
val = readl(&crlapb_base->timestamp_ref_ctrl);
val &= ZYNQMP_CRL_APB_TIMESTAMP_REF_CTRL_CLKACT;
if (!val) {
val = readl(&crlapb_base->timestamp_ref_ctrl);
val |= ZYNQMP_CRL_APB_TIMESTAMP_REF_CTRL_CLKACT;
writel(val, &crlapb_base->timestamp_ref_ctrl);
/* Program freq register in System counter */
writel(zynqmp_get_system_timer_freq(),
&iou_scntr_secure->base_frequency_id_register);
/* And enable system counter */
writel(ZYNQMP_IOU_SCNTR_COUNTER_CONTROL_REGISTER_EN,
&iou_scntr_secure->counter_control_register);
}
return 0;
}
unsigned long do_go_exec(ulong (*entry)(int, char * const []), int argc,
char *const argv[])
{
int ret = 0;
if (current_el() > 1) {
smp_kick_all_cpus();
dcache_disable();
armv8_switch_to_el1(0x0, 0, 0, 0, (unsigned long)entry,
ES_TO_AARCH64);
} else {
printf("FAIL: current EL is not above EL1\n");
ret = EINVAL;
}
return ret;
}
#if !defined(CFG_SYS_SDRAM_BASE) && !defined(CFG_SYS_SDRAM_SIZE)
int dram_init_banksize(void)
{
int ret;
ret = fdtdec_setup_memory_banksize();
if (ret)
return ret;
mem_map_fill();
return 0;
}
int dram_init(void)
{
if (fdtdec_setup_mem_size_base() != 0)
return -EINVAL;
return 0;
}
#else
int dram_init_banksize(void)
{
gd->bd->bi_dram[0].start = CFG_SYS_SDRAM_BASE;
gd->bd->bi_dram[0].size = get_effective_memsize();
mem_map_fill();
return 0;
}
int dram_init(void)
{
gd->ram_size = get_ram_size((void *)CFG_SYS_SDRAM_BASE,
CFG_SYS_SDRAM_SIZE);
return 0;
}
#endif
#if !CONFIG_IS_ENABLED(SYSRESET)
void reset_cpu(void)
{
if (!IS_ENABLED(CONFIG_ZYNQMP_FIRMWARE)) {
log_warning("reset failed: ZYNQMP_FIRMWARE disabled");
return;
}
/* In case of !CONFIG_ZYNQMP_FIRMWARE the call to 'xilinx_pm_request()'
* will be removed by the compiler due to the early return.
* If CONFIG_ZYNQMP_FIRMWARE is defined in SPL 'xilinx_pm_request()'
* will send command over IPI and requires pmufw to be present.
*/
xilinx_pm_request(PM_RESET_ASSERT, ZYNQMP_PM_RESET_SOFT,
PM_RESET_ACTION_ASSERT, 0, 0, NULL);
}
#endif
static u8 __maybe_unused zynqmp_get_bootmode(void)
{
u8 bootmode;
u32 reg = 0;
int ret;
ret = zynqmp_mmio_read((ulong)&crlapb_base->boot_mode, &reg);
if (ret)
return -EINVAL;
debug("HW boot mode: %x\n", reg & BOOT_MODES_MASK);
debug("ALT boot mode: %x\n", reg >> BOOT_MODE_ALT_SHIFT);
if (reg >> BOOT_MODE_ALT_SHIFT)
reg >>= BOOT_MODE_ALT_SHIFT;
bootmode = reg & BOOT_MODES_MASK;
return bootmode;
}
#if defined(CONFIG_BOARD_LATE_INIT)
static const struct {
u32 bit;
const char *name;
} reset_reasons[] = {
{ RESET_REASON_DEBUG_SYS, "DEBUG" },
{ RESET_REASON_SOFT, "SOFT" },
{ RESET_REASON_SRST, "SRST" },
{ RESET_REASON_PSONLY, "PS-ONLY" },
{ RESET_REASON_PMU, "PMU" },
{ RESET_REASON_INTERNAL, "INTERNAL" },
{ RESET_REASON_EXTERNAL, "EXTERNAL" },
{}
};
static int reset_reason(void)
{
u32 reg;
int i, ret;
const char *reason = NULL;
ret = zynqmp_mmio_read((ulong)&crlapb_base->reset_reason, &reg);
if (ret)
return -EINVAL;
puts("Reset reason:\t");
for (i = 0; i < ARRAY_SIZE(reset_reasons); i++) {
if (reg & reset_reasons[i].bit) {
reason = reset_reasons[i].name;
printf("%s ", reset_reasons[i].name);
break;
}
}
puts("\n");
env_set("reset_reason", reason);
return 0;
}
static int set_fdtfile(void)
{
char *compatible, *fdtfile;
const char *suffix = ".dtb";
const char *vendor = "xilinx/";
int fdt_compat_len;
if (env_get("fdtfile"))
return 0;
compatible = (char *)fdt_getprop(gd->fdt_blob, 0, "compatible",
&fdt_compat_len);
if (compatible && fdt_compat_len) {
char *name;
debug("Compatible: %s\n", compatible);
name = strchr(compatible, ',');
if (!name)
return -EINVAL;
name++;
fdtfile = calloc(1, strlen(vendor) + strlen(name) +
strlen(suffix) + 1);
if (!fdtfile)
return -ENOMEM;
sprintf(fdtfile, "%s%s%s", vendor, name, suffix);
env_set("fdtfile", fdtfile);
free(fdtfile);
}
return 0;
}
static int boot_targets_setup(void)
{
u8 bootmode;
struct udevice *dev;
int bootseq = -1;
int bootseq_len = 0;
int env_targets_len = 0;
const char *mode = NULL;
char *new_targets;
char *env_targets;
bootmode = zynqmp_get_bootmode();
puts("Bootmode: ");
switch (bootmode) {
case USB_MODE:
puts("USB_MODE\n");
mode = "usb_dfu0 usb_dfu1";
env_set("modeboot", "usb_dfu_spl");
break;
case JTAG_MODE:
puts("JTAG_MODE\n");
mode = "jtag pxe dhcp";
env_set("modeboot", "jtagboot");
break;
case QSPI_MODE_24BIT:
case QSPI_MODE_32BIT:
mode = "qspi0";
puts("QSPI_MODE\n");
env_set("modeboot", "qspiboot");
break;
case EMMC_MODE:
puts("EMMC_MODE\n");
if (uclass_get_device_by_name(UCLASS_MMC,
"mmc@ff160000", &dev) &&
uclass_get_device_by_name(UCLASS_MMC,
"sdhci@ff160000", &dev)) {
debug("SD0 driver for SD0 device is not present\n");
break;
}
debug("mmc0 device found at %p, seq %d\n", dev, dev_seq(dev));
mode = "mmc";
bootseq = dev_seq(dev);
env_set("modeboot", "emmcboot");
break;
case SD_MODE:
puts("SD_MODE\n");
if (uclass_get_device_by_name(UCLASS_MMC,
"mmc@ff160000", &dev) &&
uclass_get_device_by_name(UCLASS_MMC,
"sdhci@ff160000", &dev)) {
debug("SD0 driver for SD0 device is not present\n");
break;
}
debug("mmc0 device found at %p, seq %d\n", dev, dev_seq(dev));
mode = "mmc";
bootseq = dev_seq(dev);
env_set("modeboot", "sdboot");
break;
case SD1_LSHFT_MODE:
puts("LVL_SHFT_");
fallthrough;
case SD_MODE1:
puts("SD_MODE1\n");
if (uclass_get_device_by_name(UCLASS_MMC,
"mmc@ff170000", &dev) &&
uclass_get_device_by_name(UCLASS_MMC,
"sdhci@ff170000", &dev)) {
debug("SD1 driver for SD1 device is not present\n");
break;
}
debug("mmc1 device found at %p, seq %d\n", dev, dev_seq(dev));
mode = "mmc";
bootseq = dev_seq(dev);
env_set("modeboot", "sdboot");
break;
case NAND_MODE:
puts("NAND_MODE\n");
mode = "nand0";
env_set("modeboot", "nandboot");
break;
default:
printf("Invalid Boot Mode:0x%x\n", bootmode);
break;
}
if (mode) {
if (bootseq >= 0) {
bootseq_len = snprintf(NULL, 0, "%i", bootseq);
debug("Bootseq len: %x\n", bootseq_len);
env_set_hex("bootseq", bootseq);
}
/*
* One terminating char + one byte for space between mode
* and default boot_targets
*/
env_targets = env_get("boot_targets");
if (env_targets)
env_targets_len = strlen(env_targets);
new_targets = calloc(1, strlen(mode) + env_targets_len + 2 +
bootseq_len);
if (!new_targets)
return -ENOMEM;
if (bootseq >= 0)
sprintf(new_targets, "%s%x %s", mode, bootseq,
env_targets ? env_targets : "");
else
sprintf(new_targets, "%s %s", mode,
env_targets ? env_targets : "");
env_set("boot_targets", new_targets);
free(new_targets);
}
return 0;
}
int board_late_init(void)
{
int ret, multiboot;
#if defined(CONFIG_USB_ETHER) && !defined(CONFIG_USB_GADGET_DOWNLOAD)
usb_ether_init();
#endif
multiboot = multi_boot();
if (multiboot >= 0)
env_set_hex("multiboot", multiboot);
if (!(gd->flags & GD_FLG_ENV_DEFAULT)) {
debug("Saved variables - Skipping\n");
return 0;
}
if (!IS_ENABLED(CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG))
return 0;
ret = set_fdtfile();
if (ret)
return ret;
if (IS_ENABLED(CONFIG_DISTRO_DEFAULTS)) {
ret = boot_targets_setup();
if (ret)
return ret;
}
reset_reason();
return board_late_init_xilinx();
}
#endif
int checkboard(void)
{
puts("Board: Xilinx ZynqMP\n");
return 0;
}
int mmc_get_env_dev(void)
{
struct udevice *dev;
int bootseq = 0;
switch (zynqmp_get_bootmode()) {
case EMMC_MODE:
case SD_MODE:
if (uclass_get_device_by_name(UCLASS_MMC,
"mmc@ff160000", &dev) &&
uclass_get_device_by_name(UCLASS_MMC,
"sdhci@ff160000", &dev)) {
return -1;
}
bootseq = dev_seq(dev);
break;
case SD1_LSHFT_MODE:
case SD_MODE1:
if (uclass_get_device_by_name(UCLASS_MMC,
"mmc@ff170000", &dev) &&
uclass_get_device_by_name(UCLASS_MMC,
"sdhci@ff170000", &dev)) {
return -1;
}
bootseq = dev_seq(dev);
break;
default:
break;
}
debug("bootseq %d\n", bootseq);
return bootseq;
}
#if defined(CONFIG_ENV_IS_NOWHERE)
enum env_location env_get_location(enum env_operation op, int prio)
{
u32 bootmode = zynqmp_get_bootmode();
if (prio)
return ENVL_UNKNOWN;
switch (bootmode) {
case EMMC_MODE:
case SD_MODE:
case SD1_LSHFT_MODE:
case SD_MODE1:
if (IS_ENABLED(CONFIG_ENV_IS_IN_FAT))
return ENVL_FAT;
if (IS_ENABLED(CONFIG_ENV_IS_IN_EXT4))
return ENVL_EXT4;
return ENVL_NOWHERE;
case NAND_MODE:
if (IS_ENABLED(CONFIG_ENV_IS_IN_NAND))
return ENVL_NAND;
if (IS_ENABLED(CONFIG_ENV_IS_IN_UBI))
return ENVL_UBI;
return ENVL_NOWHERE;
case QSPI_MODE_24BIT:
case QSPI_MODE_32BIT:
if (IS_ENABLED(CONFIG_ENV_IS_IN_SPI_FLASH))
return ENVL_SPI_FLASH;
return ENVL_NOWHERE;
case JTAG_MODE:
default:
return ENVL_NOWHERE;
}
}
#endif
#if defined(CONFIG_SET_DFU_ALT_INFO)
#define DFU_ALT_BUF_LEN SZ_1K
static void mtd_found_part(u32 *base, u32 *size)
{
struct mtd_info *part, *mtd;
mtd_probe_devices();
mtd = get_mtd_device_nm("nor0");
if (!IS_ERR_OR_NULL(mtd)) {
list_for_each_entry(part, &mtd->partitions, node) {
debug("0x%012llx-0x%012llx : \"%s\"\n",
part->offset, part->offset + part->size,
part->name);
if (*base >= part->offset &&
*base < part->offset + part->size) {
debug("Found my partition: %d/%s\n",
part->index, part->name);
*base = part->offset;
*size = part->size;
break;
}
}
}
}
void set_dfu_alt_info(char *interface, char *devstr)
{
int multiboot, bootseq = 0, len = 0;
ALLOC_CACHE_ALIGN_BUFFER(char, buf, DFU_ALT_BUF_LEN);
if (env_get("dfu_alt_info"))
return;
memset(buf, 0, sizeof(buf));
multiboot = multi_boot();
if (multiboot < 0)
multiboot = 0;
multiboot = env_get_hex("multiboot", multiboot);
debug("Multiboot: %d\n", multiboot);
switch (zynqmp_get_bootmode()) {
case EMMC_MODE:
case SD_MODE:
case SD1_LSHFT_MODE:
case SD_MODE1:
bootseq = mmc_get_env_dev();
len += snprintf(buf + len, DFU_ALT_BUF_LEN, "mmc %d=boot",
bootseq);
if (multiboot)
len += snprintf(buf + len, DFU_ALT_BUF_LEN,
"%04d", multiboot);
len += snprintf(buf + len, DFU_ALT_BUF_LEN, ".bin fat %d 1",
bootseq);
#if defined(CONFIG_SPL_FS_LOAD_PAYLOAD_NAME)
if (strlen(CONFIG_SPL_FS_LOAD_PAYLOAD_NAME))
len += snprintf(buf + len, DFU_ALT_BUF_LEN,
";%s fat %d 1",
CONFIG_SPL_FS_LOAD_PAYLOAD_NAME,
bootseq);
#endif
break;
case QSPI_MODE_24BIT:
case QSPI_MODE_32BIT:
{
u32 base = multiboot * SZ_32K;
u32 size = 0x1500000;
u32 limit = size;
mtd_found_part(&base, &limit);
#if defined(CONFIG_SYS_SPI_U_BOOT_OFFS)
size = limit;
limit = CONFIG_SYS_SPI_U_BOOT_OFFS;
#endif
len += snprintf(buf + len, DFU_ALT_BUF_LEN,
"sf 0:0=boot.bin raw 0x%x 0x%x",
base, limit);
#if defined(CONFIG_SPL_FS_LOAD_PAYLOAD_NAME) && defined(CONFIG_SYS_SPI_U_BOOT_OFFS)
if (strlen(CONFIG_SPL_FS_LOAD_PAYLOAD_NAME))
len += snprintf(buf + len, DFU_ALT_BUF_LEN,
";%s raw 0x%x 0x%x",
CONFIG_SPL_FS_LOAD_PAYLOAD_NAME,
base + limit, size - limit);
#endif
}
break;
default:
return;
}
env_set("dfu_alt_info", buf);
puts("DFU alt info setting: done\n");
}
#endif
#if defined(CONFIG_SPL_SPI_LOAD)
unsigned int spl_spi_get_uboot_offs(struct spi_flash *flash)
{
u32 offset;
int multiboot = multi_boot();
offset = multiboot * SZ_32K;
offset += CONFIG_SYS_SPI_U_BOOT_OFFS;
log_info("SPI offset:\t0x%x\n", offset);
return offset;
}
#endif