| /* |
| * Freescale i.MX28 NAND flash driver |
| * |
| * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com> |
| * on behalf of DENX Software Engineering GmbH |
| * |
| * Based on code from LTIB: |
| * Freescale GPMI NFC NAND Flash Driver |
| * |
| * Copyright (C) 2010 Freescale Semiconductor, Inc. |
| * Copyright (C) 2008 Embedded Alley Solutions, Inc. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this program; if not, write to the Free Software Foundation, Inc., |
| * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. |
| */ |
| |
| #include <common.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/nand.h> |
| #include <linux/types.h> |
| #include <malloc.h> |
| #include <asm/errno.h> |
| #include <asm/io.h> |
| #include <asm/arch/clock.h> |
| #include <asm/arch/imx-regs.h> |
| #include <asm/imx-common/regs-bch.h> |
| #include <asm/imx-common/regs-gpmi.h> |
| #include <asm/arch/sys_proto.h> |
| #include <asm/imx-common/dma.h> |
| |
| #define MXS_NAND_DMA_DESCRIPTOR_COUNT 4 |
| |
| #define MXS_NAND_CHUNK_DATA_CHUNK_SIZE 512 |
| #if defined(CONFIG_MX6) |
| #define MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT 2 |
| #else |
| #define MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT 0 |
| #endif |
| #define MXS_NAND_METADATA_SIZE 10 |
| |
| #define MXS_NAND_COMMAND_BUFFER_SIZE 32 |
| |
| #define MXS_NAND_BCH_TIMEOUT 10000 |
| |
| struct mxs_nand_info { |
| int cur_chip; |
| |
| uint32_t cmd_queue_len; |
| uint32_t data_buf_size; |
| |
| uint8_t *cmd_buf; |
| uint8_t *data_buf; |
| uint8_t *oob_buf; |
| |
| uint8_t marking_block_bad; |
| uint8_t raw_oob_mode; |
| |
| /* Functions with altered behaviour */ |
| int (*hooked_read_oob)(struct mtd_info *mtd, |
| loff_t from, struct mtd_oob_ops *ops); |
| int (*hooked_write_oob)(struct mtd_info *mtd, |
| loff_t to, struct mtd_oob_ops *ops); |
| int (*hooked_block_markbad)(struct mtd_info *mtd, |
| loff_t ofs); |
| |
| /* DMA descriptors */ |
| struct mxs_dma_desc **desc; |
| uint32_t desc_index; |
| }; |
| |
| struct nand_ecclayout fake_ecc_layout; |
| |
| /* |
| * Cache management functions |
| */ |
| #ifndef CONFIG_SYS_DCACHE_OFF |
| static void mxs_nand_flush_data_buf(struct mxs_nand_info *info) |
| { |
| uint32_t addr = (uint32_t)info->data_buf; |
| |
| flush_dcache_range(addr, addr + info->data_buf_size); |
| } |
| |
| static void mxs_nand_inval_data_buf(struct mxs_nand_info *info) |
| { |
| uint32_t addr = (uint32_t)info->data_buf; |
| |
| invalidate_dcache_range(addr, addr + info->data_buf_size); |
| } |
| |
| static void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info) |
| { |
| uint32_t addr = (uint32_t)info->cmd_buf; |
| |
| flush_dcache_range(addr, addr + MXS_NAND_COMMAND_BUFFER_SIZE); |
| } |
| #else |
| static inline void mxs_nand_flush_data_buf(struct mxs_nand_info *info) {} |
| static inline void mxs_nand_inval_data_buf(struct mxs_nand_info *info) {} |
| static inline void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info) {} |
| #endif |
| |
| static struct mxs_dma_desc *mxs_nand_get_dma_desc(struct mxs_nand_info *info) |
| { |
| struct mxs_dma_desc *desc; |
| |
| if (info->desc_index >= MXS_NAND_DMA_DESCRIPTOR_COUNT) { |
| printf("MXS NAND: Too many DMA descriptors requested\n"); |
| return NULL; |
| } |
| |
| desc = info->desc[info->desc_index]; |
| info->desc_index++; |
| |
| return desc; |
| } |
| |
| static void mxs_nand_return_dma_descs(struct mxs_nand_info *info) |
| { |
| int i; |
| struct mxs_dma_desc *desc; |
| |
| for (i = 0; i < info->desc_index; i++) { |
| desc = info->desc[i]; |
| memset(desc, 0, sizeof(struct mxs_dma_desc)); |
| desc->address = (dma_addr_t)desc; |
| } |
| |
| info->desc_index = 0; |
| } |
| |
| static uint32_t mxs_nand_ecc_chunk_cnt(uint32_t page_data_size) |
| { |
| return page_data_size / MXS_NAND_CHUNK_DATA_CHUNK_SIZE; |
| } |
| |
| static uint32_t mxs_nand_ecc_size_in_bits(uint32_t ecc_strength) |
| { |
| return ecc_strength * 13; |
| } |
| |
| static uint32_t mxs_nand_aux_status_offset(void) |
| { |
| return (MXS_NAND_METADATA_SIZE + 0x3) & ~0x3; |
| } |
| |
| static inline uint32_t mxs_nand_get_ecc_strength(uint32_t page_data_size, |
| uint32_t page_oob_size) |
| { |
| if (page_data_size == 2048) |
| return 8; |
| |
| if (page_data_size == 4096) { |
| if (page_oob_size == 128) |
| return 8; |
| |
| if (page_oob_size == 218) |
| return 16; |
| } |
| |
| return 0; |
| } |
| |
| static inline uint32_t mxs_nand_get_mark_offset(uint32_t page_data_size, |
| uint32_t ecc_strength) |
| { |
| uint32_t chunk_data_size_in_bits; |
| uint32_t chunk_ecc_size_in_bits; |
| uint32_t chunk_total_size_in_bits; |
| uint32_t block_mark_chunk_number; |
| uint32_t block_mark_chunk_bit_offset; |
| uint32_t block_mark_bit_offset; |
| |
| chunk_data_size_in_bits = MXS_NAND_CHUNK_DATA_CHUNK_SIZE * 8; |
| chunk_ecc_size_in_bits = mxs_nand_ecc_size_in_bits(ecc_strength); |
| |
| chunk_total_size_in_bits = |
| chunk_data_size_in_bits + chunk_ecc_size_in_bits; |
| |
| /* Compute the bit offset of the block mark within the physical page. */ |
| block_mark_bit_offset = page_data_size * 8; |
| |
| /* Subtract the metadata bits. */ |
| block_mark_bit_offset -= MXS_NAND_METADATA_SIZE * 8; |
| |
| /* |
| * Compute the chunk number (starting at zero) in which the block mark |
| * appears. |
| */ |
| block_mark_chunk_number = |
| block_mark_bit_offset / chunk_total_size_in_bits; |
| |
| /* |
| * Compute the bit offset of the block mark within its chunk, and |
| * validate it. |
| */ |
| block_mark_chunk_bit_offset = block_mark_bit_offset - |
| (block_mark_chunk_number * chunk_total_size_in_bits); |
| |
| if (block_mark_chunk_bit_offset > chunk_data_size_in_bits) |
| return 1; |
| |
| /* |
| * Now that we know the chunk number in which the block mark appears, |
| * we can subtract all the ECC bits that appear before it. |
| */ |
| block_mark_bit_offset -= |
| block_mark_chunk_number * chunk_ecc_size_in_bits; |
| |
| return block_mark_bit_offset; |
| } |
| |
| static uint32_t mxs_nand_mark_byte_offset(struct mtd_info *mtd) |
| { |
| uint32_t ecc_strength; |
| ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize); |
| return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) >> 3; |
| } |
| |
| static uint32_t mxs_nand_mark_bit_offset(struct mtd_info *mtd) |
| { |
| uint32_t ecc_strength; |
| ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize); |
| return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) & 0x7; |
| } |
| |
| /* |
| * Wait for BCH complete IRQ and clear the IRQ |
| */ |
| static int mxs_nand_wait_for_bch_complete(void) |
| { |
| struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE; |
| int timeout = MXS_NAND_BCH_TIMEOUT; |
| int ret; |
| |
| ret = mxs_wait_mask_set(&bch_regs->hw_bch_ctrl_reg, |
| BCH_CTRL_COMPLETE_IRQ, timeout); |
| |
| writel(BCH_CTRL_COMPLETE_IRQ, &bch_regs->hw_bch_ctrl_clr); |
| |
| return ret; |
| } |
| |
| /* |
| * This is the function that we install in the cmd_ctrl function pointer of the |
| * owning struct nand_chip. The only functions in the reference implementation |
| * that use these functions pointers are cmdfunc and select_chip. |
| * |
| * In this driver, we implement our own select_chip, so this function will only |
| * be called by the reference implementation's cmdfunc. For this reason, we can |
| * ignore the chip enable bit and concentrate only on sending bytes to the NAND |
| * Flash. |
| */ |
| static void mxs_nand_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl) |
| { |
| struct nand_chip *nand = mtd->priv; |
| struct mxs_nand_info *nand_info = nand->priv; |
| struct mxs_dma_desc *d; |
| uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip; |
| int ret; |
| |
| /* |
| * If this condition is true, something is _VERY_ wrong in MTD |
| * subsystem! |
| */ |
| if (nand_info->cmd_queue_len == MXS_NAND_COMMAND_BUFFER_SIZE) { |
| printf("MXS NAND: Command queue too long\n"); |
| return; |
| } |
| |
| /* |
| * Every operation begins with a command byte and a series of zero or |
| * more address bytes. These are distinguished by either the Address |
| * Latch Enable (ALE) or Command Latch Enable (CLE) signals being |
| * asserted. When MTD is ready to execute the command, it will |
| * deasert both latch enables. |
| * |
| * Rather than run a separate DMA operation for every single byte, we |
| * queue them up and run a single DMA operation for the entire series |
| * of command and data bytes. |
| */ |
| if (ctrl & (NAND_ALE | NAND_CLE)) { |
| if (data != NAND_CMD_NONE) |
| nand_info->cmd_buf[nand_info->cmd_queue_len++] = data; |
| return; |
| } |
| |
| /* |
| * If control arrives here, MTD has deasserted both the ALE and CLE, |
| * which means it's ready to run an operation. Check if we have any |
| * bytes to send. |
| */ |
| if (nand_info->cmd_queue_len == 0) |
| return; |
| |
| /* Compile the DMA descriptor -- a descriptor that sends command. */ |
| d = mxs_nand_get_dma_desc(nand_info); |
| d->cmd.data = |
| MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ | |
| MXS_DMA_DESC_CHAIN | MXS_DMA_DESC_DEC_SEM | |
| MXS_DMA_DESC_WAIT4END | (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET) | |
| (nand_info->cmd_queue_len << MXS_DMA_DESC_BYTES_OFFSET); |
| |
| d->cmd.address = (dma_addr_t)nand_info->cmd_buf; |
| |
| d->cmd.pio_words[0] = |
| GPMI_CTRL0_COMMAND_MODE_WRITE | |
| GPMI_CTRL0_WORD_LENGTH | |
| (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | |
| GPMI_CTRL0_ADDRESS_NAND_CLE | |
| GPMI_CTRL0_ADDRESS_INCREMENT | |
| nand_info->cmd_queue_len; |
| |
| mxs_dma_desc_append(channel, d); |
| |
| /* Flush caches */ |
| mxs_nand_flush_cmd_buf(nand_info); |
| |
| /* Execute the DMA chain. */ |
| ret = mxs_dma_go(channel); |
| if (ret) |
| printf("MXS NAND: Error sending command\n"); |
| |
| mxs_nand_return_dma_descs(nand_info); |
| |
| /* Reset the command queue. */ |
| nand_info->cmd_queue_len = 0; |
| } |
| |
| /* |
| * Test if the NAND flash is ready. |
| */ |
| static int mxs_nand_device_ready(struct mtd_info *mtd) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct mxs_nand_info *nand_info = chip->priv; |
| struct mxs_gpmi_regs *gpmi_regs = |
| (struct mxs_gpmi_regs *)MXS_GPMI_BASE; |
| uint32_t tmp; |
| |
| tmp = readl(&gpmi_regs->hw_gpmi_stat); |
| tmp >>= (GPMI_STAT_READY_BUSY_OFFSET + nand_info->cur_chip); |
| |
| return tmp & 1; |
| } |
| |
| /* |
| * Select the NAND chip. |
| */ |
| static void mxs_nand_select_chip(struct mtd_info *mtd, int chip) |
| { |
| struct nand_chip *nand = mtd->priv; |
| struct mxs_nand_info *nand_info = nand->priv; |
| |
| nand_info->cur_chip = chip; |
| } |
| |
| /* |
| * Handle block mark swapping. |
| * |
| * Note that, when this function is called, it doesn't know whether it's |
| * swapping the block mark, or swapping it *back* -- but it doesn't matter |
| * because the the operation is the same. |
| */ |
| static void mxs_nand_swap_block_mark(struct mtd_info *mtd, |
| uint8_t *data_buf, uint8_t *oob_buf) |
| { |
| uint32_t bit_offset; |
| uint32_t buf_offset; |
| |
| uint32_t src; |
| uint32_t dst; |
| |
| bit_offset = mxs_nand_mark_bit_offset(mtd); |
| buf_offset = mxs_nand_mark_byte_offset(mtd); |
| |
| /* |
| * Get the byte from the data area that overlays the block mark. Since |
| * the ECC engine applies its own view to the bits in the page, the |
| * physical block mark won't (in general) appear on a byte boundary in |
| * the data. |
| */ |
| src = data_buf[buf_offset] >> bit_offset; |
| src |= data_buf[buf_offset + 1] << (8 - bit_offset); |
| |
| dst = oob_buf[0]; |
| |
| oob_buf[0] = src; |
| |
| data_buf[buf_offset] &= ~(0xff << bit_offset); |
| data_buf[buf_offset + 1] &= 0xff << bit_offset; |
| |
| data_buf[buf_offset] |= dst << bit_offset; |
| data_buf[buf_offset + 1] |= dst >> (8 - bit_offset); |
| } |
| |
| /* |
| * Read data from NAND. |
| */ |
| static void mxs_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int length) |
| { |
| struct nand_chip *nand = mtd->priv; |
| struct mxs_nand_info *nand_info = nand->priv; |
| struct mxs_dma_desc *d; |
| uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip; |
| int ret; |
| |
| if (length > NAND_MAX_PAGESIZE) { |
| printf("MXS NAND: DMA buffer too big\n"); |
| return; |
| } |
| |
| if (!buf) { |
| printf("MXS NAND: DMA buffer is NULL\n"); |
| return; |
| } |
| |
| /* Compile the DMA descriptor - a descriptor that reads data. */ |
| d = mxs_nand_get_dma_desc(nand_info); |
| d->cmd.data = |
| MXS_DMA_DESC_COMMAND_DMA_WRITE | MXS_DMA_DESC_IRQ | |
| MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END | |
| (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) | |
| (length << MXS_DMA_DESC_BYTES_OFFSET); |
| |
| d->cmd.address = (dma_addr_t)nand_info->data_buf; |
| |
| d->cmd.pio_words[0] = |
| GPMI_CTRL0_COMMAND_MODE_READ | |
| GPMI_CTRL0_WORD_LENGTH | |
| (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | |
| GPMI_CTRL0_ADDRESS_NAND_DATA | |
| length; |
| |
| mxs_dma_desc_append(channel, d); |
| |
| /* |
| * A DMA descriptor that waits for the command to end and the chip to |
| * become ready. |
| * |
| * I think we actually should *not* be waiting for the chip to become |
| * ready because, after all, we don't care. I think the original code |
| * did that and no one has re-thought it yet. |
| */ |
| d = mxs_nand_get_dma_desc(nand_info); |
| d->cmd.data = |
| MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ | |
| MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_DEC_SEM | |
| MXS_DMA_DESC_WAIT4END | (4 << MXS_DMA_DESC_PIO_WORDS_OFFSET); |
| |
| d->cmd.address = 0; |
| |
| d->cmd.pio_words[0] = |
| GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY | |
| GPMI_CTRL0_WORD_LENGTH | |
| (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | |
| GPMI_CTRL0_ADDRESS_NAND_DATA; |
| |
| mxs_dma_desc_append(channel, d); |
| |
| /* Execute the DMA chain. */ |
| ret = mxs_dma_go(channel); |
| if (ret) { |
| printf("MXS NAND: DMA read error\n"); |
| goto rtn; |
| } |
| |
| /* Invalidate caches */ |
| mxs_nand_inval_data_buf(nand_info); |
| |
| memcpy(buf, nand_info->data_buf, length); |
| |
| rtn: |
| mxs_nand_return_dma_descs(nand_info); |
| } |
| |
| /* |
| * Write data to NAND. |
| */ |
| static void mxs_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, |
| int length) |
| { |
| struct nand_chip *nand = mtd->priv; |
| struct mxs_nand_info *nand_info = nand->priv; |
| struct mxs_dma_desc *d; |
| uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip; |
| int ret; |
| |
| if (length > NAND_MAX_PAGESIZE) { |
| printf("MXS NAND: DMA buffer too big\n"); |
| return; |
| } |
| |
| if (!buf) { |
| printf("MXS NAND: DMA buffer is NULL\n"); |
| return; |
| } |
| |
| memcpy(nand_info->data_buf, buf, length); |
| |
| /* Compile the DMA descriptor - a descriptor that writes data. */ |
| d = mxs_nand_get_dma_desc(nand_info); |
| d->cmd.data = |
| MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ | |
| MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END | |
| (4 << MXS_DMA_DESC_PIO_WORDS_OFFSET) | |
| (length << MXS_DMA_DESC_BYTES_OFFSET); |
| |
| d->cmd.address = (dma_addr_t)nand_info->data_buf; |
| |
| d->cmd.pio_words[0] = |
| GPMI_CTRL0_COMMAND_MODE_WRITE | |
| GPMI_CTRL0_WORD_LENGTH | |
| (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | |
| GPMI_CTRL0_ADDRESS_NAND_DATA | |
| length; |
| |
| mxs_dma_desc_append(channel, d); |
| |
| /* Flush caches */ |
| mxs_nand_flush_data_buf(nand_info); |
| |
| /* Execute the DMA chain. */ |
| ret = mxs_dma_go(channel); |
| if (ret) |
| printf("MXS NAND: DMA write error\n"); |
| |
| mxs_nand_return_dma_descs(nand_info); |
| } |
| |
| /* |
| * Read a single byte from NAND. |
| */ |
| static uint8_t mxs_nand_read_byte(struct mtd_info *mtd) |
| { |
| uint8_t buf; |
| mxs_nand_read_buf(mtd, &buf, 1); |
| return buf; |
| } |
| |
| /* |
| * Read a page from NAND. |
| */ |
| static int mxs_nand_ecc_read_page(struct mtd_info *mtd, struct nand_chip *nand, |
| uint8_t *buf, int oob_required, |
| int page) |
| { |
| struct mxs_nand_info *nand_info = nand->priv; |
| struct mxs_dma_desc *d; |
| uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip; |
| uint32_t corrected = 0, failed = 0; |
| uint8_t *status; |
| int i, ret; |
| |
| /* Compile the DMA descriptor - wait for ready. */ |
| d = mxs_nand_get_dma_desc(nand_info); |
| d->cmd.data = |
| MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN | |
| MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END | |
| (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET); |
| |
| d->cmd.address = 0; |
| |
| d->cmd.pio_words[0] = |
| GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY | |
| GPMI_CTRL0_WORD_LENGTH | |
| (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | |
| GPMI_CTRL0_ADDRESS_NAND_DATA; |
| |
| mxs_dma_desc_append(channel, d); |
| |
| /* Compile the DMA descriptor - enable the BCH block and read. */ |
| d = mxs_nand_get_dma_desc(nand_info); |
| d->cmd.data = |
| MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN | |
| MXS_DMA_DESC_WAIT4END | (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET); |
| |
| d->cmd.address = 0; |
| |
| d->cmd.pio_words[0] = |
| GPMI_CTRL0_COMMAND_MODE_READ | |
| GPMI_CTRL0_WORD_LENGTH | |
| (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | |
| GPMI_CTRL0_ADDRESS_NAND_DATA | |
| (mtd->writesize + mtd->oobsize); |
| d->cmd.pio_words[1] = 0; |
| d->cmd.pio_words[2] = |
| GPMI_ECCCTRL_ENABLE_ECC | |
| GPMI_ECCCTRL_ECC_CMD_DECODE | |
| GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE; |
| d->cmd.pio_words[3] = mtd->writesize + mtd->oobsize; |
| d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf; |
| d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf; |
| |
| mxs_dma_desc_append(channel, d); |
| |
| /* Compile the DMA descriptor - disable the BCH block. */ |
| d = mxs_nand_get_dma_desc(nand_info); |
| d->cmd.data = |
| MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN | |
| MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END | |
| (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET); |
| |
| d->cmd.address = 0; |
| |
| d->cmd.pio_words[0] = |
| GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY | |
| GPMI_CTRL0_WORD_LENGTH | |
| (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | |
| GPMI_CTRL0_ADDRESS_NAND_DATA | |
| (mtd->writesize + mtd->oobsize); |
| d->cmd.pio_words[1] = 0; |
| d->cmd.pio_words[2] = 0; |
| |
| mxs_dma_desc_append(channel, d); |
| |
| /* Compile the DMA descriptor - deassert the NAND lock and interrupt. */ |
| d = mxs_nand_get_dma_desc(nand_info); |
| d->cmd.data = |
| MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ | |
| MXS_DMA_DESC_DEC_SEM; |
| |
| d->cmd.address = 0; |
| |
| mxs_dma_desc_append(channel, d); |
| |
| /* Execute the DMA chain. */ |
| ret = mxs_dma_go(channel); |
| if (ret) { |
| printf("MXS NAND: DMA read error\n"); |
| goto rtn; |
| } |
| |
| ret = mxs_nand_wait_for_bch_complete(); |
| if (ret) { |
| printf("MXS NAND: BCH read timeout\n"); |
| goto rtn; |
| } |
| |
| /* Invalidate caches */ |
| mxs_nand_inval_data_buf(nand_info); |
| |
| /* Read DMA completed, now do the mark swapping. */ |
| mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf); |
| |
| /* Loop over status bytes, accumulating ECC status. */ |
| status = nand_info->oob_buf + mxs_nand_aux_status_offset(); |
| for (i = 0; i < mxs_nand_ecc_chunk_cnt(mtd->writesize); i++) { |
| if (status[i] == 0x00) |
| continue; |
| |
| if (status[i] == 0xff) |
| continue; |
| |
| if (status[i] == 0xfe) { |
| failed++; |
| continue; |
| } |
| |
| corrected += status[i]; |
| } |
| |
| /* Propagate ECC status to the owning MTD. */ |
| mtd->ecc_stats.failed += failed; |
| mtd->ecc_stats.corrected += corrected; |
| |
| /* |
| * It's time to deliver the OOB bytes. See mxs_nand_ecc_read_oob() for |
| * details about our policy for delivering the OOB. |
| * |
| * We fill the caller's buffer with set bits, and then copy the block |
| * mark to the caller's buffer. Note that, if block mark swapping was |
| * necessary, it has already been done, so we can rely on the first |
| * byte of the auxiliary buffer to contain the block mark. |
| */ |
| memset(nand->oob_poi, 0xff, mtd->oobsize); |
| |
| nand->oob_poi[0] = nand_info->oob_buf[0]; |
| |
| memcpy(buf, nand_info->data_buf, mtd->writesize); |
| |
| rtn: |
| mxs_nand_return_dma_descs(nand_info); |
| |
| return ret; |
| } |
| |
| /* |
| * Write a page to NAND. |
| */ |
| static int mxs_nand_ecc_write_page(struct mtd_info *mtd, |
| struct nand_chip *nand, const uint8_t *buf, |
| int oob_required) |
| { |
| struct mxs_nand_info *nand_info = nand->priv; |
| struct mxs_dma_desc *d; |
| uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip; |
| int ret; |
| |
| memcpy(nand_info->data_buf, buf, mtd->writesize); |
| memcpy(nand_info->oob_buf, nand->oob_poi, mtd->oobsize); |
| |
| /* Handle block mark swapping. */ |
| mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf); |
| |
| /* Compile the DMA descriptor - write data. */ |
| d = mxs_nand_get_dma_desc(nand_info); |
| d->cmd.data = |
| MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ | |
| MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END | |
| (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET); |
| |
| d->cmd.address = 0; |
| |
| d->cmd.pio_words[0] = |
| GPMI_CTRL0_COMMAND_MODE_WRITE | |
| GPMI_CTRL0_WORD_LENGTH | |
| (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | |
| GPMI_CTRL0_ADDRESS_NAND_DATA; |
| d->cmd.pio_words[1] = 0; |
| d->cmd.pio_words[2] = |
| GPMI_ECCCTRL_ENABLE_ECC | |
| GPMI_ECCCTRL_ECC_CMD_ENCODE | |
| GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE; |
| d->cmd.pio_words[3] = (mtd->writesize + mtd->oobsize); |
| d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf; |
| d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf; |
| |
| mxs_dma_desc_append(channel, d); |
| |
| /* Flush caches */ |
| mxs_nand_flush_data_buf(nand_info); |
| |
| /* Execute the DMA chain. */ |
| ret = mxs_dma_go(channel); |
| if (ret) { |
| printf("MXS NAND: DMA write error\n"); |
| goto rtn; |
| } |
| |
| ret = mxs_nand_wait_for_bch_complete(); |
| if (ret) { |
| printf("MXS NAND: BCH write timeout\n"); |
| goto rtn; |
| } |
| |
| rtn: |
| mxs_nand_return_dma_descs(nand_info); |
| return 0; |
| } |
| |
| /* |
| * Read OOB from NAND. |
| * |
| * This function is a veneer that replaces the function originally installed by |
| * the NAND Flash MTD code. |
| */ |
| static int mxs_nand_hook_read_oob(struct mtd_info *mtd, loff_t from, |
| struct mtd_oob_ops *ops) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct mxs_nand_info *nand_info = chip->priv; |
| int ret; |
| |
| if (ops->mode == MTD_OPS_RAW) |
| nand_info->raw_oob_mode = 1; |
| else |
| nand_info->raw_oob_mode = 0; |
| |
| ret = nand_info->hooked_read_oob(mtd, from, ops); |
| |
| nand_info->raw_oob_mode = 0; |
| |
| return ret; |
| } |
| |
| /* |
| * Write OOB to NAND. |
| * |
| * This function is a veneer that replaces the function originally installed by |
| * the NAND Flash MTD code. |
| */ |
| static int mxs_nand_hook_write_oob(struct mtd_info *mtd, loff_t to, |
| struct mtd_oob_ops *ops) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct mxs_nand_info *nand_info = chip->priv; |
| int ret; |
| |
| if (ops->mode == MTD_OPS_RAW) |
| nand_info->raw_oob_mode = 1; |
| else |
| nand_info->raw_oob_mode = 0; |
| |
| ret = nand_info->hooked_write_oob(mtd, to, ops); |
| |
| nand_info->raw_oob_mode = 0; |
| |
| return ret; |
| } |
| |
| /* |
| * Mark a block bad in NAND. |
| * |
| * This function is a veneer that replaces the function originally installed by |
| * the NAND Flash MTD code. |
| */ |
| static int mxs_nand_hook_block_markbad(struct mtd_info *mtd, loff_t ofs) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct mxs_nand_info *nand_info = chip->priv; |
| int ret; |
| |
| nand_info->marking_block_bad = 1; |
| |
| ret = nand_info->hooked_block_markbad(mtd, ofs); |
| |
| nand_info->marking_block_bad = 0; |
| |
| return ret; |
| } |
| |
| /* |
| * There are several places in this driver where we have to handle the OOB and |
| * block marks. This is the function where things are the most complicated, so |
| * this is where we try to explain it all. All the other places refer back to |
| * here. |
| * |
| * These are the rules, in order of decreasing importance: |
| * |
| * 1) Nothing the caller does can be allowed to imperil the block mark, so all |
| * write operations take measures to protect it. |
| * |
| * 2) In read operations, the first byte of the OOB we return must reflect the |
| * true state of the block mark, no matter where that block mark appears in |
| * the physical page. |
| * |
| * 3) ECC-based read operations return an OOB full of set bits (since we never |
| * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads |
| * return). |
| * |
| * 4) "Raw" read operations return a direct view of the physical bytes in the |
| * page, using the conventional definition of which bytes are data and which |
| * are OOB. This gives the caller a way to see the actual, physical bytes |
| * in the page, without the distortions applied by our ECC engine. |
| * |
| * What we do for this specific read operation depends on whether we're doing |
| * "raw" read, or an ECC-based read. |
| * |
| * It turns out that knowing whether we want an "ECC-based" or "raw" read is not |
| * easy. When reading a page, for example, the NAND Flash MTD code calls our |
| * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an |
| * ECC-based or raw view of the page is implicit in which function it calls |
| * (there is a similar pair of ECC-based/raw functions for writing). |
| * |
| * Since MTD assumes the OOB is not covered by ECC, there is no pair of |
| * ECC-based/raw functions for reading or or writing the OOB. The fact that the |
| * caller wants an ECC-based or raw view of the page is not propagated down to |
| * this driver. |
| * |
| * Since our OOB *is* covered by ECC, we need this information. So, we hook the |
| * ecc.read_oob and ecc.write_oob function pointers in the owning |
| * struct mtd_info with our own functions. These hook functions set the |
| * raw_oob_mode field so that, when control finally arrives here, we'll know |
| * what to do. |
| */ |
| static int mxs_nand_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *nand, |
| int page) |
| { |
| struct mxs_nand_info *nand_info = nand->priv; |
| |
| /* |
| * First, fill in the OOB buffer. If we're doing a raw read, we need to |
| * get the bytes from the physical page. If we're not doing a raw read, |
| * we need to fill the buffer with set bits. |
| */ |
| if (nand_info->raw_oob_mode) { |
| /* |
| * If control arrives here, we're doing a "raw" read. Send the |
| * command to read the conventional OOB and read it. |
| */ |
| nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page); |
| nand->read_buf(mtd, nand->oob_poi, mtd->oobsize); |
| } else { |
| /* |
| * If control arrives here, we're not doing a "raw" read. Fill |
| * the OOB buffer with set bits and correct the block mark. |
| */ |
| memset(nand->oob_poi, 0xff, mtd->oobsize); |
| |
| nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page); |
| mxs_nand_read_buf(mtd, nand->oob_poi, 1); |
| } |
| |
| return 0; |
| |
| } |
| |
| /* |
| * Write OOB data to NAND. |
| */ |
| static int mxs_nand_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *nand, |
| int page) |
| { |
| struct mxs_nand_info *nand_info = nand->priv; |
| uint8_t block_mark = 0; |
| |
| /* |
| * There are fundamental incompatibilities between the i.MX GPMI NFC and |
| * the NAND Flash MTD model that make it essentially impossible to write |
| * the out-of-band bytes. |
| * |
| * We permit *ONE* exception. If the *intent* of writing the OOB is to |
| * mark a block bad, we can do that. |
| */ |
| |
| if (!nand_info->marking_block_bad) { |
| printf("NXS NAND: Writing OOB isn't supported\n"); |
| return -EIO; |
| } |
| |
| /* Write the block mark. */ |
| nand->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page); |
| nand->write_buf(mtd, &block_mark, 1); |
| nand->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); |
| |
| /* Check if it worked. */ |
| if (nand->waitfunc(mtd, nand) & NAND_STATUS_FAIL) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| /* |
| * Claims all blocks are good. |
| * |
| * In principle, this function is *only* called when the NAND Flash MTD system |
| * isn't allowed to keep an in-memory bad block table, so it is forced to ask |
| * the driver for bad block information. |
| * |
| * In fact, we permit the NAND Flash MTD system to have an in-memory BBT, so |
| * this function is *only* called when we take it away. |
| * |
| * Thus, this function is only called when we want *all* blocks to look good, |
| * so it *always* return success. |
| */ |
| static int mxs_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip) |
| { |
| return 0; |
| } |
| |
| /* |
| * Nominally, the purpose of this function is to look for or create the bad |
| * block table. In fact, since the we call this function at the very end of |
| * the initialization process started by nand_scan(), and we doesn't have a |
| * more formal mechanism, we "hook" this function to continue init process. |
| * |
| * At this point, the physical NAND Flash chips have been identified and |
| * counted, so we know the physical geometry. This enables us to make some |
| * important configuration decisions. |
| * |
| * The return value of this function propogates directly back to this driver's |
| * call to nand_scan(). Anything other than zero will cause this driver to |
| * tear everything down and declare failure. |
| */ |
| static int mxs_nand_scan_bbt(struct mtd_info *mtd) |
| { |
| struct nand_chip *nand = mtd->priv; |
| struct mxs_nand_info *nand_info = nand->priv; |
| struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE; |
| uint32_t tmp; |
| |
| /* Configure BCH and set NFC geometry */ |
| mxs_reset_block(&bch_regs->hw_bch_ctrl_reg); |
| |
| /* Configure layout 0 */ |
| tmp = (mxs_nand_ecc_chunk_cnt(mtd->writesize) - 1) |
| << BCH_FLASHLAYOUT0_NBLOCKS_OFFSET; |
| tmp |= MXS_NAND_METADATA_SIZE << BCH_FLASHLAYOUT0_META_SIZE_OFFSET; |
| tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1) |
| << BCH_FLASHLAYOUT0_ECC0_OFFSET; |
| tmp |= MXS_NAND_CHUNK_DATA_CHUNK_SIZE |
| >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT; |
| writel(tmp, &bch_regs->hw_bch_flash0layout0); |
| |
| tmp = (mtd->writesize + mtd->oobsize) |
| << BCH_FLASHLAYOUT1_PAGE_SIZE_OFFSET; |
| tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1) |
| << BCH_FLASHLAYOUT1_ECCN_OFFSET; |
| tmp |= MXS_NAND_CHUNK_DATA_CHUNK_SIZE |
| >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT; |
| writel(tmp, &bch_regs->hw_bch_flash0layout1); |
| |
| /* Set *all* chip selects to use layout 0 */ |
| writel(0, &bch_regs->hw_bch_layoutselect); |
| |
| /* Enable BCH complete interrupt */ |
| writel(BCH_CTRL_COMPLETE_IRQ_EN, &bch_regs->hw_bch_ctrl_set); |
| |
| /* Hook some operations at the MTD level. */ |
| if (mtd->_read_oob != mxs_nand_hook_read_oob) { |
| nand_info->hooked_read_oob = mtd->_read_oob; |
| mtd->_read_oob = mxs_nand_hook_read_oob; |
| } |
| |
| if (mtd->_write_oob != mxs_nand_hook_write_oob) { |
| nand_info->hooked_write_oob = mtd->_write_oob; |
| mtd->_write_oob = mxs_nand_hook_write_oob; |
| } |
| |
| if (mtd->_block_markbad != mxs_nand_hook_block_markbad) { |
| nand_info->hooked_block_markbad = mtd->_block_markbad; |
| mtd->_block_markbad = mxs_nand_hook_block_markbad; |
| } |
| |
| /* We use the reference implementation for bad block management. */ |
| return nand_default_bbt(mtd); |
| } |
| |
| /* |
| * Allocate DMA buffers |
| */ |
| int mxs_nand_alloc_buffers(struct mxs_nand_info *nand_info) |
| { |
| uint8_t *buf; |
| const int size = NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE; |
| |
| nand_info->data_buf_size = roundup(size, MXS_DMA_ALIGNMENT); |
| |
| /* DMA buffers */ |
| buf = memalign(MXS_DMA_ALIGNMENT, nand_info->data_buf_size); |
| if (!buf) { |
| printf("MXS NAND: Error allocating DMA buffers\n"); |
| return -ENOMEM; |
| } |
| |
| memset(buf, 0, nand_info->data_buf_size); |
| |
| nand_info->data_buf = buf; |
| nand_info->oob_buf = buf + NAND_MAX_PAGESIZE; |
| /* Command buffers */ |
| nand_info->cmd_buf = memalign(MXS_DMA_ALIGNMENT, |
| MXS_NAND_COMMAND_BUFFER_SIZE); |
| if (!nand_info->cmd_buf) { |
| free(buf); |
| printf("MXS NAND: Error allocating command buffers\n"); |
| return -ENOMEM; |
| } |
| memset(nand_info->cmd_buf, 0, MXS_NAND_COMMAND_BUFFER_SIZE); |
| nand_info->cmd_queue_len = 0; |
| |
| return 0; |
| } |
| |
| /* |
| * Initializes the NFC hardware. |
| */ |
| int mxs_nand_init(struct mxs_nand_info *info) |
| { |
| struct mxs_gpmi_regs *gpmi_regs = |
| (struct mxs_gpmi_regs *)MXS_GPMI_BASE; |
| struct mxs_bch_regs *bch_regs = |
| (struct mxs_bch_regs *)MXS_BCH_BASE; |
| int i = 0, j; |
| |
| info->desc = malloc(sizeof(struct mxs_dma_desc *) * |
| MXS_NAND_DMA_DESCRIPTOR_COUNT); |
| if (!info->desc) |
| goto err1; |
| |
| /* Allocate the DMA descriptors. */ |
| for (i = 0; i < MXS_NAND_DMA_DESCRIPTOR_COUNT; i++) { |
| info->desc[i] = mxs_dma_desc_alloc(); |
| if (!info->desc[i]) |
| goto err2; |
| } |
| |
| /* Init the DMA controller. */ |
| for (j = MXS_DMA_CHANNEL_AHB_APBH_GPMI0; |
| j <= MXS_DMA_CHANNEL_AHB_APBH_GPMI7; j++) { |
| if (mxs_dma_init_channel(j)) |
| goto err3; |
| } |
| |
| /* Reset the GPMI block. */ |
| mxs_reset_block(&gpmi_regs->hw_gpmi_ctrl0_reg); |
| mxs_reset_block(&bch_regs->hw_bch_ctrl_reg); |
| |
| /* |
| * Choose NAND mode, set IRQ polarity, disable write protection and |
| * select BCH ECC. |
| */ |
| clrsetbits_le32(&gpmi_regs->hw_gpmi_ctrl1, |
| GPMI_CTRL1_GPMI_MODE, |
| GPMI_CTRL1_ATA_IRQRDY_POLARITY | GPMI_CTRL1_DEV_RESET | |
| GPMI_CTRL1_BCH_MODE); |
| |
| return 0; |
| |
| err3: |
| for (--j; j >= 0; j--) |
| mxs_dma_release(j); |
| err2: |
| free(info->desc); |
| err1: |
| for (--i; i >= 0; i--) |
| mxs_dma_desc_free(info->desc[i]); |
| printf("MXS NAND: Unable to allocate DMA descriptors\n"); |
| return -ENOMEM; |
| } |
| |
| /*! |
| * This function is called during the driver binding process. |
| * |
| * @param pdev the device structure used to store device specific |
| * information that is used by the suspend, resume and |
| * remove functions |
| * |
| * @return The function always returns 0. |
| */ |
| int board_nand_init(struct nand_chip *nand) |
| { |
| struct mxs_nand_info *nand_info; |
| int err; |
| |
| nand_info = malloc(sizeof(struct mxs_nand_info)); |
| if (!nand_info) { |
| printf("MXS NAND: Failed to allocate private data\n"); |
| return -ENOMEM; |
| } |
| memset(nand_info, 0, sizeof(struct mxs_nand_info)); |
| |
| err = mxs_nand_alloc_buffers(nand_info); |
| if (err) |
| goto err1; |
| |
| err = mxs_nand_init(nand_info); |
| if (err) |
| goto err2; |
| |
| memset(&fake_ecc_layout, 0, sizeof(fake_ecc_layout)); |
| |
| nand->priv = nand_info; |
| nand->options |= NAND_NO_SUBPAGE_WRITE; |
| |
| nand->cmd_ctrl = mxs_nand_cmd_ctrl; |
| |
| nand->dev_ready = mxs_nand_device_ready; |
| nand->select_chip = mxs_nand_select_chip; |
| nand->block_bad = mxs_nand_block_bad; |
| nand->scan_bbt = mxs_nand_scan_bbt; |
| |
| nand->read_byte = mxs_nand_read_byte; |
| |
| nand->read_buf = mxs_nand_read_buf; |
| nand->write_buf = mxs_nand_write_buf; |
| |
| nand->ecc.read_page = mxs_nand_ecc_read_page; |
| nand->ecc.write_page = mxs_nand_ecc_write_page; |
| nand->ecc.read_oob = mxs_nand_ecc_read_oob; |
| nand->ecc.write_oob = mxs_nand_ecc_write_oob; |
| |
| nand->ecc.layout = &fake_ecc_layout; |
| nand->ecc.mode = NAND_ECC_HW; |
| nand->ecc.bytes = 9; |
| nand->ecc.size = 512; |
| nand->ecc.strength = 8; |
| |
| return 0; |
| |
| err2: |
| free(nand_info->data_buf); |
| free(nand_info->cmd_buf); |
| err1: |
| free(nand_info); |
| return err; |
| } |