blob: a78ffbb674e37ca68cde812355b8fc578dc7e506 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* K3: Architecture initialization
*
* Copyright (C) 2017-2018 Texas Instruments Incorporated - http://www.ti.com/
* Lokesh Vutla <lokeshvutla@ti.com>
*/
#include <common.h>
#include <asm/io.h>
#include <spl.h>
#include <asm/arch/hardware.h>
#include <asm/arch/sysfw-loader.h>
#include <asm/arch/sys_proto.h>
#include "common.h"
#include <dm.h>
#include <dm/uclass-internal.h>
#include <dm/pinctrl.h>
#include <linux/soc/ti/ti_sci_protocol.h>
#ifdef CONFIG_SPL_BUILD
static void mmr_unlock(u32 base, u32 partition)
{
/* Translate the base address */
phys_addr_t part_base = base + partition * CTRL_MMR0_PARTITION_SIZE;
/* Unlock the requested partition if locked using two-step sequence */
writel(CTRLMMR_LOCK_KICK0_UNLOCK_VAL, part_base + CTRLMMR_LOCK_KICK0);
writel(CTRLMMR_LOCK_KICK1_UNLOCK_VAL, part_base + CTRLMMR_LOCK_KICK1);
}
static void ctrl_mmr_unlock(void)
{
/* Unlock all WKUP_CTRL_MMR0 module registers */
mmr_unlock(WKUP_CTRL_MMR0_BASE, 0);
mmr_unlock(WKUP_CTRL_MMR0_BASE, 1);
mmr_unlock(WKUP_CTRL_MMR0_BASE, 2);
mmr_unlock(WKUP_CTRL_MMR0_BASE, 3);
mmr_unlock(WKUP_CTRL_MMR0_BASE, 6);
mmr_unlock(WKUP_CTRL_MMR0_BASE, 7);
/* Unlock all MCU_CTRL_MMR0 module registers */
mmr_unlock(MCU_CTRL_MMR0_BASE, 0);
mmr_unlock(MCU_CTRL_MMR0_BASE, 1);
mmr_unlock(MCU_CTRL_MMR0_BASE, 2);
mmr_unlock(MCU_CTRL_MMR0_BASE, 6);
/* Unlock all CTRL_MMR0 module registers */
mmr_unlock(CTRL_MMR0_BASE, 0);
mmr_unlock(CTRL_MMR0_BASE, 1);
mmr_unlock(CTRL_MMR0_BASE, 2);
mmr_unlock(CTRL_MMR0_BASE, 3);
mmr_unlock(CTRL_MMR0_BASE, 6);
mmr_unlock(CTRL_MMR0_BASE, 7);
}
/*
* This uninitialized global variable would normal end up in the .bss section,
* but the .bss is cleared between writing and reading this variable, so move
* it to the .data section.
*/
u32 bootindex __attribute__((section(".data")));
static void store_boot_index_from_rom(void)
{
bootindex = *(u32 *)(CONFIG_SYS_K3_BOOT_PARAM_TABLE_INDEX);
}
void board_init_f(ulong dummy)
{
#if defined(CONFIG_K3_LOAD_SYSFW) || defined(CONFIG_K3_AM654_DDRSS)
struct udevice *dev;
int ret;
#endif
/*
* Cannot delay this further as there is a chance that
* K3_BOOT_PARAM_TABLE_INDEX can be over written by SPL MALLOC section.
*/
store_boot_index_from_rom();
/* Make all control module registers accessible */
ctrl_mmr_unlock();
#ifdef CONFIG_CPU_V7R
disable_linefill_optimization();
setup_k3_mpu_regions();
#endif
/* Init DM early in-order to invoke system controller */
spl_early_init();
#ifdef CONFIG_K3_LOAD_SYSFW
/*
* Process pinctrl for the serial0 a.k.a. WKUP_UART0 module and continue
* regardless of the result of pinctrl. Do this without probing the
* device, but instead by searching the device that would request the
* given sequence number if probed. The UART will be used by the system
* firmware (SYSFW) image for various purposes and SYSFW depends on us
* to initialize its pin settings.
*/
ret = uclass_find_device_by_seq(UCLASS_SERIAL, 0, true, &dev);
if (!ret)
pinctrl_select_state(dev, "default");
/*
* Load, start up, and configure system controller firmware. Provide
* the U-Boot console init function to the SYSFW post-PM configuration
* callback hook, effectively switching on (or over) the console
* output.
*/
k3_sysfw_loader(preloader_console_init);
#else
/* Prepare console output */
preloader_console_init();
#endif
/* Perform EEPROM-based board detection */
do_board_detect();
#if defined(CONFIG_CPU_V7R) && defined(CONFIG_K3_AVS0)
ret = uclass_get_device_by_driver(UCLASS_MISC, DM_GET_DRIVER(k3_avs),
&dev);
if (ret)
printf("AVS init failed: %d\n", ret);
#endif
#ifdef CONFIG_K3_AM654_DDRSS
ret = uclass_get_device(UCLASS_RAM, 0, &dev);
if (ret)
panic("DRAM init failed: %d\n", ret);
#endif
}
u32 spl_boot_mode(const u32 boot_device)
{
#if defined(CONFIG_SUPPORT_EMMC_BOOT)
u32 devstat = readl(CTRLMMR_MAIN_DEVSTAT);
u32 bootmode = (devstat & CTRLMMR_MAIN_DEVSTAT_BOOTMODE_MASK) >>
CTRLMMR_MAIN_DEVSTAT_BOOTMODE_SHIFT;
/* eMMC boot0 mode is only supported for primary boot */
if (bootindex == K3_PRIMARY_BOOTMODE &&
bootmode == BOOT_DEVICE_MMC1)
return MMCSD_MODE_EMMCBOOT;
#endif
/* Everything else use filesystem if available */
#if defined(CONFIG_SPL_FS_FAT) || defined(CONFIG_SPL_FS_EXT4)
return MMCSD_MODE_FS;
#else
return MMCSD_MODE_RAW;
#endif
}
static u32 __get_backup_bootmedia(u32 devstat)
{
u32 bkup_boot = (devstat & CTRLMMR_MAIN_DEVSTAT_BKUP_BOOTMODE_MASK) >>
CTRLMMR_MAIN_DEVSTAT_BKUP_BOOTMODE_SHIFT;
switch (bkup_boot) {
case BACKUP_BOOT_DEVICE_USB:
return BOOT_DEVICE_USB;
case BACKUP_BOOT_DEVICE_UART:
return BOOT_DEVICE_UART;
case BACKUP_BOOT_DEVICE_ETHERNET:
return BOOT_DEVICE_ETHERNET;
case BACKUP_BOOT_DEVICE_MMC2:
{
u32 port = (devstat & CTRLMMR_MAIN_DEVSTAT_BKUP_MMC_PORT_MASK) >>
CTRLMMR_MAIN_DEVSTAT_BKUP_MMC_PORT_SHIFT;
if (port == 0x0)
return BOOT_DEVICE_MMC1;
return BOOT_DEVICE_MMC2;
}
case BACKUP_BOOT_DEVICE_SPI:
return BOOT_DEVICE_SPI;
case BACKUP_BOOT_DEVICE_HYPERFLASH:
return BOOT_DEVICE_HYPERFLASH;
case BACKUP_BOOT_DEVICE_I2C:
return BOOT_DEVICE_I2C;
};
return BOOT_DEVICE_RAM;
}
static u32 __get_primary_bootmedia(u32 devstat)
{
u32 bootmode = (devstat & CTRLMMR_MAIN_DEVSTAT_BOOTMODE_MASK) >>
CTRLMMR_MAIN_DEVSTAT_BOOTMODE_SHIFT;
if (bootmode == BOOT_DEVICE_OSPI || bootmode == BOOT_DEVICE_QSPI)
bootmode = BOOT_DEVICE_SPI;
if (bootmode == BOOT_DEVICE_MMC2) {
u32 port = (devstat & CTRLMMR_MAIN_DEVSTAT_MMC_PORT_MASK) >>
CTRLMMR_MAIN_DEVSTAT_MMC_PORT_SHIFT;
if (port == 0x0)
bootmode = BOOT_DEVICE_MMC1;
} else if (bootmode == BOOT_DEVICE_MMC1) {
u32 port = (devstat & CTRLMMR_MAIN_DEVSTAT_EMMC_PORT_MASK) >>
CTRLMMR_MAIN_DEVSTAT_EMMC_PORT_SHIFT;
if (port == 0x1)
bootmode = BOOT_DEVICE_MMC2;
}
return bootmode;
}
u32 spl_boot_device(void)
{
u32 devstat = readl(CTRLMMR_MAIN_DEVSTAT);
if (bootindex == K3_PRIMARY_BOOTMODE)
return __get_primary_bootmedia(devstat);
else
return __get_backup_bootmedia(devstat);
}
#endif
#ifdef CONFIG_SYS_K3_SPL_ATF
#define AM6_DEV_MCU_RTI0 134
#define AM6_DEV_MCU_RTI1 135
#define AM6_DEV_MCU_ARMSS0_CPU0 159
#define AM6_DEV_MCU_ARMSS0_CPU1 245
void release_resources_for_core_shutdown(void)
{
struct ti_sci_handle *ti_sci = get_ti_sci_handle();
struct ti_sci_dev_ops *dev_ops = &ti_sci->ops.dev_ops;
struct ti_sci_proc_ops *proc_ops = &ti_sci->ops.proc_ops;
int ret;
u32 i;
const u32 put_device_ids[] = {
AM6_DEV_MCU_RTI0,
AM6_DEV_MCU_RTI1,
};
/* Iterate through list of devices to put (shutdown) */
for (i = 0; i < ARRAY_SIZE(put_device_ids); i++) {
u32 id = put_device_ids[i];
ret = dev_ops->put_device(ti_sci, id);
if (ret)
panic("Failed to put device %u (%d)\n", id, ret);
}
const u32 put_core_ids[] = {
AM6_DEV_MCU_ARMSS0_CPU1,
AM6_DEV_MCU_ARMSS0_CPU0, /* Handle CPU0 after CPU1 */
};
/* Iterate through list of cores to put (shutdown) */
for (i = 0; i < ARRAY_SIZE(put_core_ids); i++) {
u32 id = put_core_ids[i];
/*
* Queue up the core shutdown request. Note that this call
* needs to be followed up by an actual invocation of an WFE
* or WFI CPU instruction.
*/
ret = proc_ops->proc_shutdown_no_wait(ti_sci, id);
if (ret)
panic("Failed sending core %u shutdown message (%d)\n",
id, ret);
}
}
#endif