blob: ccf4da3177c227bf9bccbbed3bee07a6a0c598c4 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* BTRFS filesystem implementation for U-Boot
*
* 2017 Marek Behun, CZ.NIC, marek.behun@nic.cz
*/
#include <linux/kernel.h>
#include <linux/bug.h>
#include <malloc.h>
#include <memalign.h>
#include "btrfs.h"
#include "ctree.h"
#include "extent-io.h"
#include "disk-io.h"
u64 __btrfs_read_extent_inline(struct __btrfs_path *path,
struct btrfs_file_extent_item *extent, u64 offset,
u64 size, char *out)
{
u32 clen, dlen, orig_size = size, res;
const char *cbuf;
char *dbuf;
const int data_off = offsetof(struct btrfs_file_extent_item,
disk_bytenr);
clen = btrfs_path_item_size(path) - data_off;
cbuf = (const char *) extent + data_off;
dlen = extent->ram_bytes;
if (offset > dlen)
return -1ULL;
if (size > dlen - offset)
size = dlen - offset;
if (extent->compression == BTRFS_COMPRESS_NONE) {
memcpy(out, cbuf + offset, size);
return size;
}
if (dlen > orig_size) {
dbuf = malloc(dlen);
if (!dbuf)
return -1ULL;
} else {
dbuf = out;
}
res = btrfs_decompress(extent->compression, cbuf, clen, dbuf, dlen);
if (res == -1 || res != dlen)
goto err;
if (dlen > orig_size) {
memcpy(out, dbuf + offset, size);
free(dbuf);
} else if (offset) {
memmove(out, dbuf + offset, size);
}
return size;
err:
if (dlen > orig_size)
free(dbuf);
return -1ULL;
}
u64 __btrfs_read_extent_reg(struct __btrfs_path *path,
struct btrfs_file_extent_item *extent, u64 offset,
u64 size, char *out)
{
u64 physical, clen, dlen, orig_size = size;
u32 res;
char *cbuf, *dbuf;
clen = extent->disk_num_bytes;
dlen = extent->num_bytes;
if (offset > dlen)
return -1ULL;
if (size > dlen - offset)
size = dlen - offset;
/* sparse extent */
if (extent->disk_bytenr == 0) {
memset(out, 0, size);
return size;
}
physical = btrfs_map_logical_to_physical(extent->disk_bytenr);
if (physical == -1ULL)
return -1ULL;
if (extent->compression == BTRFS_COMPRESS_NONE) {
physical += extent->offset + offset;
if (!btrfs_devread(physical, size, out))
return -1ULL;
return size;
}
cbuf = malloc_cache_aligned(dlen > size ? clen + dlen : clen);
if (!cbuf)
return -1ULL;
if (dlen > orig_size)
dbuf = cbuf + clen;
else
dbuf = out;
if (!btrfs_devread(physical, clen, cbuf))
goto err;
res = btrfs_decompress(extent->compression, cbuf, clen, dbuf, dlen);
if (res == -1)
goto err;
if (dlen > orig_size)
memcpy(out, dbuf + offset, size);
else
memmove(out, dbuf + offset, size);
free(cbuf);
return res;
err:
free(cbuf);
return -1ULL;
}
void extent_io_tree_init(struct extent_io_tree *tree)
{
cache_tree_init(&tree->state);
cache_tree_init(&tree->cache);
tree->cache_size = 0;
}
static struct extent_state *alloc_extent_state(void)
{
struct extent_state *state;
state = malloc(sizeof(*state));
if (!state)
return NULL;
state->cache_node.objectid = 0;
state->refs = 1;
state->state = 0;
state->xprivate = 0;
return state;
}
static void btrfs_free_extent_state(struct extent_state *state)
{
state->refs--;
BUG_ON(state->refs < 0);
if (state->refs == 0)
free(state);
}
static void free_extent_state_func(struct cache_extent *cache)
{
struct extent_state *es;
es = container_of(cache, struct extent_state, cache_node);
btrfs_free_extent_state(es);
}
static void free_extent_buffer_final(struct extent_buffer *eb);
void extent_io_tree_cleanup(struct extent_io_tree *tree)
{
cache_tree_free_extents(&tree->state, free_extent_state_func);
}
static inline void update_extent_state(struct extent_state *state)
{
state->cache_node.start = state->start;
state->cache_node.size = state->end + 1 - state->start;
}
/*
* Utility function to look for merge candidates inside a given range.
* Any extents with matching state are merged together into a single
* extent in the tree. Extents with EXTENT_IO in their state field are
* not merged
*/
static int merge_state(struct extent_io_tree *tree,
struct extent_state *state)
{
struct extent_state *other;
struct cache_extent *other_node;
if (state->state & EXTENT_IOBITS)
return 0;
other_node = prev_cache_extent(&state->cache_node);
if (other_node) {
other = container_of(other_node, struct extent_state,
cache_node);
if (other->end == state->start - 1 &&
other->state == state->state) {
state->start = other->start;
update_extent_state(state);
remove_cache_extent(&tree->state, &other->cache_node);
btrfs_free_extent_state(other);
}
}
other_node = next_cache_extent(&state->cache_node);
if (other_node) {
other = container_of(other_node, struct extent_state,
cache_node);
if (other->start == state->end + 1 &&
other->state == state->state) {
other->start = state->start;
update_extent_state(other);
remove_cache_extent(&tree->state, &state->cache_node);
btrfs_free_extent_state(state);
}
}
return 0;
}
/*
* insert an extent_state struct into the tree. 'bits' are set on the
* struct before it is inserted.
*/
static int insert_state(struct extent_io_tree *tree,
struct extent_state *state, u64 start, u64 end,
int bits)
{
int ret;
BUG_ON(end < start);
state->state |= bits;
state->start = start;
state->end = end;
update_extent_state(state);
ret = insert_cache_extent(&tree->state, &state->cache_node);
BUG_ON(ret);
merge_state(tree, state);
return 0;
}
/*
* split a given extent state struct in two, inserting the preallocated
* struct 'prealloc' as the newly created second half. 'split' indicates an
* offset inside 'orig' where it should be split.
*/
static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
struct extent_state *prealloc, u64 split)
{
int ret;
prealloc->start = orig->start;
prealloc->end = split - 1;
prealloc->state = orig->state;
update_extent_state(prealloc);
orig->start = split;
update_extent_state(orig);
ret = insert_cache_extent(&tree->state, &prealloc->cache_node);
BUG_ON(ret);
return 0;
}
/*
* clear some bits on a range in the tree.
*/
static int clear_state_bit(struct extent_io_tree *tree,
struct extent_state *state, int bits)
{
int ret = state->state & bits;
state->state &= ~bits;
if (state->state == 0) {
remove_cache_extent(&tree->state, &state->cache_node);
btrfs_free_extent_state(state);
} else {
merge_state(tree, state);
}
return ret;
}
/*
* extent_buffer_bitmap_set - set an area of a bitmap
* @eb: the extent buffer
* @start: offset of the bitmap item in the extent buffer
* @pos: bit number of the first bit
* @len: number of bits to set
*/
void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
unsigned long pos, unsigned long len)
{
u8 *p = (u8 *)eb->data + start + BIT_BYTE(pos);
const unsigned int size = pos + len;
int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
while (len >= bits_to_set) {
*p |= mask_to_set;
len -= bits_to_set;
bits_to_set = BITS_PER_BYTE;
mask_to_set = ~0;
p++;
}
if (len) {
mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
*p |= mask_to_set;
}
}
/*
* extent_buffer_bitmap_clear - clear an area of a bitmap
* @eb: the extent buffer
* @start: offset of the bitmap item in the extent buffer
* @pos: bit number of the first bit
* @len: number of bits to clear
*/
void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
unsigned long pos, unsigned long len)
{
u8 *p = (u8 *)eb->data + start + BIT_BYTE(pos);
const unsigned int size = pos + len;
int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
while (len >= bits_to_clear) {
*p &= ~mask_to_clear;
len -= bits_to_clear;
bits_to_clear = BITS_PER_BYTE;
mask_to_clear = ~0;
p++;
}
if (len) {
mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
*p &= ~mask_to_clear;
}
}
/*
* clear some bits on a range in the tree.
*/
int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, int bits)
{
struct extent_state *state;
struct extent_state *prealloc = NULL;
struct cache_extent *node;
u64 last_end;
int err;
int set = 0;
again:
if (!prealloc) {
prealloc = alloc_extent_state();
if (!prealloc)
return -ENOMEM;
}
/*
* this search will find the extents that end after
* our range starts
*/
node = search_cache_extent(&tree->state, start);
if (!node)
goto out;
state = container_of(node, struct extent_state, cache_node);
if (state->start > end)
goto out;
last_end = state->end;
/*
* | ---- desired range ---- |
* | state | or
* | ------------- state -------------- |
*
* We need to split the extent we found, and may flip
* bits on second half.
*
* If the extent we found extends past our range, we
* just split and search again. It'll get split again
* the next time though.
*
* If the extent we found is inside our range, we clear
* the desired bit on it.
*/
if (state->start < start) {
err = split_state(tree, state, prealloc, start);
BUG_ON(err == -EEXIST);
prealloc = NULL;
if (err)
goto out;
if (state->end <= end) {
set |= clear_state_bit(tree, state, bits);
if (last_end == (u64)-1)
goto out;
start = last_end + 1;
} else {
start = state->start;
}
goto search_again;
}
/*
* | ---- desired range ---- |
* | state |
* We need to split the extent, and clear the bit
* on the first half
*/
if (state->start <= end && state->end > end) {
err = split_state(tree, state, prealloc, end + 1);
BUG_ON(err == -EEXIST);
set |= clear_state_bit(tree, prealloc, bits);
prealloc = NULL;
goto out;
}
start = state->end + 1;
set |= clear_state_bit(tree, state, bits);
if (last_end == (u64)-1)
goto out;
start = last_end + 1;
goto search_again;
out:
if (prealloc)
btrfs_free_extent_state(prealloc);
return set;
search_again:
if (start > end)
goto out;
goto again;
}
/*
* set some bits on a range in the tree.
*/
int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, int bits)
{
struct extent_state *state;
struct extent_state *prealloc = NULL;
struct cache_extent *node;
int err = 0;
u64 last_start;
u64 last_end;
again:
if (!prealloc) {
prealloc = alloc_extent_state();
if (!prealloc)
return -ENOMEM;
}
/*
* this search will find the extents that end after
* our range starts
*/
node = search_cache_extent(&tree->state, start);
if (!node) {
err = insert_state(tree, prealloc, start, end, bits);
BUG_ON(err == -EEXIST);
prealloc = NULL;
goto out;
}
state = container_of(node, struct extent_state, cache_node);
last_start = state->start;
last_end = state->end;
/*
* | ---- desired range ---- |
* | state |
*
* Just lock what we found and keep going
*/
if (state->start == start && state->end <= end) {
state->state |= bits;
merge_state(tree, state);
if (last_end == (u64)-1)
goto out;
start = last_end + 1;
goto search_again;
}
/*
* | ---- desired range ---- |
* | state |
* or
* | ------------- state -------------- |
*
* We need to split the extent we found, and may flip bits on
* second half.
*
* If the extent we found extends past our
* range, we just split and search again. It'll get split
* again the next time though.
*
* If the extent we found is inside our range, we set the
* desired bit on it.
*/
if (state->start < start) {
err = split_state(tree, state, prealloc, start);
BUG_ON(err == -EEXIST);
prealloc = NULL;
if (err)
goto out;
if (state->end <= end) {
state->state |= bits;
start = state->end + 1;
merge_state(tree, state);
if (last_end == (u64)-1)
goto out;
start = last_end + 1;
} else {
start = state->start;
}
goto search_again;
}
/*
* | ---- desired range ---- |
* | state | or | state |
*
* There's a hole, we need to insert something in it and
* ignore the extent we found.
*/
if (state->start > start) {
u64 this_end;
if (end < last_start)
this_end = end;
else
this_end = last_start -1;
err = insert_state(tree, prealloc, start, this_end,
bits);
BUG_ON(err == -EEXIST);
prealloc = NULL;
if (err)
goto out;
start = this_end + 1;
goto search_again;
}
/*
* | ---- desired range ---- |
* | ---------- state ---------- |
* We need to split the extent, and set the bit
* on the first half
*/
err = split_state(tree, state, prealloc, end + 1);
BUG_ON(err == -EEXIST);
state->state |= bits;
merge_state(tree, prealloc);
prealloc = NULL;
out:
if (prealloc)
btrfs_free_extent_state(prealloc);
return err;
search_again:
if (start > end)
goto out;
goto again;
}
int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end)
{
return set_extent_bits(tree, start, end, EXTENT_DIRTY);
}
int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end)
{
return clear_extent_bits(tree, start, end, EXTENT_DIRTY);
}
int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
u64 *start_ret, u64 *end_ret, int bits)
{
struct cache_extent *node;
struct extent_state *state;
int ret = 1;
/*
* this search will find all the extents that end after
* our range starts.
*/
node = search_cache_extent(&tree->state, start);
if (!node)
goto out;
while(1) {
state = container_of(node, struct extent_state, cache_node);
if (state->end >= start && (state->state & bits)) {
*start_ret = state->start;
*end_ret = state->end;
ret = 0;
break;
}
node = next_cache_extent(node);
if (!node)
break;
}
out:
return ret;
}
int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
int bits, int filled)
{
struct extent_state *state = NULL;
struct cache_extent *node;
int bitset = 0;
node = search_cache_extent(&tree->state, start);
while (node && start <= end) {
state = container_of(node, struct extent_state, cache_node);
if (filled && state->start > start) {
bitset = 0;
break;
}
if (state->start > end)
break;
if (state->state & bits) {
bitset = 1;
if (!filled)
break;
} else if (filled) {
bitset = 0;
break;
}
start = state->end + 1;
if (start > end)
break;
node = next_cache_extent(node);
if (!node) {
if (filled)
bitset = 0;
break;
}
}
return bitset;
}
int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
{
struct cache_extent *node;
struct extent_state *state;
int ret = 0;
node = search_cache_extent(&tree->state, start);
if (!node) {
ret = -ENOENT;
goto out;
}
state = container_of(node, struct extent_state, cache_node);
if (state->start != start) {
ret = -ENOENT;
goto out;
}
state->xprivate = private;
out:
return ret;
}
int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
{
struct cache_extent *node;
struct extent_state *state;
int ret = 0;
node = search_cache_extent(&tree->state, start);
if (!node) {
ret = -ENOENT;
goto out;
}
state = container_of(node, struct extent_state, cache_node);
if (state->start != start) {
ret = -ENOENT;
goto out;
}
*private = state->xprivate;
out:
return ret;
}
static struct extent_buffer *__alloc_extent_buffer(struct btrfs_fs_info *info,
u64 bytenr, u32 blocksize)
{
struct extent_buffer *eb;
eb = calloc(1, sizeof(struct extent_buffer));
if (!eb)
return NULL;
eb->data = malloc_cache_aligned(blocksize);
if (!eb->data) {
free(eb);
return NULL;
}
eb->start = bytenr;
eb->len = blocksize;
eb->refs = 1;
eb->flags = 0;
eb->cache_node.start = bytenr;
eb->cache_node.size = blocksize;
eb->fs_info = info;
memset_extent_buffer(eb, 0, 0, blocksize);
return eb;
}
struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
{
struct extent_buffer *new;
new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
if (!new)
return NULL;
copy_extent_buffer(new, src, 0, 0, src->len);
new->flags |= EXTENT_BUFFER_DUMMY;
return new;
}
static void free_extent_buffer_final(struct extent_buffer *eb)
{
BUG_ON(eb->refs);
if (!(eb->flags & EXTENT_BUFFER_DUMMY)) {
struct extent_io_tree *tree = &eb->fs_info->extent_cache;
remove_cache_extent(&tree->cache, &eb->cache_node);
BUG_ON(tree->cache_size < eb->len);
tree->cache_size -= eb->len;
}
free(eb->data);
free(eb);
}
static void free_extent_buffer_internal(struct extent_buffer *eb, bool free_now)
{
if (!eb || IS_ERR(eb))
return;
eb->refs--;
BUG_ON(eb->refs < 0);
if (eb->refs == 0) {
if (eb->flags & EXTENT_DIRTY) {
error(
"dirty eb leak (aborted trans): start %llu len %u",
eb->start, eb->len);
}
if (eb->flags & EXTENT_BUFFER_DUMMY || free_now)
free_extent_buffer_final(eb);
}
}
void free_extent_buffer(struct extent_buffer *eb)
{
free_extent_buffer_internal(eb, 1);
}
struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
u64 bytenr, u32 blocksize)
{
struct extent_buffer *eb = NULL;
struct cache_extent *cache;
cache = lookup_cache_extent(&tree->cache, bytenr, blocksize);
if (cache && cache->start == bytenr &&
cache->size == blocksize) {
eb = container_of(cache, struct extent_buffer, cache_node);
eb->refs++;
}
return eb;
}
struct extent_buffer *find_first_extent_buffer(struct extent_io_tree *tree,
u64 start)
{
struct extent_buffer *eb = NULL;
struct cache_extent *cache;
cache = search_cache_extent(&tree->cache, start);
if (cache) {
eb = container_of(cache, struct extent_buffer, cache_node);
eb->refs++;
}
return eb;
}
struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
u64 bytenr, u32 blocksize)
{
struct extent_buffer *eb;
struct extent_io_tree *tree = &fs_info->extent_cache;
struct cache_extent *cache;
cache = lookup_cache_extent(&tree->cache, bytenr, blocksize);
if (cache && cache->start == bytenr &&
cache->size == blocksize) {
eb = container_of(cache, struct extent_buffer, cache_node);
eb->refs++;
} else {
int ret;
if (cache) {
eb = container_of(cache, struct extent_buffer,
cache_node);
free_extent_buffer(eb);
}
eb = __alloc_extent_buffer(fs_info, bytenr, blocksize);
if (!eb)
return NULL;
ret = insert_cache_extent(&tree->cache, &eb->cache_node);
if (ret) {
free(eb);
return NULL;
}
tree->cache_size += blocksize;
}
return eb;
}
/*
* Allocate a dummy extent buffer which won't be inserted into extent buffer
* cache.
*
* This mostly allows super block read write using existing eb infrastructure
* without pulluting the eb cache.
*
* This is especially important to avoid injecting eb->start == SZ_64K, as
* fuzzed image could have invalid tree bytenr covers super block range,
* and cause ref count underflow.
*/
struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
u64 bytenr, u32 blocksize)
{
struct extent_buffer *ret;
ret = __alloc_extent_buffer(fs_info, bytenr, blocksize);
if (!ret)
return NULL;
ret->flags |= EXTENT_BUFFER_DUMMY;
return ret;
}
int read_extent_from_disk(struct blk_desc *desc, struct disk_partition *part,
u64 physical, struct extent_buffer *eb,
unsigned long offset, unsigned long len)
{
int ret;
ret = __btrfs_devread(desc, part, eb->data + offset, len, physical);
if (ret < 0)
goto out;
if (ret != len) {
ret = -EIO;
goto out;
}
ret = 0;
out:
return ret;
}
int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
unsigned long start, unsigned long len)
{
return memcmp(eb->data + start, ptrv, len);
}
void read_extent_buffer(const struct extent_buffer *eb, void *dst,
unsigned long start, unsigned long len)
{
memcpy(dst, eb->data + start, len);
}
void write_extent_buffer(struct extent_buffer *eb, const void *src,
unsigned long start, unsigned long len)
{
memcpy(eb->data + start, src, len);
}
void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
unsigned long dst_offset, unsigned long src_offset,
unsigned long len)
{
memcpy(dst->data + dst_offset, src->data + src_offset, len);
}
void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
unsigned long src_offset, unsigned long len)
{
memmove(dst->data + dst_offset, dst->data + src_offset, len);
}
void memset_extent_buffer(struct extent_buffer *eb, char c,
unsigned long start, unsigned long len)
{
memset(eb->data + start, c, len);
}
int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
unsigned long nr)
{
return le_test_bit(nr, (u8 *)eb->data + start);
}
int set_extent_buffer_dirty(struct extent_buffer *eb)
{
struct extent_io_tree *tree = &eb->fs_info->extent_cache;
if (!(eb->flags & EXTENT_DIRTY)) {
eb->flags |= EXTENT_DIRTY;
set_extent_dirty(tree, eb->start, eb->start + eb->len - 1);
extent_buffer_get(eb);
}
return 0;
}
int clear_extent_buffer_dirty(struct extent_buffer *eb)
{
struct extent_io_tree *tree = &eb->fs_info->extent_cache;
if (eb->flags & EXTENT_DIRTY) {
eb->flags &= ~EXTENT_DIRTY;
clear_extent_dirty(tree, eb->start, eb->start + eb->len - 1);
free_extent_buffer(eb);
}
return 0;
}