| // SPDX-License-Identifier: CC0-1.0 |
| /* Based on libxcrypt v4.4.17-0-g6b110bc */ |
| /* One way encryption based on the SHA256-based Unix crypt implementation. |
| * |
| * Written by Ulrich Drepper <drepper at redhat.com> in 2007 [1]. |
| * Modified by Zack Weinberg <zackw at panix.com> in 2017, 2018. |
| * Composed by Björn Esser <besser82 at fedoraproject.org> in 2018. |
| * Modified by Björn Esser <besser82 at fedoraproject.org> in 2020. |
| * Modified by Steffen Jaeckel <jaeckel-floss at eyet-services.de> in 2021 |
| * for U-Boot, instead of using the global errno to use a static one |
| * inside this file. |
| * To the extent possible under law, the named authors have waived all |
| * copyright and related or neighboring rights to this work. |
| * |
| * See https://creativecommons.org/publicdomain/zero/1.0/ for further |
| * details. |
| * |
| * This file is a modified except from [2], lines 648 up to 909. |
| * |
| * [1] https://www.akkadia.org/drepper/sha-crypt.html |
| * [2] https://www.akkadia.org/drepper/SHA-crypt.txt |
| */ |
| |
| #include "crypt-port.h" |
| #include "alg-sha256.h" |
| |
| #include <linux/errno.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| |
| #if INCLUDE_sha256crypt |
| |
| /* Define our magic string to mark salt for SHA256 "encryption" |
| replacement. */ |
| static const char sha256_salt_prefix[] = "$5$"; |
| |
| /* Prefix for optional rounds specification. */ |
| static const char sha256_rounds_prefix[] = "rounds="; |
| |
| /* Maximum salt string length. */ |
| #define SALT_LEN_MAX 16 |
| /* Default number of rounds if not explicitly specified. */ |
| #define ROUNDS_DEFAULT 5000 |
| /* Minimum number of rounds. */ |
| #define ROUNDS_MIN 1000 |
| /* Maximum number of rounds. */ |
| #define ROUNDS_MAX 999999999 |
| |
| /* The maximum possible length of a SHA256-hashed password string, |
| including the terminating NUL character. Prefix (including its NUL) |
| + rounds tag ("rounds=$" = "rounds=\0") + strlen(ROUNDS_MAX) |
| + salt (up to SALT_LEN_MAX chars) + '$' + hash (43 chars). */ |
| |
| #define LENGTH_OF_NUMBER(n) (sizeof #n - 1) |
| |
| #define SHA256_HASH_LENGTH \ |
| (sizeof (sha256_salt_prefix) + sizeof (sha256_rounds_prefix) + \ |
| LENGTH_OF_NUMBER (ROUNDS_MAX) + SALT_LEN_MAX + 1 + 43) |
| |
| static_assert (SHA256_HASH_LENGTH <= CRYPT_OUTPUT_SIZE, |
| "CRYPT_OUTPUT_SIZE is too small for SHA256"); |
| |
| /* A sha256_buffer holds all of the sensitive intermediate data. */ |
| struct sha256_buffer |
| { |
| SHA256_CTX ctx; |
| uint8_t result[32]; |
| uint8_t p_bytes[32]; |
| uint8_t s_bytes[32]; |
| }; |
| |
| static_assert (sizeof (struct sha256_buffer) <= ALG_SPECIFIC_SIZE, |
| "ALG_SPECIFIC_SIZE is too small for SHA256"); |
| |
| |
| /* Use this instead of including errno.h */ |
| static int errno; |
| |
| void crypt_sha256crypt_rn(const char *phrase, size_t phr_size, |
| const char *setting, size_t ARG_UNUSED(set_size), |
| uint8_t *output, size_t out_size, void *scratch, |
| size_t scr_size); |
| |
| int crypt_sha256crypt_rn_wrapped(const char *phrase, size_t phr_size, |
| const char *setting, size_t set_size, |
| u8 *output, size_t out_size, void *scratch, |
| size_t scr_size) |
| { |
| errno = 0; |
| crypt_sha256crypt_rn(phrase, phr_size, setting, set_size, output, |
| out_size, scratch, scr_size); |
| return -errno; |
| } |
| |
| /* Feed CTX with LEN bytes of a virtual byte sequence consisting of |
| BLOCK repeated over and over indefinitely. */ |
| static void |
| SHA256_Update_recycled (SHA256_CTX *ctx, |
| unsigned char block[32], size_t len) |
| { |
| size_t cnt; |
| for (cnt = len; cnt >= 32; cnt -= 32) |
| SHA256_Update (ctx, block, 32); |
| SHA256_Update (ctx, block, cnt); |
| } |
| |
| void |
| crypt_sha256crypt_rn (const char *phrase, size_t phr_size, |
| const char *setting, size_t ARG_UNUSED (set_size), |
| uint8_t *output, size_t out_size, |
| void *scratch, size_t scr_size) |
| { |
| /* This shouldn't ever happen, but... */ |
| if (out_size < SHA256_HASH_LENGTH |
| || scr_size < sizeof (struct sha256_buffer)) |
| { |
| errno = ERANGE; |
| return; |
| } |
| |
| struct sha256_buffer *buf = scratch; |
| SHA256_CTX *ctx = &buf->ctx; |
| uint8_t *result = buf->result; |
| uint8_t *p_bytes = buf->p_bytes; |
| uint8_t *s_bytes = buf->s_bytes; |
| char *cp = (char *)output; |
| const char *salt = setting; |
| |
| size_t salt_size; |
| size_t cnt; |
| /* Default number of rounds. */ |
| size_t rounds = ROUNDS_DEFAULT; |
| bool rounds_custom = false; |
| |
| /* Find beginning of salt string. The prefix should normally always |
| be present. Just in case it is not. */ |
| if (strncmp (sha256_salt_prefix, salt, sizeof (sha256_salt_prefix) - 1) == 0) |
| /* Skip salt prefix. */ |
| salt += sizeof (sha256_salt_prefix) - 1; |
| |
| if (strncmp (salt, sha256_rounds_prefix, sizeof (sha256_rounds_prefix) - 1) |
| == 0) |
| { |
| const char *num = salt + sizeof (sha256_rounds_prefix) - 1; |
| /* Do not allow an explicit setting of zero rounds, nor of the |
| default number of rounds, nor leading zeroes on the rounds. */ |
| if (!(*num >= '1' && *num <= '9')) |
| { |
| errno = EINVAL; |
| return; |
| } |
| |
| errno = 0; |
| char *endp; |
| rounds = strtoul (num, &endp, 10); |
| if (endp == num || *endp != '$' |
| || rounds < ROUNDS_MIN |
| || rounds > ROUNDS_MAX |
| || errno) |
| { |
| errno = EINVAL; |
| return; |
| } |
| salt = endp + 1; |
| rounds_custom = true; |
| } |
| |
| /* The salt ends at the next '$' or the end of the string. |
| Ensure ':' does not appear in the salt (it is used as a separator in /etc/passwd). |
| Also check for '\n', as in /etc/passwd the whole parameters of the user data must |
| be on a single line. */ |
| salt_size = strcspn (salt, "$:\n"); |
| if (!(salt[salt_size] == '$' || !salt[salt_size])) |
| { |
| errno = EINVAL; |
| return; |
| } |
| |
| /* Ensure we do not use more salt than SALT_LEN_MAX. */ |
| if (salt_size > SALT_LEN_MAX) |
| salt_size = SALT_LEN_MAX; |
| |
| /* Compute alternate SHA256 sum with input PHRASE, SALT, and PHRASE. The |
| final result will be added to the first context. */ |
| SHA256_Init (ctx); |
| |
| /* Add phrase. */ |
| SHA256_Update (ctx, phrase, phr_size); |
| |
| /* Add salt. */ |
| SHA256_Update (ctx, salt, salt_size); |
| |
| /* Add phrase again. */ |
| SHA256_Update (ctx, phrase, phr_size); |
| |
| /* Now get result of this (32 bytes). */ |
| SHA256_Final (result, ctx); |
| |
| /* Prepare for the real work. */ |
| SHA256_Init (ctx); |
| |
| /* Add the phrase string. */ |
| SHA256_Update (ctx, phrase, phr_size); |
| |
| /* The last part is the salt string. This must be at most 8 |
| characters and it ends at the first `$' character (for |
| compatibility with existing implementations). */ |
| SHA256_Update (ctx, salt, salt_size); |
| |
| /* Add for any character in the phrase one byte of the alternate sum. */ |
| for (cnt = phr_size; cnt > 32; cnt -= 32) |
| SHA256_Update (ctx, result, 32); |
| SHA256_Update (ctx, result, cnt); |
| |
| /* Take the binary representation of the length of the phrase and for every |
| 1 add the alternate sum, for every 0 the phrase. */ |
| for (cnt = phr_size; cnt > 0; cnt >>= 1) |
| if ((cnt & 1) != 0) |
| SHA256_Update (ctx, result, 32); |
| else |
| SHA256_Update (ctx, phrase, phr_size); |
| |
| /* Create intermediate result. */ |
| SHA256_Final (result, ctx); |
| |
| /* Start computation of P byte sequence. */ |
| SHA256_Init (ctx); |
| |
| /* For every character in the password add the entire password. */ |
| for (cnt = 0; cnt < phr_size; ++cnt) |
| SHA256_Update (ctx, phrase, phr_size); |
| |
| /* Finish the digest. */ |
| SHA256_Final (p_bytes, ctx); |
| |
| /* Start computation of S byte sequence. */ |
| SHA256_Init (ctx); |
| |
| /* For every character in the password add the entire password. */ |
| for (cnt = 0; cnt < (size_t) 16 + (size_t) result[0]; ++cnt) |
| SHA256_Update (ctx, salt, salt_size); |
| |
| /* Finish the digest. */ |
| SHA256_Final (s_bytes, ctx); |
| |
| /* Repeatedly run the collected hash value through SHA256 to burn |
| CPU cycles. */ |
| for (cnt = 0; cnt < rounds; ++cnt) |
| { |
| /* New context. */ |
| SHA256_Init (ctx); |
| |
| /* Add phrase or last result. */ |
| if ((cnt & 1) != 0) |
| SHA256_Update_recycled (ctx, p_bytes, phr_size); |
| else |
| SHA256_Update (ctx, result, 32); |
| |
| /* Add salt for numbers not divisible by 3. */ |
| if (cnt % 3 != 0) |
| SHA256_Update_recycled (ctx, s_bytes, salt_size); |
| |
| /* Add phrase for numbers not divisible by 7. */ |
| if (cnt % 7 != 0) |
| SHA256_Update_recycled (ctx, p_bytes, phr_size); |
| |
| /* Add phrase or last result. */ |
| if ((cnt & 1) != 0) |
| SHA256_Update (ctx, result, 32); |
| else |
| SHA256_Update_recycled (ctx, p_bytes, phr_size); |
| |
| /* Create intermediate result. */ |
| SHA256_Final (result, ctx); |
| } |
| |
| /* Now we can construct the result string. It consists of four |
| parts, one of which is optional. We already know that there |
| is sufficient space at CP for the longest possible result string. */ |
| memcpy (cp, sha256_salt_prefix, sizeof (sha256_salt_prefix) - 1); |
| cp += sizeof (sha256_salt_prefix) - 1; |
| |
| if (rounds_custom) |
| { |
| int n = snprintf (cp, |
| SHA256_HASH_LENGTH - (sizeof (sha256_salt_prefix) - 1), |
| "%s%zu$", sha256_rounds_prefix, rounds); |
| cp += n; |
| } |
| |
| memcpy (cp, salt, salt_size); |
| cp += salt_size; |
| *cp++ = '$'; |
| |
| #define b64_from_24bit(B2, B1, B0, N) \ |
| do { \ |
| unsigned int w = ((((unsigned int)(B2)) << 16) | \ |
| (((unsigned int)(B1)) << 8) | \ |
| ((unsigned int)(B0))); \ |
| int n = (N); \ |
| while (n-- > 0) \ |
| { \ |
| *cp++ = b64t[w & 0x3f]; \ |
| w >>= 6; \ |
| } \ |
| } while (0) |
| |
| b64_from_24bit (result[0], result[10], result[20], 4); |
| b64_from_24bit (result[21], result[1], result[11], 4); |
| b64_from_24bit (result[12], result[22], result[2], 4); |
| b64_from_24bit (result[3], result[13], result[23], 4); |
| b64_from_24bit (result[24], result[4], result[14], 4); |
| b64_from_24bit (result[15], result[25], result[5], 4); |
| b64_from_24bit (result[6], result[16], result[26], 4); |
| b64_from_24bit (result[27], result[7], result[17], 4); |
| b64_from_24bit (result[18], result[28], result[8], 4); |
| b64_from_24bit (result[9], result[19], result[29], 4); |
| b64_from_24bit (0, result[31], result[30], 3); |
| |
| *cp = '\0'; |
| } |
| |
| #ifndef NO_GENSALT |
| |
| void |
| gensalt_sha256crypt_rn (unsigned long count, |
| const uint8_t *rbytes, size_t nrbytes, |
| uint8_t *output, size_t output_size) |
| { |
| gensalt_sha_rn ('5', SALT_LEN_MAX, ROUNDS_DEFAULT, ROUNDS_MIN, ROUNDS_MAX, |
| count, rbytes, nrbytes, output, output_size); |
| } |
| |
| #endif |
| |
| #endif |