blob: 3e5959a84a37061fb7291beba6580bcf1d5131eb [file] [log] [blame]
// SPDX-License-Identifier: BSD-2-Clause
/*
* Cadence DDR Controller
*
* Copyright (C) 2015 Renesas Electronics Europe Ltd
*/
/*
* The Cadence DDR Controller has a huge number of registers that principally
* cover two aspects, DDR specific timing information and AXI bus interfacing.
* Cadence's TCL script generates all of the register values for specific
* DDR devices operating at a specific frequency. The TCL script uses Denali
* SOMA files as inputs. The tool also generates the AXI bus register values as
* well, however this driver assumes that users will want to modifiy these to
* meet a specific application's needs.
* Therefore, this driver is passed two arrays containing register values for
* the DDR device specific information, and explicity sets the AXI registers.
*
* AXI bus interfacing:
* The controller has four AXI slaves connections, and each of these can be
* programmed to accept requests from specific AXI masters (using their IDs).
* The regions of DDR that can be accessed by each AXI slave can be set such
* as to isolate DDR used by one AXI master from another. Further, the maximum
* bandwidth allocated to each AXI slave can be set.
*/
#include <common.h>
#include <linux/delay.h>
#include <linux/sizes.h>
#include <asm/io.h>
#include <wait_bit.h>
#include <renesas/ddr_ctrl.h>
/* avoid warning for real pr_debug in <linux/printk.h> */
#ifdef pr_debug
#undef pr_debug
#endif
#ifdef DEBUG
#define pr_debug(fmt, args...) printf(fmt, ##args)
#define pr_debug2(fmt, args...) printf(fmt, ##args)
#else
#define pr_debug(fmt, args...)
#define pr_debug2(fmt, args...)
#endif
#define DDR_NR_AXI_PORTS 4
#define DDR_NR_ENTRIES 16
#define DDR_START_REG (0) /* DENALI_CTL_00 */
#define DDR_CS0_MR1_REG (32 * 4) /* DENALI_CTL_32 */
#define DDR_CS0_MR2_REG (32 * 4 + 2) /* DENALI_CTL_32 */
#define DDR_CS1_MR1_REG (34 * 4 + 2) /* DENALI_CTL_34 */
#define DDR_CS1_MR2_REG (35 * 4) /* DENALI_CTL_35 */
#define DDR_ECC_ENABLE_REG (36 * 4 + 2) /* DENALI_CTL_36 */
#define DDR_ECC_DISABLE_W_UC_ERR_REG (37 * 4 + 2) /* DENALI_CTL_37 */
#define DDR_HALF_DATAPATH_REG (54 * 4) /* DENALI_CTL_54 */
#define DDR_INTERRUPT_STATUS (56 * 4) /* DENALI_CTL_56 */
#define DDR_INTERRUPT_ACK (57 * 4) /* DENALI_CTL_57 */
#define DDR_INTERRUPT_MASK (58 * 4) /* DENALI_CTL_58 */
#define DDR_CS0_ODT_MAP_REG (62 * 4 + 2) /* DENALI_CTL_62 */
#define DDR_CS1_ODT_MAP_REG (63 * 4) /* DENALI_CTL_63 */
#define DDR_ODT_TODTL_2CMD (63 * 4 + 2) /* DENALI_CTL_63 */
#define DDR_ODT_TODTH_WR (63 * 4 + 3) /* DENALI_CTL_63 */
#define DDR_ODT_TODTH_RD (64 * 4 + 0) /* DENALI_CTL_64 */
#define DDR_ODT_EN (64 * 4 + 1) /* DENALI_CTL_64 */
#define DDR_ODT_WR_TO_ODTH (64 * 4 + 2) /* DENALI_CTL_64 */
#define DDR_ODT_RD_TO_ODTH (64 * 4 + 3) /* DENALI_CTL_64 */
#define DDR_DIFF_CS_DELAY_REG (66 * 4) /* DENALI_CTL_66 */
#define DDR_SAME_CS_DELAY_REG (67 * 4) /* DENALI_CTL_67 */
#define DDR_RW_PRIORITY_REGS (87 * 4 + 2) /* DENALI_CTL_87 */
#define DDR_RW_FIFO_TYPE_REGS (88 * 4) /* DENALI_CTL_88 */
#define DDR_AXI_PORT_PROT_ENABLE_REG (90 * 4 + 3) /* DENALI_CTL_90 */
#define DDR_ADDR_RANGE_REGS (91 * 4) /* DENALI_CTL_91 */
#define DDR_RANGE_PROT_REGS (218 * 4 + 2) /* DENALI_CTL_218 */
#define DDR_ARB_CMD_Q_THRESHOLD_REG (346 * 4 + 2) /* DENALI_CTL_346 */
#define DDR_AXI_PORT_BANDWIDTH_REG (346 * 4 + 3) /* DENALI_CTL_346 */
#define DDR_OPT_RMODW_REG (372 * 4 + 3) /* DENALI_CTL_372 */
static void ddrc_writeb(u8 val, void *p)
{
pr_debug2("DDR: %p = 0x%02x\n", p, val);
writeb(val, p);
}
static void ddrc_writew(u16 val, void *p)
{
pr_debug2("DDR: %p = 0x%04x\n", p, val);
writew(val, p);
}
static void ddrc_writel(u32 val, void *p)
{
pr_debug2("DDR: %p = 0x%08x\n", p, val);
writel(val, p);
}
void cdns_ddr_set_mr1(void *base, int cs, u16 odt_impedance, u16 drive_strength)
{
void *reg;
u16 tmp;
if (cs == 0)
reg = (u8 *)base + DDR_CS0_MR1_REG;
else
reg = (u8 *)base + DDR_CS1_MR1_REG;
tmp = readw(reg);
tmp &= ~MODE_REGISTER_MASK;
tmp |= MODE_REGISTER_MR1;
tmp &= ~MR1_ODT_IMPEDANCE_MASK;
tmp |= odt_impedance;
tmp &= ~MR1_DRIVE_STRENGTH_MASK;
tmp |= drive_strength;
writew(tmp, reg);
}
void cdns_ddr_set_mr2(void *base, int cs, u16 dynamic_odt, u16 self_refresh_temp)
{
void *reg;
u16 tmp;
if (cs == 0)
reg = (u8 *)base + DDR_CS0_MR2_REG;
else
reg = (u8 *)base + DDR_CS1_MR2_REG;
tmp = readw(reg);
tmp &= ~MODE_REGISTER_MASK;
tmp |= MODE_REGISTER_MR2;
tmp &= ~MR2_DYNAMIC_ODT_MASK;
tmp |= dynamic_odt;
tmp &= ~MR2_SELF_REFRESH_TEMP_MASK;
tmp |= self_refresh_temp;
writew(tmp, reg);
}
void cdns_ddr_set_odt_map(void *base, int cs, u16 odt_map)
{
void *reg;
if (cs == 0)
reg = (u8 *)base + DDR_CS0_ODT_MAP_REG;
else
reg = (u8 *)base + DDR_CS1_ODT_MAP_REG;
writew(odt_map, reg);
}
void cdns_ddr_set_odt_times(void *base, u8 TODTL_2CMD, u8 TODTH_WR, u8 TODTH_RD,
u8 WR_TO_ODTH, u8 RD_TO_ODTH)
{
writeb(TODTL_2CMD, (u8 *)base + DDR_ODT_TODTL_2CMD);
writeb(TODTH_WR, (u8 *)base + DDR_ODT_TODTH_WR);
writeb(TODTH_RD, (u8 *)base + DDR_ODT_TODTH_RD);
writeb(1, (u8 *)base + DDR_ODT_EN);
writeb(WR_TO_ODTH, (u8 *)base + DDR_ODT_WR_TO_ODTH);
writeb(RD_TO_ODTH, (u8 *)base + DDR_ODT_RD_TO_ODTH);
}
void cdns_ddr_set_same_cs_delays(void *base, u8 r2r, u8 r2w, u8 w2r, u8 w2w)
{
u32 val = (w2w << 24) | (w2r << 16) | (r2w << 8) | r2r;
writel(val, (u8 *)base + DDR_SAME_CS_DELAY_REG);
}
void cdns_ddr_set_diff_cs_delays(void *base, u8 r2r, u8 r2w, u8 w2r, u8 w2w)
{
u32 val = (w2w << 24) | (w2r << 16) | (r2w << 8) | r2r;
writel(val, (u8 *)base + DDR_DIFF_CS_DELAY_REG);
}
void cdns_ddr_set_port_rw_priority(void *base, int port,
u8 read_pri, u8 write_pri)
{
u8 *reg8 = (u8 *)base + DDR_RW_PRIORITY_REGS;
reg8 += (port * 3);
pr_debug("%s port %d (reg8=%p, DENALI_CTL_%d)\n",
__func__, port, reg8, (reg8 - (u8 *)base) / 4);
ddrc_writeb(read_pri, reg8++);
ddrc_writeb(write_pri, reg8++);
}
/* The DDR Controller has 16 entries. Each entry can specify an allowed address
* range (with 16KB resolution) for one of the 4 AXI slave ports.
*/
void cdns_ddr_enable_port_addr_range(void *base, int port, int entry,
u32 addr_start, u32 size)
{
u32 addr_end;
u32 *reg32 = (u32 *)((u8 *)base + DDR_ADDR_RANGE_REGS);
u32 tmp;
reg32 += (port * DDR_NR_ENTRIES * 2);
reg32 += (entry * 2);
pr_debug("%s port %d, entry %d (reg32=%p, DENALI_CTL_%d)\n",
__func__, port, entry, reg32, ((u8 *)reg32 - (u8 *)base) / 4);
/* These registers represent 16KB address blocks */
addr_start /= SZ_16K;
size /= SZ_16K;
if (size)
addr_end = addr_start + size - 1;
else
addr_end = addr_start;
ddrc_writel(addr_start, reg32++);
/*
* end_addr: Ensure we only set the bottom 18-bits as DENALI_CTL_218
* also contains the AXI0 range protection bits.
*/
tmp = readl(reg32);
tmp &= ~(BIT(18) - 1);
tmp |= addr_end;
ddrc_writel(tmp, reg32);
}
void cdns_ddr_enable_addr_range(void *base, int entry,
u32 addr_start, u32 size)
{
int axi;
for (axi = 0; axi < DDR_NR_AXI_PORTS; axi++)
cdns_ddr_enable_port_addr_range(base, axi, entry,
addr_start, size);
}
void cdns_ddr_enable_port_prot(void *base, int port, int entry,
enum cdns_ddr_range_prot range_protection_bits,
u16 range_RID_check_bits,
u16 range_WID_check_bits,
u8 range_RID_check_bits_ID_lookup,
u8 range_WID_check_bits_ID_lookup)
{
/*
* Technically, the offset here points to the byte before the start of
* the range protection registers. However, all entries consist of 8
* bytes, except the first one (which is missing a padding byte) so we
* work around that subtlely.
*/
u8 *reg8 = (u8 *)base + DDR_RANGE_PROT_REGS;
reg8 += (port * DDR_NR_ENTRIES * 8);
reg8 += (entry * 8);
pr_debug("%s port %d, entry %d (reg8=%p, DENALI_CTL_%d)\n",
__func__, port, entry, reg8, (reg8 - (u8 *)base) / 4);
if (port == 0 && entry == 0)
ddrc_writeb(range_protection_bits, reg8 + 1);
else
ddrc_writeb(range_protection_bits, reg8);
ddrc_writew(range_RID_check_bits, reg8 + 2);
ddrc_writew(range_WID_check_bits, reg8 + 4);
ddrc_writeb(range_RID_check_bits_ID_lookup, reg8 + 6);
ddrc_writeb(range_WID_check_bits_ID_lookup, reg8 + 7);
}
void cdns_ddr_enable_prot(void *base, int entry,
enum cdns_ddr_range_prot range_protection_bits,
u16 range_RID_check_bits,
u16 range_WID_check_bits,
u8 range_RID_check_bits_ID_lookup,
u8 range_WID_check_bits_ID_lookup)
{
int axi;
for (axi = 0; axi < DDR_NR_AXI_PORTS; axi++)
cdns_ddr_enable_port_prot(base, axi, entry,
range_protection_bits,
range_RID_check_bits,
range_WID_check_bits,
range_RID_check_bits_ID_lookup,
range_WID_check_bits_ID_lookup);
}
void cdns_ddr_set_port_bandwidth(void *base, int port,
u8 max_percent, u8 overflow_ok)
{
u8 *reg8 = (u8 *)base + DDR_AXI_PORT_BANDWIDTH_REG;
reg8 += (port * 3);
pr_debug("%s port %d, (reg8=%p, DENALI_CTL_%d)\n",
__func__, port, reg8, (reg8 - (u8 *)base) / 4);
ddrc_writeb(max_percent, reg8++); /* Maximum bandwidth percentage */
ddrc_writeb(overflow_ok, reg8++); /* Bandwidth overflow allowed */
}
void cdns_ddr_ctrl_init(void *ddr_ctrl_basex, int async,
const u32 *reg0, const u32 *reg350,
u32 ddr_start_addr, u32 ddr_size,
int enable_ecc, int enable_8bit)
{
int i, axi, entry;
u32 *ddr_ctrl_base = (u32 *)ddr_ctrl_basex;
u8 *base8 = (u8 *)ddr_ctrl_basex;
ddrc_writel(*reg0, ddr_ctrl_base + 0);
/* 1 to 6 are read only */
for (i = 7; i <= 26; i++)
ddrc_writel(*(reg0 + i), ddr_ctrl_base + i);
/* 27 to 29 are not changed */
for (i = 30; i <= 87; i++)
ddrc_writel(*(reg0 + i), ddr_ctrl_base + i);
/* Enable/disable ECC */
if (enable_ecc) {
pr_debug("%s enabling ECC\n", __func__);
ddrc_writeb(1, base8 + DDR_ECC_ENABLE_REG);
} else {
ddrc_writeb(0, base8 + DDR_ECC_ENABLE_REG);
}
/* ECC: Disable corruption for read/modify/write operations */
ddrc_writeb(1, base8 + DDR_ECC_DISABLE_W_UC_ERR_REG);
/* Set 8/16-bit data width using reduce bit (enable half datapath)*/
if (enable_8bit) {
pr_debug("%s using 8-bit data\n", __func__);
ddrc_writeb(1, base8 + DDR_HALF_DATAPATH_REG);
} else {
ddrc_writeb(0, base8 + DDR_HALF_DATAPATH_REG);
}
/* Threshold for command queue */
ddrc_writeb(4, base8 + DDR_ARB_CMD_Q_THRESHOLD_REG);
/* AXI port protection => enable */
ddrc_writeb(0x01, base8 + DDR_AXI_PORT_PROT_ENABLE_REG);
/* Set port interface type, default port priority and bandwidths */
for (axi = 0; axi < DDR_NR_AXI_PORTS; axi++) {
/* port interface type: synchronous or asynchronous AXI clock */
u8 *fifo_reg = base8 + DDR_RW_FIFO_TYPE_REGS + (axi * 3);
if (async)
ddrc_writeb(0, fifo_reg);
else
ddrc_writeb(3, fifo_reg);
/* R/W priorities */
cdns_ddr_set_port_rw_priority(ddr_ctrl_base, axi, 2, 2);
/* AXI bandwidth */
cdns_ddr_set_port_bandwidth(ddr_ctrl_base, axi, 50, 1);
}
/*
* The hardware requires that the valid address ranges must not overlap.
* So, we initialise all address ranges to be above the DDR, length 0.
*/
for (entry = 0; entry < DDR_NR_ENTRIES; entry++)
cdns_ddr_enable_addr_range(ddr_ctrl_base, entry,
ddr_start_addr + ddr_size, 0);
for (i = 350; i <= 374; i++)
ddrc_writel(*(reg350 - 350 + i), ddr_ctrl_base + i);
/* Disable optimised read-modify-write logic */
ddrc_writeb(0, base8 + DDR_OPT_RMODW_REG);
/*
* Disable all interrupts, we are not handling them.
* For detail of the interrupt mask, ack and status bits, see the
* manual's description of the 'int_status' parameter.
*/
ddrc_writel(0, base8 + DDR_INTERRUPT_MASK);
/*
* Default settings to enable full access to the entire DDR.
* Users can set different ranges and access rights by calling these
* functions before calling cdns_ddr_ctrl_start().
*/
cdns_ddr_enable_addr_range(ddr_ctrl_base, 0,
ddr_start_addr, ddr_size);
cdns_ddr_enable_prot(ddr_ctrl_base, 0, CDNS_DDR_RANGE_PROT_BITS_FULL,
0xffff, 0xffff, 0x0f, 0x0f);
}
void cdns_ddr_ctrl_start(void *ddr_ctrl_basex)
{
u32 *ddr_ctrl_base = (u32 *)ddr_ctrl_basex;
u8 *base8 = (u8 *)ddr_ctrl_basex;
/* Start */
ddrc_writeb(1, base8 + DDR_START_REG);
/* Wait for controller to be ready (interrupt status) */
wait_for_bit_le32(base8 + DDR_INTERRUPT_STATUS, 0x100, true, 1000, false);
/* clear all interrupts */
ddrc_writel(~0, base8 + DDR_INTERRUPT_ACK);
/* Step 19 Wait 500us from MRESETB=1 */
udelay(500);
/* Step 20 tCKSRX wait (From supply stable clock for MCK) */
/* DENALI_CTL_19 TREF_ENABLE=0x1(=1), AREFRESH=0x1(=1) */
ddrc_writel(0x01000100, ddr_ctrl_base + 19);
}