| // SPDX-License-Identifier: MIT |
| /* |
| * Copyright (C) 2016 The Android Open Source Project |
| */ |
| |
| #include "avb_util.h" |
| #include <log.h> |
| #include <malloc.h> |
| |
| #include <stdarg.h> |
| |
| uint32_t avb_be32toh(uint32_t in) { |
| uint8_t* d = (uint8_t*)∈ |
| uint32_t ret; |
| ret = ((uint32_t)d[0]) << 24; |
| ret |= ((uint32_t)d[1]) << 16; |
| ret |= ((uint32_t)d[2]) << 8; |
| ret |= ((uint32_t)d[3]); |
| return ret; |
| } |
| |
| uint64_t avb_be64toh(uint64_t in) { |
| uint8_t* d = (uint8_t*)∈ |
| uint64_t ret; |
| ret = ((uint64_t)d[0]) << 56; |
| ret |= ((uint64_t)d[1]) << 48; |
| ret |= ((uint64_t)d[2]) << 40; |
| ret |= ((uint64_t)d[3]) << 32; |
| ret |= ((uint64_t)d[4]) << 24; |
| ret |= ((uint64_t)d[5]) << 16; |
| ret |= ((uint64_t)d[6]) << 8; |
| ret |= ((uint64_t)d[7]); |
| return ret; |
| } |
| |
| /* Converts a 32-bit unsigned integer from host to big-endian byte order. */ |
| uint32_t avb_htobe32(uint32_t in) { |
| union { |
| uint32_t word; |
| uint8_t bytes[4]; |
| } ret; |
| ret.bytes[0] = (in >> 24) & 0xff; |
| ret.bytes[1] = (in >> 16) & 0xff; |
| ret.bytes[2] = (in >> 8) & 0xff; |
| ret.bytes[3] = in & 0xff; |
| return ret.word; |
| } |
| |
| /* Converts a 64-bit unsigned integer from host to big-endian byte order. */ |
| uint64_t avb_htobe64(uint64_t in) { |
| union { |
| uint64_t word; |
| uint8_t bytes[8]; |
| } ret; |
| ret.bytes[0] = (in >> 56) & 0xff; |
| ret.bytes[1] = (in >> 48) & 0xff; |
| ret.bytes[2] = (in >> 40) & 0xff; |
| ret.bytes[3] = (in >> 32) & 0xff; |
| ret.bytes[4] = (in >> 24) & 0xff; |
| ret.bytes[5] = (in >> 16) & 0xff; |
| ret.bytes[6] = (in >> 8) & 0xff; |
| ret.bytes[7] = in & 0xff; |
| return ret.word; |
| } |
| |
| int avb_safe_memcmp(const void* s1, const void* s2, size_t n) { |
| const unsigned char* us1 = s1; |
| const unsigned char* us2 = s2; |
| int result = 0; |
| |
| if (0 == n) { |
| return 0; |
| } |
| |
| /* |
| * Code snippet without data-dependent branch due to Nate Lawson |
| * (nate@root.org) of Root Labs. |
| */ |
| while (n--) { |
| result |= *us1++ ^ *us2++; |
| } |
| |
| return result != 0; |
| } |
| |
| bool avb_safe_add_to(uint64_t* value, uint64_t value_to_add) { |
| uint64_t original_value; |
| |
| avb_assert(value != NULL); |
| |
| original_value = *value; |
| |
| *value += value_to_add; |
| if (*value < original_value) { |
| avb_error("Overflow when adding values.\n"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool avb_safe_add(uint64_t* out_result, uint64_t a, uint64_t b) { |
| uint64_t dummy; |
| if (out_result == NULL) { |
| out_result = &dummy; |
| } |
| *out_result = a; |
| return avb_safe_add_to(out_result, b); |
| } |
| |
| bool avb_validate_utf8(const uint8_t* data, size_t num_bytes) { |
| size_t n; |
| unsigned int num_cc; |
| |
| for (n = 0, num_cc = 0; n < num_bytes; n++) { |
| uint8_t c = data[n]; |
| |
| if (num_cc > 0) { |
| if ((c & (0x80 | 0x40)) == 0x80) { |
| /* 10xx xxxx */ |
| } else { |
| goto fail; |
| } |
| num_cc--; |
| } else { |
| if (c < 0x80) { |
| num_cc = 0; |
| } else if ((c & (0x80 | 0x40 | 0x20)) == (0x80 | 0x40)) { |
| /* 110x xxxx */ |
| num_cc = 1; |
| } else if ((c & (0x80 | 0x40 | 0x20 | 0x10)) == (0x80 | 0x40 | 0x20)) { |
| /* 1110 xxxx */ |
| num_cc = 2; |
| } else if ((c & (0x80 | 0x40 | 0x20 | 0x10 | 0x08)) == |
| (0x80 | 0x40 | 0x20 | 0x10)) { |
| /* 1111 0xxx */ |
| num_cc = 3; |
| } else { |
| goto fail; |
| } |
| } |
| } |
| |
| if (num_cc != 0) { |
| goto fail; |
| } |
| |
| return true; |
| |
| fail: |
| return false; |
| } |
| |
| bool avb_str_concat(char* buf, |
| size_t buf_size, |
| const char* str1, |
| size_t str1_len, |
| const char* str2, |
| size_t str2_len) { |
| uint64_t combined_len; |
| |
| if (!avb_safe_add(&combined_len, str1_len, str2_len)) { |
| avb_error("Overflow when adding string sizes.\n"); |
| return false; |
| } |
| |
| if (combined_len > buf_size - 1) { |
| avb_error("Insufficient buffer space.\n"); |
| return false; |
| } |
| |
| avb_memcpy(buf, str1, str1_len); |
| avb_memcpy(buf + str1_len, str2, str2_len); |
| buf[combined_len] = '\0'; |
| |
| return true; |
| } |
| |
| void* avb_malloc(size_t size) { |
| void* ret = avb_malloc_(size); |
| if (ret == NULL) { |
| avb_error("Failed to allocate memory.\n"); |
| return NULL; |
| } |
| return ret; |
| } |
| |
| void* avb_calloc(size_t size) { |
| void* ret = avb_malloc(size); |
| if (ret == NULL) { |
| return NULL; |
| } |
| |
| avb_memset(ret, '\0', size); |
| return ret; |
| } |
| |
| char* avb_strdup(const char* str) { |
| size_t len = avb_strlen(str); |
| char* ret = avb_malloc(len + 1); |
| if (ret == NULL) { |
| return NULL; |
| } |
| |
| avb_memcpy(ret, str, len); |
| ret[len] = '\0'; |
| |
| return ret; |
| } |
| |
| const char* avb_strstr(const char* haystack, const char* needle) { |
| size_t n, m; |
| |
| /* Look through |haystack| and check if the first character of |
| * |needle| matches. If so, check the rest of |needle|. |
| */ |
| for (n = 0; haystack[n] != '\0'; n++) { |
| if (haystack[n] != needle[0]) { |
| continue; |
| } |
| |
| for (m = 1;; m++) { |
| if (needle[m] == '\0') { |
| return haystack + n; |
| } |
| |
| if (haystack[n + m] != needle[m]) { |
| break; |
| } |
| } |
| } |
| |
| return NULL; |
| } |
| |
| const char* avb_strv_find_str(const char* const* strings, |
| const char* str, |
| size_t str_size) { |
| size_t n; |
| for (n = 0; strings[n] != NULL; n++) { |
| if (avb_strlen(strings[n]) == str_size && |
| avb_memcmp(strings[n], str, str_size) == 0) { |
| return strings[n]; |
| } |
| } |
| return NULL; |
| } |
| |
| char* avb_replace(const char* str, const char* search, const char* replace) { |
| char* ret = NULL; |
| size_t ret_len = 0; |
| size_t search_len, replace_len; |
| const char* str_after_last_replace; |
| |
| search_len = avb_strlen(search); |
| replace_len = avb_strlen(replace); |
| |
| str_after_last_replace = str; |
| while (*str != '\0') { |
| const char* s; |
| size_t num_before; |
| size_t num_new; |
| |
| s = avb_strstr(str, search); |
| if (s == NULL) { |
| break; |
| } |
| |
| num_before = s - str; |
| |
| if (ret == NULL) { |
| num_new = num_before + replace_len + 1; |
| ret = avb_malloc(num_new); |
| if (ret == NULL) { |
| goto out; |
| } |
| avb_memcpy(ret, str, num_before); |
| avb_memcpy(ret + num_before, replace, replace_len); |
| ret[num_new - 1] = '\0'; |
| ret_len = num_new - 1; |
| } else { |
| char* new_str; |
| num_new = ret_len + num_before + replace_len + 1; |
| new_str = avb_malloc(num_new); |
| if (new_str == NULL) { |
| goto out; |
| } |
| avb_memcpy(new_str, ret, ret_len); |
| avb_memcpy(new_str + ret_len, str, num_before); |
| avb_memcpy(new_str + ret_len + num_before, replace, replace_len); |
| new_str[num_new - 1] = '\0'; |
| avb_free(ret); |
| ret = new_str; |
| ret_len = num_new - 1; |
| } |
| |
| str = s + search_len; |
| str_after_last_replace = str; |
| } |
| |
| if (ret == NULL) { |
| ret = avb_strdup(str_after_last_replace); |
| if (ret == NULL) { |
| goto out; |
| } |
| } else { |
| size_t num_remaining = avb_strlen(str_after_last_replace); |
| size_t num_new = ret_len + num_remaining + 1; |
| char* new_str = avb_malloc(num_new); |
| if (new_str == NULL) { |
| goto out; |
| } |
| avb_memcpy(new_str, ret, ret_len); |
| avb_memcpy(new_str + ret_len, str_after_last_replace, num_remaining); |
| new_str[num_new - 1] = '\0'; |
| avb_free(ret); |
| ret = new_str; |
| ret_len = num_new - 1; |
| } |
| |
| out: |
| return ret; |
| } |
| |
| /* We only support a limited amount of strings in avb_strdupv(). */ |
| #define AVB_STRDUPV_MAX_NUM_STRINGS 32 |
| |
| char* avb_strdupv(const char* str, ...) { |
| va_list ap; |
| const char* strings[AVB_STRDUPV_MAX_NUM_STRINGS]; |
| size_t lengths[AVB_STRDUPV_MAX_NUM_STRINGS]; |
| size_t num_strings, n; |
| uint64_t total_length; |
| char *ret = NULL, *dest; |
| |
| num_strings = 0; |
| total_length = 0; |
| va_start(ap, str); |
| do { |
| size_t str_len = avb_strlen(str); |
| strings[num_strings] = str; |
| lengths[num_strings] = str_len; |
| if (!avb_safe_add_to(&total_length, str_len)) { |
| avb_fatal("Overflow while determining total length.\n"); |
| break; |
| } |
| num_strings++; |
| if (num_strings == AVB_STRDUPV_MAX_NUM_STRINGS) { |
| avb_fatal("Too many strings passed.\n"); |
| break; |
| } |
| str = va_arg(ap, const char*); |
| } while (str != NULL); |
| va_end(ap); |
| |
| ret = avb_malloc(total_length + 1); |
| if (ret == NULL) { |
| goto out; |
| } |
| |
| dest = ret; |
| for (n = 0; n < num_strings; n++) { |
| avb_memcpy(dest, strings[n], lengths[n]); |
| dest += lengths[n]; |
| } |
| *dest = '\0'; |
| avb_assert(dest == ret + total_length); |
| |
| out: |
| return ret; |
| } |
| |
| const char* avb_basename(const char* str) { |
| int64_t n; |
| size_t len; |
| |
| len = avb_strlen(str); |
| if (len >= 2) { |
| for (n = len - 2; n >= 0; n--) { |
| if (str[n] == '/') { |
| return str + n + 1; |
| } |
| } |
| } |
| return str; |
| } |
| |
| void avb_uppercase(char* str) { |
| size_t i; |
| for (i = 0; str[i] != '\0'; ++i) { |
| if (str[i] <= 0x7A && str[i] >= 0x61) { |
| str[i] -= 0x20; |
| } |
| } |
| } |
| |
| char* avb_bin2hex(const uint8_t* data, size_t data_len) { |
| const char hex_digits[17] = "0123456789abcdef"; |
| char* hex_data; |
| size_t n; |
| |
| hex_data = avb_malloc(data_len * 2 + 1); |
| if (hex_data == NULL) { |
| return NULL; |
| } |
| |
| for (n = 0; n < data_len; n++) { |
| hex_data[n * 2] = hex_digits[data[n] >> 4]; |
| hex_data[n * 2 + 1] = hex_digits[data[n] & 0x0f]; |
| } |
| hex_data[n * 2] = '\0'; |
| return hex_data; |
| } |