| /* |
| * Copyright 2008-2014 Freescale Semiconductor, Inc. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * Version 2 as published by the Free Software Foundation. |
| */ |
| |
| /* |
| * Generic driver for Freescale DDR/DDR2/DDR3 memory controller. |
| * Based on code from spd_sdram.c |
| * Author: James Yang [at freescale.com] |
| */ |
| |
| #include <common.h> |
| #include <i2c.h> |
| #include <fsl_ddr_sdram.h> |
| #include <fsl_ddr.h> |
| |
| /* |
| * CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY is the physical address from the view |
| * of DDR controllers. It is the same as CONFIG_SYS_DDR_SDRAM_BASE for |
| * all Power SoCs. But it could be different for ARM SoCs. For example, |
| * fsl_lsch3 has a mapping mechanism to map DDR memory to ranges (in order) of |
| * 0x00_8000_0000 ~ 0x00_ffff_ffff |
| * 0x80_8000_0000 ~ 0xff_ffff_ffff |
| */ |
| #ifndef CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY |
| #define CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY CONFIG_SYS_DDR_SDRAM_BASE |
| #endif |
| |
| #ifdef CONFIG_PPC |
| #include <asm/fsl_law.h> |
| |
| void fsl_ddr_set_lawbar( |
| const common_timing_params_t *memctl_common_params, |
| unsigned int memctl_interleaved, |
| unsigned int ctrl_num); |
| #endif |
| |
| void fsl_ddr_set_intl3r(const unsigned int granule_size); |
| #if defined(SPD_EEPROM_ADDRESS) || \ |
| defined(SPD_EEPROM_ADDRESS1) || defined(SPD_EEPROM_ADDRESS2) || \ |
| defined(SPD_EEPROM_ADDRESS3) || defined(SPD_EEPROM_ADDRESS4) |
| #if (CONFIG_NUM_DDR_CONTROLLERS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1) |
| u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = { |
| [0][0] = SPD_EEPROM_ADDRESS, |
| }; |
| #elif (CONFIG_NUM_DDR_CONTROLLERS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2) |
| u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = { |
| [0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */ |
| [0][1] = SPD_EEPROM_ADDRESS2, /* controller 1 */ |
| }; |
| #elif (CONFIG_NUM_DDR_CONTROLLERS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1) |
| u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = { |
| [0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */ |
| [1][0] = SPD_EEPROM_ADDRESS2, /* controller 2 */ |
| }; |
| #elif (CONFIG_NUM_DDR_CONTROLLERS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2) |
| u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = { |
| [0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */ |
| [0][1] = SPD_EEPROM_ADDRESS2, /* controller 1 */ |
| [1][0] = SPD_EEPROM_ADDRESS3, /* controller 2 */ |
| [1][1] = SPD_EEPROM_ADDRESS4, /* controller 2 */ |
| }; |
| #elif (CONFIG_NUM_DDR_CONTROLLERS == 3) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1) |
| u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = { |
| [0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */ |
| [1][0] = SPD_EEPROM_ADDRESS2, /* controller 2 */ |
| [2][0] = SPD_EEPROM_ADDRESS3, /* controller 3 */ |
| }; |
| #elif (CONFIG_NUM_DDR_CONTROLLERS == 3) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2) |
| u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = { |
| [0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */ |
| [0][1] = SPD_EEPROM_ADDRESS2, /* controller 1 */ |
| [1][0] = SPD_EEPROM_ADDRESS3, /* controller 2 */ |
| [1][1] = SPD_EEPROM_ADDRESS4, /* controller 2 */ |
| [2][0] = SPD_EEPROM_ADDRESS5, /* controller 3 */ |
| [2][1] = SPD_EEPROM_ADDRESS6, /* controller 3 */ |
| }; |
| |
| #endif |
| |
| #define SPD_SPA0_ADDRESS 0x36 |
| #define SPD_SPA1_ADDRESS 0x37 |
| |
| static void __get_spd(generic_spd_eeprom_t *spd, u8 i2c_address) |
| { |
| int ret; |
| #ifdef CONFIG_SYS_FSL_DDR4 |
| uint8_t dummy = 0; |
| #endif |
| |
| i2c_set_bus_num(CONFIG_SYS_SPD_BUS_NUM); |
| |
| #ifdef CONFIG_SYS_FSL_DDR4 |
| /* |
| * DDR4 SPD has 384 to 512 bytes |
| * To access the lower 256 bytes, we need to set EE page address to 0 |
| * To access the upper 256 bytes, we need to set EE page address to 1 |
| * See Jedec standar No. 21-C for detail |
| */ |
| i2c_write(SPD_SPA0_ADDRESS, 0, 1, &dummy, 1); |
| ret = i2c_read(i2c_address, 0, 1, (uchar *)spd, 256); |
| if (!ret) { |
| i2c_write(SPD_SPA1_ADDRESS, 0, 1, &dummy, 1); |
| ret = i2c_read(i2c_address, 0, 1, |
| (uchar *)((ulong)spd + 256), |
| min(256, |
| (int)sizeof(generic_spd_eeprom_t) - 256)); |
| } |
| #else |
| ret = i2c_read(i2c_address, 0, 1, (uchar *)spd, |
| sizeof(generic_spd_eeprom_t)); |
| #endif |
| |
| if (ret) { |
| if (i2c_address == |
| #ifdef SPD_EEPROM_ADDRESS |
| SPD_EEPROM_ADDRESS |
| #elif defined(SPD_EEPROM_ADDRESS1) |
| SPD_EEPROM_ADDRESS1 |
| #endif |
| ) { |
| printf("DDR: failed to read SPD from address %u\n", |
| i2c_address); |
| } else { |
| debug("DDR: failed to read SPD from address %u\n", |
| i2c_address); |
| } |
| memset(spd, 0, sizeof(generic_spd_eeprom_t)); |
| } |
| } |
| |
| __attribute__((weak, alias("__get_spd"))) |
| void get_spd(generic_spd_eeprom_t *spd, u8 i2c_address); |
| |
| /* This function allows boards to update SPD address */ |
| __weak void update_spd_address(unsigned int ctrl_num, |
| unsigned int slot, |
| unsigned int *addr) |
| { |
| } |
| |
| void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd, |
| unsigned int ctrl_num, unsigned int dimm_slots_per_ctrl) |
| { |
| unsigned int i; |
| unsigned int i2c_address = 0; |
| |
| if (ctrl_num >= CONFIG_NUM_DDR_CONTROLLERS) { |
| printf("%s unexpected ctrl_num = %u\n", __FUNCTION__, ctrl_num); |
| return; |
| } |
| |
| for (i = 0; i < dimm_slots_per_ctrl; i++) { |
| i2c_address = spd_i2c_addr[ctrl_num][i]; |
| update_spd_address(ctrl_num, i, &i2c_address); |
| get_spd(&(ctrl_dimms_spd[i]), i2c_address); |
| } |
| } |
| #else |
| void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd, |
| unsigned int ctrl_num, unsigned int dimm_slots_per_ctrl) |
| { |
| } |
| #endif /* SPD_EEPROM_ADDRESSx */ |
| |
| /* |
| * ASSUMPTIONS: |
| * - Same number of CONFIG_DIMM_SLOTS_PER_CTLR on each controller |
| * - Same memory data bus width on all controllers |
| * |
| * NOTES: |
| * |
| * The memory controller and associated documentation use confusing |
| * terminology when referring to the orgranization of DRAM. |
| * |
| * Here is a terminology translation table: |
| * |
| * memory controller/documention |industry |this code |signals |
| * -------------------------------|-----------|-----------|----------------- |
| * physical bank/bank |rank |rank |chip select (CS) |
| * logical bank/sub-bank |bank |bank |bank address (BA) |
| * page/row |row |page |row address |
| * ??? |column |column |column address |
| * |
| * The naming confusion is further exacerbated by the descriptions of the |
| * memory controller interleaving feature, where accesses are interleaved |
| * _BETWEEN_ two seperate memory controllers. This is configured only in |
| * CS0_CONFIG[INTLV_CTL] of each memory controller. |
| * |
| * memory controller documentation | number of chip selects |
| * | per memory controller supported |
| * --------------------------------|----------------------------------------- |
| * cache line interleaving | 1 (CS0 only) |
| * page interleaving | 1 (CS0 only) |
| * bank interleaving | 1 (CS0 only) |
| * superbank interleraving | depends on bank (chip select) |
| * | interleraving [rank interleaving] |
| * | mode used on every memory controller |
| * |
| * Even further confusing is the existence of the interleaving feature |
| * _WITHIN_ each memory controller. The feature is referred to in |
| * documentation as chip select interleaving or bank interleaving, |
| * although it is configured in the DDR_SDRAM_CFG field. |
| * |
| * Name of field | documentation name | this code |
| * -----------------------------|-----------------------|------------------ |
| * DDR_SDRAM_CFG[BA_INTLV_CTL] | Bank (chip select) | rank interleaving |
| * | interleaving |
| */ |
| |
| const char *step_string_tbl[] = { |
| "STEP_GET_SPD", |
| "STEP_COMPUTE_DIMM_PARMS", |
| "STEP_COMPUTE_COMMON_PARMS", |
| "STEP_GATHER_OPTS", |
| "STEP_ASSIGN_ADDRESSES", |
| "STEP_COMPUTE_REGS", |
| "STEP_PROGRAM_REGS", |
| "STEP_ALL" |
| }; |
| |
| const char * step_to_string(unsigned int step) { |
| |
| unsigned int s = __ilog2(step); |
| |
| if ((1 << s) != step) |
| return step_string_tbl[7]; |
| |
| if (s >= ARRAY_SIZE(step_string_tbl)) { |
| printf("Error for the step in %s\n", __func__); |
| s = 0; |
| } |
| |
| return step_string_tbl[s]; |
| } |
| |
| static unsigned long long __step_assign_addresses(fsl_ddr_info_t *pinfo, |
| unsigned int dbw_cap_adj[]) |
| { |
| unsigned int i, j; |
| unsigned long long total_mem, current_mem_base, total_ctlr_mem; |
| unsigned long long rank_density, ctlr_density = 0; |
| unsigned int first_ctrl = pinfo->first_ctrl; |
| unsigned int last_ctrl = first_ctrl + pinfo->num_ctrls - 1; |
| |
| /* |
| * If a reduced data width is requested, but the SPD |
| * specifies a physically wider device, adjust the |
| * computed dimm capacities accordingly before |
| * assigning addresses. |
| */ |
| for (i = first_ctrl; i <= last_ctrl; i++) { |
| unsigned int found = 0; |
| |
| switch (pinfo->memctl_opts[i].data_bus_width) { |
| case 2: |
| /* 16-bit */ |
| for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) { |
| unsigned int dw; |
| if (!pinfo->dimm_params[i][j].n_ranks) |
| continue; |
| dw = pinfo->dimm_params[i][j].primary_sdram_width; |
| if ((dw == 72 || dw == 64)) { |
| dbw_cap_adj[i] = 2; |
| break; |
| } else if ((dw == 40 || dw == 32)) { |
| dbw_cap_adj[i] = 1; |
| break; |
| } |
| } |
| break; |
| |
| case 1: |
| /* 32-bit */ |
| for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) { |
| unsigned int dw; |
| dw = pinfo->dimm_params[i][j].data_width; |
| if (pinfo->dimm_params[i][j].n_ranks |
| && (dw == 72 || dw == 64)) { |
| /* |
| * FIXME: can't really do it |
| * like this because this just |
| * further reduces the memory |
| */ |
| found = 1; |
| break; |
| } |
| } |
| if (found) { |
| dbw_cap_adj[i] = 1; |
| } |
| break; |
| |
| case 0: |
| /* 64-bit */ |
| break; |
| |
| default: |
| printf("unexpected data bus width " |
| "specified controller %u\n", i); |
| return 1; |
| } |
| debug("dbw_cap_adj[%d]=%d\n", i, dbw_cap_adj[i]); |
| } |
| |
| current_mem_base = pinfo->mem_base; |
| total_mem = 0; |
| if (pinfo->memctl_opts[first_ctrl].memctl_interleaving) { |
| rank_density = pinfo->dimm_params[first_ctrl][0].rank_density >> |
| dbw_cap_adj[first_ctrl]; |
| switch (pinfo->memctl_opts[first_ctrl].ba_intlv_ctl & |
| FSL_DDR_CS0_CS1_CS2_CS3) { |
| case FSL_DDR_CS0_CS1_CS2_CS3: |
| ctlr_density = 4 * rank_density; |
| break; |
| case FSL_DDR_CS0_CS1: |
| case FSL_DDR_CS0_CS1_AND_CS2_CS3: |
| ctlr_density = 2 * rank_density; |
| break; |
| case FSL_DDR_CS2_CS3: |
| default: |
| ctlr_density = rank_density; |
| break; |
| } |
| debug("rank density is 0x%llx, ctlr density is 0x%llx\n", |
| rank_density, ctlr_density); |
| for (i = first_ctrl; i <= last_ctrl; i++) { |
| if (pinfo->memctl_opts[i].memctl_interleaving) { |
| switch (pinfo->memctl_opts[i].memctl_interleaving_mode) { |
| case FSL_DDR_256B_INTERLEAVING: |
| case FSL_DDR_CACHE_LINE_INTERLEAVING: |
| case FSL_DDR_PAGE_INTERLEAVING: |
| case FSL_DDR_BANK_INTERLEAVING: |
| case FSL_DDR_SUPERBANK_INTERLEAVING: |
| total_ctlr_mem = 2 * ctlr_density; |
| break; |
| case FSL_DDR_3WAY_1KB_INTERLEAVING: |
| case FSL_DDR_3WAY_4KB_INTERLEAVING: |
| case FSL_DDR_3WAY_8KB_INTERLEAVING: |
| total_ctlr_mem = 3 * ctlr_density; |
| break; |
| case FSL_DDR_4WAY_1KB_INTERLEAVING: |
| case FSL_DDR_4WAY_4KB_INTERLEAVING: |
| case FSL_DDR_4WAY_8KB_INTERLEAVING: |
| total_ctlr_mem = 4 * ctlr_density; |
| break; |
| default: |
| panic("Unknown interleaving mode"); |
| } |
| pinfo->common_timing_params[i].base_address = |
| current_mem_base; |
| pinfo->common_timing_params[i].total_mem = |
| total_ctlr_mem; |
| total_mem = current_mem_base + total_ctlr_mem; |
| debug("ctrl %d base 0x%llx\n", i, current_mem_base); |
| debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem); |
| } else { |
| /* when 3rd controller not interleaved */ |
| current_mem_base = total_mem; |
| total_ctlr_mem = 0; |
| pinfo->common_timing_params[i].base_address = |
| current_mem_base; |
| for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) { |
| unsigned long long cap = |
| pinfo->dimm_params[i][j].capacity >> dbw_cap_adj[i]; |
| pinfo->dimm_params[i][j].base_address = |
| current_mem_base; |
| debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base); |
| current_mem_base += cap; |
| total_ctlr_mem += cap; |
| } |
| debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem); |
| pinfo->common_timing_params[i].total_mem = |
| total_ctlr_mem; |
| total_mem += total_ctlr_mem; |
| } |
| } |
| } else { |
| /* |
| * Simple linear assignment if memory |
| * controllers are not interleaved. |
| */ |
| for (i = first_ctrl; i <= last_ctrl; i++) { |
| total_ctlr_mem = 0; |
| pinfo->common_timing_params[i].base_address = |
| current_mem_base; |
| for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) { |
| /* Compute DIMM base addresses. */ |
| unsigned long long cap = |
| pinfo->dimm_params[i][j].capacity >> dbw_cap_adj[i]; |
| pinfo->dimm_params[i][j].base_address = |
| current_mem_base; |
| debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base); |
| current_mem_base += cap; |
| total_ctlr_mem += cap; |
| } |
| debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem); |
| pinfo->common_timing_params[i].total_mem = |
| total_ctlr_mem; |
| total_mem += total_ctlr_mem; |
| } |
| } |
| debug("Total mem by %s is 0x%llx\n", __func__, total_mem); |
| |
| return total_mem; |
| } |
| |
| /* Use weak function to allow board file to override the address assignment */ |
| __attribute__((weak, alias("__step_assign_addresses"))) |
| unsigned long long step_assign_addresses(fsl_ddr_info_t *pinfo, |
| unsigned int dbw_cap_adj[]); |
| |
| unsigned long long |
| fsl_ddr_compute(fsl_ddr_info_t *pinfo, unsigned int start_step, |
| unsigned int size_only) |
| { |
| unsigned int i, j; |
| unsigned long long total_mem = 0; |
| int assert_reset = 0; |
| unsigned int first_ctrl = pinfo->first_ctrl; |
| unsigned int last_ctrl = first_ctrl + pinfo->num_ctrls - 1; |
| __maybe_unused int retval; |
| __maybe_unused bool goodspd = false; |
| __maybe_unused int dimm_slots_per_ctrl = pinfo->dimm_slots_per_ctrl; |
| |
| fsl_ddr_cfg_regs_t *ddr_reg = pinfo->fsl_ddr_config_reg; |
| common_timing_params_t *timing_params = pinfo->common_timing_params; |
| if (pinfo->board_need_mem_reset) |
| assert_reset = pinfo->board_need_mem_reset(); |
| |
| /* data bus width capacity adjust shift amount */ |
| unsigned int dbw_capacity_adjust[CONFIG_NUM_DDR_CONTROLLERS]; |
| |
| for (i = first_ctrl; i <= last_ctrl; i++) |
| dbw_capacity_adjust[i] = 0; |
| |
| debug("starting at step %u (%s)\n", |
| start_step, step_to_string(start_step)); |
| |
| switch (start_step) { |
| case STEP_GET_SPD: |
| #if defined(CONFIG_DDR_SPD) || defined(CONFIG_SPD_EEPROM) |
| /* STEP 1: Gather all DIMM SPD data */ |
| for (i = first_ctrl; i <= last_ctrl; i++) { |
| fsl_ddr_get_spd(pinfo->spd_installed_dimms[i], i, |
| dimm_slots_per_ctrl); |
| } |
| |
| case STEP_COMPUTE_DIMM_PARMS: |
| /* STEP 2: Compute DIMM parameters from SPD data */ |
| |
| for (i = first_ctrl; i <= last_ctrl; i++) { |
| for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) { |
| generic_spd_eeprom_t *spd = |
| &(pinfo->spd_installed_dimms[i][j]); |
| dimm_params_t *pdimm = |
| &(pinfo->dimm_params[i][j]); |
| retval = compute_dimm_parameters( |
| i, spd, pdimm, j); |
| #ifdef CONFIG_SYS_DDR_RAW_TIMING |
| if (!j && retval) { |
| printf("SPD error on controller %d! " |
| "Trying fallback to raw timing " |
| "calculation\n", i); |
| retval = fsl_ddr_get_dimm_params(pdimm, |
| i, j); |
| } |
| #else |
| if (retval == 2) { |
| printf("Error: compute_dimm_parameters" |
| " non-zero returned FATAL value " |
| "for memctl=%u dimm=%u\n", i, j); |
| return 0; |
| } |
| #endif |
| if (retval) { |
| debug("Warning: compute_dimm_parameters" |
| " non-zero return value for memctl=%u " |
| "dimm=%u\n", i, j); |
| } else { |
| goodspd = true; |
| } |
| } |
| } |
| if (!goodspd) { |
| /* |
| * No valid SPD found |
| * Throw an error if this is for main memory, i.e. |
| * first_ctrl == 0. Otherwise, siliently return 0 |
| * as the memory size. |
| */ |
| if (first_ctrl == 0) |
| printf("Error: No valid SPD detected.\n"); |
| |
| return 0; |
| } |
| #elif defined(CONFIG_SYS_DDR_RAW_TIMING) |
| case STEP_COMPUTE_DIMM_PARMS: |
| for (i = first_ctrl; i <= last_ctrl; i++) { |
| for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) { |
| dimm_params_t *pdimm = |
| &(pinfo->dimm_params[i][j]); |
| fsl_ddr_get_dimm_params(pdimm, i, j); |
| } |
| } |
| debug("Filling dimm parameters from board specific file\n"); |
| #endif |
| case STEP_COMPUTE_COMMON_PARMS: |
| /* |
| * STEP 3: Compute a common set of timing parameters |
| * suitable for all of the DIMMs on each memory controller |
| */ |
| for (i = first_ctrl; i <= last_ctrl; i++) { |
| debug("Computing lowest common DIMM" |
| " parameters for memctl=%u\n", i); |
| compute_lowest_common_dimm_parameters |
| (i, |
| pinfo->dimm_params[i], |
| &timing_params[i], |
| CONFIG_DIMM_SLOTS_PER_CTLR); |
| } |
| |
| case STEP_GATHER_OPTS: |
| /* STEP 4: Gather configuration requirements from user */ |
| for (i = first_ctrl; i <= last_ctrl; i++) { |
| debug("Reloading memory controller " |
| "configuration options for memctl=%u\n", i); |
| /* |
| * This "reloads" the memory controller options |
| * to defaults. If the user "edits" an option, |
| * next_step points to the step after this, |
| * which is currently STEP_ASSIGN_ADDRESSES. |
| */ |
| populate_memctl_options( |
| timing_params[i].all_dimms_registered, |
| &pinfo->memctl_opts[i], |
| pinfo->dimm_params[i], i); |
| /* |
| * For RDIMMs, JEDEC spec requires clocks to be stable |
| * before reset signal is deasserted. For the boards |
| * using fixed parameters, this function should be |
| * be called from board init file. |
| */ |
| if (timing_params[i].all_dimms_registered) |
| assert_reset = 1; |
| } |
| if (assert_reset && !size_only) { |
| if (pinfo->board_mem_reset) { |
| debug("Asserting mem reset\n"); |
| pinfo->board_mem_reset(); |
| } else { |
| debug("Asserting mem reset missing\n"); |
| } |
| } |
| |
| case STEP_ASSIGN_ADDRESSES: |
| /* STEP 5: Assign addresses to chip selects */ |
| check_interleaving_options(pinfo); |
| total_mem = step_assign_addresses(pinfo, dbw_capacity_adjust); |
| debug("Total mem %llu assigned\n", total_mem); |
| |
| case STEP_COMPUTE_REGS: |
| /* STEP 6: compute controller register values */ |
| debug("FSL Memory ctrl register computation\n"); |
| for (i = first_ctrl; i <= last_ctrl; i++) { |
| if (timing_params[i].ndimms_present == 0) { |
| memset(&ddr_reg[i], 0, |
| sizeof(fsl_ddr_cfg_regs_t)); |
| continue; |
| } |
| |
| compute_fsl_memctl_config_regs |
| (i, |
| &pinfo->memctl_opts[i], |
| &ddr_reg[i], &timing_params[i], |
| pinfo->dimm_params[i], |
| dbw_capacity_adjust[i], |
| size_only); |
| } |
| |
| default: |
| break; |
| } |
| |
| { |
| /* |
| * Compute the amount of memory available just by |
| * looking for the highest valid CSn_BNDS value. |
| * This allows us to also experiment with using |
| * only CS0 when using dual-rank DIMMs. |
| */ |
| unsigned int max_end = 0; |
| |
| for (i = first_ctrl; i <= last_ctrl; i++) { |
| for (j = 0; j < CONFIG_CHIP_SELECTS_PER_CTRL; j++) { |
| fsl_ddr_cfg_regs_t *reg = &ddr_reg[i]; |
| if (reg->cs[j].config & 0x80000000) { |
| unsigned int end; |
| /* |
| * 0xfffffff is a special value we put |
| * for unused bnds |
| */ |
| if (reg->cs[j].bnds == 0xffffffff) |
| continue; |
| end = reg->cs[j].bnds & 0xffff; |
| if (end > max_end) { |
| max_end = end; |
| } |
| } |
| } |
| } |
| |
| total_mem = 1 + (((unsigned long long)max_end << 24ULL) | |
| 0xFFFFFFULL) - pinfo->mem_base; |
| } |
| |
| return total_mem; |
| } |
| |
| phys_size_t __fsl_ddr_sdram(fsl_ddr_info_t *pinfo) |
| { |
| unsigned int i, first_ctrl, last_ctrl; |
| #ifdef CONFIG_PPC |
| unsigned int law_memctl = LAW_TRGT_IF_DDR_1; |
| #endif |
| unsigned long long total_memory; |
| int deassert_reset = 0; |
| |
| first_ctrl = pinfo->first_ctrl; |
| last_ctrl = first_ctrl + pinfo->num_ctrls - 1; |
| |
| /* Compute it once normally. */ |
| #ifdef CONFIG_FSL_DDR_INTERACTIVE |
| if (tstc() && (getc() == 'd')) { /* we got a key press of 'd' */ |
| total_memory = fsl_ddr_interactive(pinfo, 0); |
| } else if (fsl_ddr_interactive_env_var_exists()) { |
| total_memory = fsl_ddr_interactive(pinfo, 1); |
| } else |
| #endif |
| total_memory = fsl_ddr_compute(pinfo, STEP_GET_SPD, 0); |
| |
| /* setup 3-way interleaving before enabling DDRC */ |
| switch (pinfo->memctl_opts[first_ctrl].memctl_interleaving_mode) { |
| case FSL_DDR_3WAY_1KB_INTERLEAVING: |
| case FSL_DDR_3WAY_4KB_INTERLEAVING: |
| case FSL_DDR_3WAY_8KB_INTERLEAVING: |
| fsl_ddr_set_intl3r( |
| pinfo->memctl_opts[first_ctrl]. |
| memctl_interleaving_mode); |
| break; |
| default: |
| break; |
| } |
| |
| /* |
| * Program configuration registers. |
| * JEDEC specs requires clocks to be stable before deasserting reset |
| * for RDIMMs. Clocks start after chip select is enabled and clock |
| * control register is set. During step 1, all controllers have their |
| * registers set but not enabled. Step 2 proceeds after deasserting |
| * reset through board FPGA or GPIO. |
| * For non-registered DIMMs, initialization can go through but it is |
| * also OK to follow the same flow. |
| */ |
| if (pinfo->board_need_mem_reset) |
| deassert_reset = pinfo->board_need_mem_reset(); |
| for (i = first_ctrl; i <= last_ctrl; i++) { |
| if (pinfo->common_timing_params[i].all_dimms_registered) |
| deassert_reset = 1; |
| } |
| for (i = first_ctrl; i <= last_ctrl; i++) { |
| debug("Programming controller %u\n", i); |
| if (pinfo->common_timing_params[i].ndimms_present == 0) { |
| debug("No dimms present on controller %u; " |
| "skipping programming\n", i); |
| continue; |
| } |
| /* |
| * The following call with step = 1 returns before enabling |
| * the controller. It has to finish with step = 2 later. |
| */ |
| fsl_ddr_set_memctl_regs(&(pinfo->fsl_ddr_config_reg[i]), i, |
| deassert_reset ? 1 : 0); |
| } |
| if (deassert_reset) { |
| /* Use board FPGA or GPIO to deassert reset signal */ |
| if (pinfo->board_mem_de_reset) { |
| debug("Deasserting mem reset\n"); |
| pinfo->board_mem_de_reset(); |
| } else { |
| debug("Deasserting mem reset missing\n"); |
| } |
| for (i = first_ctrl; i <= last_ctrl; i++) { |
| /* Call with step = 2 to continue initialization */ |
| fsl_ddr_set_memctl_regs(&(pinfo->fsl_ddr_config_reg[i]), |
| i, 2); |
| } |
| } |
| |
| #ifdef CONFIG_FSL_DDR_SYNC_REFRESH |
| fsl_ddr_sync_memctl_refresh(first_ctrl, last_ctrl); |
| #endif |
| |
| #ifdef CONFIG_PPC |
| /* program LAWs */ |
| for (i = first_ctrl; i <= last_ctrl; i++) { |
| if (pinfo->memctl_opts[i].memctl_interleaving) { |
| switch (pinfo->memctl_opts[i]. |
| memctl_interleaving_mode) { |
| case FSL_DDR_CACHE_LINE_INTERLEAVING: |
| case FSL_DDR_PAGE_INTERLEAVING: |
| case FSL_DDR_BANK_INTERLEAVING: |
| case FSL_DDR_SUPERBANK_INTERLEAVING: |
| if (i % 2) |
| break; |
| if (i == 0) { |
| law_memctl = LAW_TRGT_IF_DDR_INTRLV; |
| fsl_ddr_set_lawbar( |
| &pinfo->common_timing_params[i], |
| law_memctl, i); |
| } |
| #if CONFIG_NUM_DDR_CONTROLLERS > 3 |
| else if (i == 2) { |
| law_memctl = LAW_TRGT_IF_DDR_INTLV_34; |
| fsl_ddr_set_lawbar( |
| &pinfo->common_timing_params[i], |
| law_memctl, i); |
| } |
| #endif |
| break; |
| case FSL_DDR_3WAY_1KB_INTERLEAVING: |
| case FSL_DDR_3WAY_4KB_INTERLEAVING: |
| case FSL_DDR_3WAY_8KB_INTERLEAVING: |
| law_memctl = LAW_TRGT_IF_DDR_INTLV_123; |
| if (i == 0) { |
| fsl_ddr_set_lawbar( |
| &pinfo->common_timing_params[i], |
| law_memctl, i); |
| } |
| break; |
| case FSL_DDR_4WAY_1KB_INTERLEAVING: |
| case FSL_DDR_4WAY_4KB_INTERLEAVING: |
| case FSL_DDR_4WAY_8KB_INTERLEAVING: |
| law_memctl = LAW_TRGT_IF_DDR_INTLV_1234; |
| if (i == 0) |
| fsl_ddr_set_lawbar( |
| &pinfo->common_timing_params[i], |
| law_memctl, i); |
| /* place holder for future 4-way interleaving */ |
| break; |
| default: |
| break; |
| } |
| } else { |
| switch (i) { |
| case 0: |
| law_memctl = LAW_TRGT_IF_DDR_1; |
| break; |
| case 1: |
| law_memctl = LAW_TRGT_IF_DDR_2; |
| break; |
| case 2: |
| law_memctl = LAW_TRGT_IF_DDR_3; |
| break; |
| case 3: |
| law_memctl = LAW_TRGT_IF_DDR_4; |
| break; |
| default: |
| break; |
| } |
| fsl_ddr_set_lawbar(&pinfo->common_timing_params[i], |
| law_memctl, i); |
| } |
| } |
| #endif |
| |
| debug("total_memory by %s = %llu\n", __func__, total_memory); |
| |
| #if !defined(CONFIG_PHYS_64BIT) |
| /* Check for 4G or more. Bad. */ |
| if ((first_ctrl == 0) && (total_memory >= (1ull << 32))) { |
| puts("Detected "); |
| print_size(total_memory, " of memory\n"); |
| printf(" This U-Boot only supports < 4G of DDR\n"); |
| printf(" You could rebuild it with CONFIG_PHYS_64BIT\n"); |
| printf(" "); /* re-align to match init_func_ram print */ |
| total_memory = CONFIG_MAX_MEM_MAPPED; |
| } |
| #endif |
| |
| return total_memory; |
| } |
| |
| /* |
| * fsl_ddr_sdram(void) -- this is the main function to be |
| * called by initdram() in the board file. |
| * |
| * It returns amount of memory configured in bytes. |
| */ |
| phys_size_t fsl_ddr_sdram(void) |
| { |
| fsl_ddr_info_t info; |
| |
| /* Reset info structure. */ |
| memset(&info, 0, sizeof(fsl_ddr_info_t)); |
| info.mem_base = CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY; |
| info.first_ctrl = 0; |
| info.num_ctrls = CONFIG_SYS_FSL_DDR_MAIN_NUM_CTRLS; |
| info.dimm_slots_per_ctrl = CONFIG_DIMM_SLOTS_PER_CTLR; |
| info.board_need_mem_reset = board_need_mem_reset; |
| info.board_mem_reset = board_assert_mem_reset; |
| info.board_mem_de_reset = board_deassert_mem_reset; |
| |
| return __fsl_ddr_sdram(&info); |
| } |
| |
| #ifdef CONFIG_SYS_FSL_OTHER_DDR_NUM_CTRLS |
| phys_size_t fsl_other_ddr_sdram(unsigned long long base, |
| unsigned int first_ctrl, |
| unsigned int num_ctrls, |
| unsigned int dimm_slots_per_ctrl, |
| int (*board_need_reset)(void), |
| void (*board_reset)(void), |
| void (*board_de_reset)(void)) |
| { |
| fsl_ddr_info_t info; |
| |
| /* Reset info structure. */ |
| memset(&info, 0, sizeof(fsl_ddr_info_t)); |
| info.mem_base = base; |
| info.first_ctrl = first_ctrl; |
| info.num_ctrls = num_ctrls; |
| info.dimm_slots_per_ctrl = dimm_slots_per_ctrl; |
| info.board_need_mem_reset = board_need_reset; |
| info.board_mem_reset = board_reset; |
| info.board_mem_de_reset = board_de_reset; |
| |
| return __fsl_ddr_sdram(&info); |
| } |
| #endif |
| |
| /* |
| * fsl_ddr_sdram_size(first_ctrl, last_intlv) - This function only returns the |
| * size of the total memory without setting ddr control registers. |
| */ |
| phys_size_t |
| fsl_ddr_sdram_size(void) |
| { |
| fsl_ddr_info_t info; |
| unsigned long long total_memory = 0; |
| |
| memset(&info, 0 , sizeof(fsl_ddr_info_t)); |
| info.mem_base = CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY; |
| info.first_ctrl = 0; |
| info.num_ctrls = CONFIG_SYS_FSL_DDR_MAIN_NUM_CTRLS; |
| info.dimm_slots_per_ctrl = CONFIG_DIMM_SLOTS_PER_CTLR; |
| info.board_need_mem_reset = NULL; |
| |
| /* Compute it once normally. */ |
| total_memory = fsl_ddr_compute(&info, STEP_GET_SPD, 1); |
| |
| return total_memory; |
| } |