blob: b3fd0e954d27316d0bee726a2f0c2905b01b11e5 [file] [log] [blame]
/*
* Copyright (C) 2008 RuggedCom, Inc.
* Richard Retanubun <RichardRetanubun@RuggedCom.com>
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
/*
* Problems with CONFIG_SYS_64BIT_LBA:
*
* struct disk_partition.start in include/part.h is sized as ulong.
* When CONFIG_SYS_64BIT_LBA is activated, lbaint_t changes from ulong to uint64_t.
* For now, it is cast back to ulong at assignment.
*
* This limits the maximum size of addressable storage to < 2 Terra Bytes
*/
#include <common.h>
#include <command.h>
#include <ide.h>
#include <malloc.h>
#include <part_efi.h>
#include <linux/ctype.h>
DECLARE_GLOBAL_DATA_PTR;
#ifdef HAVE_BLOCK_DEVICE
/**
* efi_crc32() - EFI version of crc32 function
* @buf: buffer to calculate crc32 of
* @len - length of buf
*
* Description: Returns EFI-style CRC32 value for @buf
*/
static inline u32 efi_crc32(const void *buf, u32 len)
{
return crc32(0, buf, len);
}
/*
* Private function prototypes
*/
static int pmbr_part_valid(struct partition *part);
static int is_pmbr_valid(legacy_mbr * mbr);
static int is_gpt_valid(block_dev_desc_t * dev_desc, unsigned long long lba,
gpt_header * pgpt_head, gpt_entry ** pgpt_pte);
static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc,
gpt_header * pgpt_head);
static int is_pte_valid(gpt_entry * pte);
static char *print_efiname(gpt_entry *pte)
{
static char name[PARTNAME_SZ + 1];
int i;
for (i = 0; i < PARTNAME_SZ; i++) {
u8 c;
c = pte->partition_name[i] & 0xff;
c = (c && !isprint(c)) ? '.' : c;
name[i] = c;
}
name[PARTNAME_SZ] = 0;
return name;
}
static void uuid_string(unsigned char *uuid, char *str)
{
static const u8 le[16] = {3, 2, 1, 0, 5, 4, 7, 6, 8, 9, 10, 11,
12, 13, 14, 15};
int i;
for (i = 0; i < 16; i++) {
sprintf(str, "%02x", uuid[le[i]]);
str += 2;
switch (i) {
case 3:
case 5:
case 7:
case 9:
*str++ = '-';
break;
}
}
}
static efi_guid_t system_guid = PARTITION_SYSTEM_GUID;
static inline int is_bootable(gpt_entry *p)
{
return p->attributes.fields.legacy_bios_bootable ||
!memcmp(&(p->partition_type_guid), &system_guid,
sizeof(efi_guid_t));
}
#ifdef CONFIG_EFI_PARTITION
/*
* Public Functions (include/part.h)
*/
void print_part_efi(block_dev_desc_t * dev_desc)
{
ALLOC_CACHE_ALIGN_BUFFER(gpt_header, gpt_head, 1);
gpt_entry *gpt_pte = NULL;
int i = 0;
char uuid[37];
if (!dev_desc) {
printf("%s: Invalid Argument(s)\n", __func__);
return;
}
/* This function validates AND fills in the GPT header and PTE */
if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
gpt_head, &gpt_pte) != 1) {
printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
return;
}
debug("%s: gpt-entry at %p\n", __func__, gpt_pte);
printf("Part\tStart LBA\tEnd LBA\t\tName\n");
printf("\tAttributes\n");
printf("\tType UUID\n");
printf("\tPartition UUID\n");
for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) {
/* Stop at the first non valid PTE */
if (!is_pte_valid(&gpt_pte[i]))
break;
printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1),
le64_to_cpu(gpt_pte[i].starting_lba),
le64_to_cpu(gpt_pte[i].ending_lba),
print_efiname(&gpt_pte[i]));
printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw);
uuid_string(gpt_pte[i].partition_type_guid.b, uuid);
printf("\ttype:\t%s\n", uuid);
uuid_string(gpt_pte[i].unique_partition_guid.b, uuid);
printf("\tuuid:\t%s\n", uuid);
}
/* Remember to free pte */
free(gpt_pte);
return;
}
int get_partition_info_efi(block_dev_desc_t * dev_desc, int part,
disk_partition_t * info)
{
ALLOC_CACHE_ALIGN_BUFFER(gpt_header, gpt_head, 1);
gpt_entry *gpt_pte = NULL;
/* "part" argument must be at least 1 */
if (!dev_desc || !info || part < 1) {
printf("%s: Invalid Argument(s)\n", __func__);
return -1;
}
/* This function validates AND fills in the GPT header and PTE */
if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
gpt_head, &gpt_pte) != 1) {
printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
return -1;
}
if (part > le32_to_cpu(gpt_head->num_partition_entries) ||
!is_pte_valid(&gpt_pte[part - 1])) {
printf("%s: *** ERROR: Invalid partition number %d ***\n",
__func__, part);
return -1;
}
/* The ulong casting limits the maximum disk size to 2 TB */
info->start = (u64)le64_to_cpu(gpt_pte[part - 1].starting_lba);
/* The ending LBA is inclusive, to calculate size, add 1 to it */
info->size = ((u64)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1)
- info->start;
info->blksz = GPT_BLOCK_SIZE;
sprintf((char *)info->name, "%s",
print_efiname(&gpt_pte[part - 1]));
sprintf((char *)info->type, "U-Boot");
info->bootable = is_bootable(&gpt_pte[part - 1]);
#ifdef CONFIG_PARTITION_UUIDS
uuid_string(gpt_pte[part - 1].unique_partition_guid.b, info->uuid);
#endif
debug("%s: start 0x%lX, size 0x%lX, name %s", __func__,
info->start, info->size, info->name);
/* Remember to free pte */
free(gpt_pte);
return 0;
}
int test_part_efi(block_dev_desc_t * dev_desc)
{
ALLOC_CACHE_ALIGN_BUFFER(legacy_mbr, legacymbr, 1);
/* Read legacy MBR from block 0 and validate it */
if ((dev_desc->block_read(dev_desc->dev, 0, 1, (ulong *)legacymbr) != 1)
|| (is_pmbr_valid(legacymbr) != 1)) {
return -1;
}
return 0;
}
/**
* set_protective_mbr(): Set the EFI protective MBR
* @param dev_desc - block device descriptor
*
* @return - zero on success, otherwise error
*/
static int set_protective_mbr(block_dev_desc_t *dev_desc)
{
legacy_mbr *p_mbr;
/* Setup the Protective MBR */
p_mbr = calloc(1, sizeof(p_mbr));
if (p_mbr == NULL) {
printf("%s: calloc failed!\n", __func__);
return -1;
}
/* Append signature */
p_mbr->signature = MSDOS_MBR_SIGNATURE;
p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT;
p_mbr->partition_record[0].start_sect = 1;
p_mbr->partition_record[0].nr_sects = (u32) dev_desc->lba;
/* Write MBR sector to the MMC device */
if (dev_desc->block_write(dev_desc->dev, 0, 1, p_mbr) != 1) {
printf("** Can't write to device %d **\n",
dev_desc->dev);
free(p_mbr);
return -1;
}
free(p_mbr);
return 0;
}
/**
* string_uuid(); Convert UUID stored as string to bytes
*
* @param uuid - UUID represented as string
* @param dst - GUID buffer
*
* @return return 0 on successful conversion
*/
static int string_uuid(char *uuid, u8 *dst)
{
efi_guid_t guid;
u16 b, c, d;
u64 e;
u32 a;
u8 *p;
u8 i;
const u8 uuid_str_len = 36;
/* The UUID is written in text: */
/* 1 9 14 19 24 */
/* xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx */
debug("%s: uuid: %s\n", __func__, uuid);
if (strlen(uuid) != uuid_str_len)
return -1;
for (i = 0; i < uuid_str_len; i++) {
if ((i == 8) || (i == 13) || (i == 18) || (i == 23)) {
if (uuid[i] != '-')
return -1;
} else {
if (!isxdigit(uuid[i]))
return -1;
}
}
a = (u32)simple_strtoul(uuid, NULL, 16);
b = (u16)simple_strtoul(uuid + 9, NULL, 16);
c = (u16)simple_strtoul(uuid + 14, NULL, 16);
d = (u16)simple_strtoul(uuid + 19, NULL, 16);
e = (u64)simple_strtoull(uuid + 24, NULL, 16);
p = (u8 *) &e;
guid = EFI_GUID(a, b, c, d >> 8, d & 0xFF,
*(p + 5), *(p + 4), *(p + 3),
*(p + 2), *(p + 1) , *p);
memcpy(dst, guid.b, sizeof(efi_guid_t));
return 0;
}
int write_gpt_table(block_dev_desc_t *dev_desc,
gpt_header *gpt_h, gpt_entry *gpt_e)
{
const int pte_blk_num = (gpt_h->num_partition_entries
* sizeof(gpt_entry)) / dev_desc->blksz;
u32 calc_crc32;
u64 val;
debug("max lba: %x\n", (u32) dev_desc->lba);
/* Setup the Protective MBR */
if (set_protective_mbr(dev_desc) < 0)
goto err;
/* Generate CRC for the Primary GPT Header */
calc_crc32 = efi_crc32((const unsigned char *)gpt_e,
le32_to_cpu(gpt_h->num_partition_entries) *
le32_to_cpu(gpt_h->sizeof_partition_entry));
gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32);
calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
le32_to_cpu(gpt_h->header_size));
gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
/* Write the First GPT to the block right after the Legacy MBR */
if (dev_desc->block_write(dev_desc->dev, 1, 1, gpt_h) != 1)
goto err;
if (dev_desc->block_write(dev_desc->dev, 2, pte_blk_num, gpt_e)
!= pte_blk_num)
goto err;
/* recalculate the values for the Second GPT Header */
val = le64_to_cpu(gpt_h->my_lba);
gpt_h->my_lba = gpt_h->alternate_lba;
gpt_h->alternate_lba = cpu_to_le64(val);
gpt_h->header_crc32 = 0;
calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
le32_to_cpu(gpt_h->header_size));
gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
if (dev_desc->block_write(dev_desc->dev,
le32_to_cpu(gpt_h->last_usable_lba + 1),
pte_blk_num, gpt_e) != pte_blk_num)
goto err;
if (dev_desc->block_write(dev_desc->dev,
le32_to_cpu(gpt_h->my_lba), 1, gpt_h) != 1)
goto err;
debug("GPT successfully written to block device!\n");
return 0;
err:
printf("** Can't write to device %d **\n", dev_desc->dev);
return -1;
}
int gpt_fill_pte(gpt_header *gpt_h, gpt_entry *gpt_e,
disk_partition_t *partitions, int parts)
{
u32 offset = (u32)le32_to_cpu(gpt_h->first_usable_lba);
ulong start;
int i, k;
size_t name_len;
#ifdef CONFIG_PARTITION_UUIDS
char *str_uuid;
#endif
for (i = 0; i < parts; i++) {
/* partition starting lba */
start = partitions[i].start;
if (start && (start < offset)) {
printf("Partition overlap\n");
return -1;
}
if (start) {
gpt_e[i].starting_lba = cpu_to_le64(start);
offset = start + partitions[i].size;
} else {
gpt_e[i].starting_lba = cpu_to_le64(offset);
offset += partitions[i].size;
}
if (offset >= gpt_h->last_usable_lba) {
printf("Partitions layout exceds disk size\n");
return -1;
}
/* partition ending lba */
if ((i == parts - 1) && (partitions[i].size == 0))
/* extend the last partition to maximuim */
gpt_e[i].ending_lba = gpt_h->last_usable_lba;
else
gpt_e[i].ending_lba = cpu_to_le64(offset - 1);
/* partition type GUID */
memcpy(gpt_e[i].partition_type_guid.b,
&PARTITION_BASIC_DATA_GUID, 16);
#ifdef CONFIG_PARTITION_UUIDS
str_uuid = partitions[i].uuid;
if (string_uuid(str_uuid, gpt_e[i].unique_partition_guid.b)) {
printf("Partition no. %d: invalid guid: %s\n",
i, str_uuid);
return -1;
}
#endif
/* partition attributes */
memset(&gpt_e[i].attributes, 0,
sizeof(gpt_entry_attributes));
/* partition name */
name_len = sizeof(gpt_e[i].partition_name)
/ sizeof(efi_char16_t);
for (k = 0; k < name_len; k++)
gpt_e[i].partition_name[k] =
(efi_char16_t)(partitions[i].name[k]);
debug("%s: name: %s offset[%d]: 0x%x size[%d]: 0x%lx\n",
__func__, partitions[i].name, i,
offset, i, partitions[i].size);
}
return 0;
}
int gpt_fill_header(block_dev_desc_t *dev_desc, gpt_header *gpt_h,
char *str_guid, int parts_count)
{
gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE);
gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1);
gpt_h->header_size = cpu_to_le32(sizeof(gpt_header));
gpt_h->my_lba = cpu_to_le64(1);
gpt_h->alternate_lba = cpu_to_le64(dev_desc->lba - 1);
gpt_h->first_usable_lba = cpu_to_le64(34);
gpt_h->last_usable_lba = cpu_to_le64(dev_desc->lba - 34);
gpt_h->partition_entry_lba = cpu_to_le64(2);
gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS);
gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry));
gpt_h->header_crc32 = 0;
gpt_h->partition_entry_array_crc32 = 0;
if (string_uuid(str_guid, gpt_h->disk_guid.b))
return -1;
return 0;
}
int gpt_restore(block_dev_desc_t *dev_desc, char *str_disk_guid,
disk_partition_t *partitions, int parts_count)
{
int ret;
gpt_header *gpt_h = calloc(1, sizeof(gpt_header));
if (gpt_h == NULL) {
printf("%s: calloc failed!\n", __func__);
return -1;
}
gpt_entry *gpt_e = calloc(GPT_ENTRY_NUMBERS, sizeof(gpt_entry));
if (gpt_e == NULL) {
printf("%s: calloc failed!\n", __func__);
free(gpt_h);
return -1;
}
/* Generate Primary GPT header (LBA1) */
ret = gpt_fill_header(dev_desc, gpt_h, str_disk_guid, parts_count);
if (ret)
goto err;
/* Generate partition entries */
ret = gpt_fill_pte(gpt_h, gpt_e, partitions, parts_count);
if (ret)
goto err;
/* Write GPT partition table */
ret = write_gpt_table(dev_desc, gpt_h, gpt_e);
err:
free(gpt_e);
free(gpt_h);
return ret;
}
#endif
/*
* Private functions
*/
/*
* pmbr_part_valid(): Check for EFI partition signature
*
* Returns: 1 if EFI GPT partition type is found.
*/
static int pmbr_part_valid(struct partition *part)
{
if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT &&
le32_to_cpu(part->start_sect) == 1UL) {
return 1;
}
return 0;
}
/*
* is_pmbr_valid(): test Protective MBR for validity
*
* Returns: 1 if PMBR is valid, 0 otherwise.
* Validity depends on two things:
* 1) MSDOS signature is in the last two bytes of the MBR
* 2) One partition of type 0xEE is found, checked by pmbr_part_valid()
*/
static int is_pmbr_valid(legacy_mbr * mbr)
{
int i = 0;
if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE)
return 0;
for (i = 0; i < 4; i++) {
if (pmbr_part_valid(&mbr->partition_record[i])) {
return 1;
}
}
return 0;
}
/**
* is_gpt_valid() - tests one GPT header and PTEs for validity
*
* lba is the logical block address of the GPT header to test
* gpt is a GPT header ptr, filled on return.
* ptes is a PTEs ptr, filled on return.
*
* Description: returns 1 if valid, 0 on error.
* If valid, returns pointers to PTEs.
*/
static int is_gpt_valid(block_dev_desc_t * dev_desc, unsigned long long lba,
gpt_header * pgpt_head, gpt_entry ** pgpt_pte)
{
u32 crc32_backup = 0;
u32 calc_crc32;
unsigned long long lastlba;
if (!dev_desc || !pgpt_head) {
printf("%s: Invalid Argument(s)\n", __func__);
return 0;
}
/* Read GPT Header from device */
if (dev_desc->block_read(dev_desc->dev, lba, 1, pgpt_head) != 1) {
printf("*** ERROR: Can't read GPT header ***\n");
return 0;
}
/* Check the GPT header signature */
if (le64_to_cpu(pgpt_head->signature) != GPT_HEADER_SIGNATURE) {
printf("GUID Partition Table Header signature is wrong:"
"0x%llX != 0x%llX\n",
le64_to_cpu(pgpt_head->signature),
GPT_HEADER_SIGNATURE);
return 0;
}
/* Check the GUID Partition Table CRC */
memcpy(&crc32_backup, &pgpt_head->header_crc32, sizeof(crc32_backup));
memset(&pgpt_head->header_crc32, 0, sizeof(pgpt_head->header_crc32));
calc_crc32 = efi_crc32((const unsigned char *)pgpt_head,
le32_to_cpu(pgpt_head->header_size));
memcpy(&pgpt_head->header_crc32, &crc32_backup, sizeof(crc32_backup));
if (calc_crc32 != le32_to_cpu(crc32_backup)) {
printf("GUID Partition Table Header CRC is wrong:"
"0x%x != 0x%x\n",
le32_to_cpu(crc32_backup), calc_crc32);
return 0;
}
/* Check that the my_lba entry points to the LBA that contains the GPT */
if (le64_to_cpu(pgpt_head->my_lba) != lba) {
printf("GPT: my_lba incorrect: %llX != %llX\n",
le64_to_cpu(pgpt_head->my_lba),
lba);
return 0;
}
/* Check the first_usable_lba and last_usable_lba are within the disk. */
lastlba = (unsigned long long)dev_desc->lba;
if (le64_to_cpu(pgpt_head->first_usable_lba) > lastlba) {
printf("GPT: first_usable_lba incorrect: %llX > %llX\n",
le64_to_cpu(pgpt_head->first_usable_lba), lastlba);
return 0;
}
if (le64_to_cpu(pgpt_head->last_usable_lba) > lastlba) {
printf("GPT: last_usable_lba incorrect: %llX > %llX\n",
(u64) le64_to_cpu(pgpt_head->last_usable_lba), lastlba);
return 0;
}
debug("GPT: first_usable_lba: %llX last_usable_lba %llX last lba %llX\n",
le64_to_cpu(pgpt_head->first_usable_lba),
le64_to_cpu(pgpt_head->last_usable_lba), lastlba);
/* Read and allocate Partition Table Entries */
*pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head);
if (*pgpt_pte == NULL) {
printf("GPT: Failed to allocate memory for PTE\n");
return 0;
}
/* Check the GUID Partition Table Entry Array CRC */
calc_crc32 = efi_crc32((const unsigned char *)*pgpt_pte,
le32_to_cpu(pgpt_head->num_partition_entries) *
le32_to_cpu(pgpt_head->sizeof_partition_entry));
if (calc_crc32 != le32_to_cpu(pgpt_head->partition_entry_array_crc32)) {
printf("GUID Partition Table Entry Array CRC is wrong:"
"0x%x != 0x%x\n",
le32_to_cpu(pgpt_head->partition_entry_array_crc32),
calc_crc32);
free(*pgpt_pte);
return 0;
}
/* We're done, all's well */
return 1;
}
/**
* alloc_read_gpt_entries(): reads partition entries from disk
* @dev_desc
* @gpt - GPT header
*
* Description: Returns ptes on success, NULL on error.
* Allocates space for PTEs based on information found in @gpt.
* Notes: remember to free pte when you're done!
*/
static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc,
gpt_header * pgpt_head)
{
size_t count = 0;
gpt_entry *pte = NULL;
if (!dev_desc || !pgpt_head) {
printf("%s: Invalid Argument(s)\n", __func__);
return NULL;
}
count = le32_to_cpu(pgpt_head->num_partition_entries) *
le32_to_cpu(pgpt_head->sizeof_partition_entry);
debug("%s: count = %u * %u = %zu\n", __func__,
(u32) le32_to_cpu(pgpt_head->num_partition_entries),
(u32) le32_to_cpu(pgpt_head->sizeof_partition_entry), count);
/* Allocate memory for PTE, remember to FREE */
if (count != 0) {
pte = memalign(ARCH_DMA_MINALIGN, count);
}
if (count == 0 || pte == NULL) {
printf("%s: ERROR: Can't allocate 0x%zX "
"bytes for GPT Entries\n",
__func__, count);
return NULL;
}
/* Read GPT Entries from device */
if (dev_desc->block_read (dev_desc->dev,
le64_to_cpu(pgpt_head->partition_entry_lba),
(lbaint_t) (count / GPT_BLOCK_SIZE), pte)
!= (count / GPT_BLOCK_SIZE)) {
printf("*** ERROR: Can't read GPT Entries ***\n");
free(pte);
return NULL;
}
return pte;
}
/**
* is_pte_valid(): validates a single Partition Table Entry
* @gpt_entry - Pointer to a single Partition Table Entry
*
* Description: returns 1 if valid, 0 on error.
*/
static int is_pte_valid(gpt_entry * pte)
{
efi_guid_t unused_guid;
if (!pte) {
printf("%s: Invalid Argument(s)\n", __func__);
return 0;
}
/* Only one validation for now:
* The GUID Partition Type != Unused Entry (ALL-ZERO)
*/
memset(unused_guid.b, 0, sizeof(unused_guid.b));
if (memcmp(pte->partition_type_guid.b, unused_guid.b,
sizeof(unused_guid.b)) == 0) {
debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__,
(unsigned int)(uintptr_t)pte);
return 0;
} else {
return 1;
}
}
#endif