| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * (C) Copyright 2008-2011 |
| * Graeme Russ, <graeme.russ@gmail.com> |
| * |
| * (C) Copyright 2002 |
| * Daniel Engström, Omicron Ceti AB, <daniel@omicron.se> |
| * |
| * (C) Copyright 2002 |
| * Sysgo Real-Time Solutions, GmbH <www.elinos.com> |
| * Marius Groeger <mgroeger@sysgo.de> |
| * |
| * (C) Copyright 2002 |
| * Sysgo Real-Time Solutions, GmbH <www.elinos.com> |
| * Alex Zuepke <azu@sysgo.de> |
| * |
| * Part of this file is adapted from coreboot |
| * src/arch/x86/lib/cpu.c |
| */ |
| |
| #include <common.h> |
| #include <cpu_func.h> |
| #include <init.h> |
| #include <log.h> |
| #include <malloc.h> |
| #include <spl.h> |
| #include <asm/control_regs.h> |
| #include <asm/coreboot_tables.h> |
| #include <asm/cpu.h> |
| #include <asm/global_data.h> |
| #include <asm/mp.h> |
| #include <asm/msr.h> |
| #include <asm/mtrr.h> |
| #include <asm/processor-flags.h> |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| #define CPUID_FEATURE_PAE BIT(6) |
| #define CPUID_FEATURE_PSE36 BIT(17) |
| #define CPUID_FEAURE_HTT BIT(28) |
| |
| /* |
| * Constructor for a conventional segment GDT (or LDT) entry |
| * This is a macro so it can be used in initialisers |
| */ |
| #define GDT_ENTRY(flags, base, limit) \ |
| ((((base) & 0xff000000ULL) << (56-24)) | \ |
| (((flags) & 0x0000f0ffULL) << 40) | \ |
| (((limit) & 0x000f0000ULL) << (48-16)) | \ |
| (((base) & 0x00ffffffULL) << 16) | \ |
| (((limit) & 0x0000ffffULL))) |
| |
| struct gdt_ptr { |
| u16 len; |
| u32 ptr; |
| } __packed; |
| |
| struct cpu_device_id { |
| unsigned vendor; |
| unsigned device; |
| }; |
| |
| struct cpuinfo_x86 { |
| uint8_t x86; /* CPU family */ |
| uint8_t x86_vendor; /* CPU vendor */ |
| uint8_t x86_model; |
| uint8_t x86_mask; |
| }; |
| |
| /* gcc 7.3 does not wwant to drop x86_vendors, so use #ifdef */ |
| #ifndef CONFIG_TPL_BUILD |
| /* |
| * List of cpu vendor strings along with their normalized |
| * id values. |
| */ |
| static const struct { |
| int vendor; |
| const char *name; |
| } x86_vendors[] = { |
| { X86_VENDOR_INTEL, "GenuineIntel", }, |
| { X86_VENDOR_CYRIX, "CyrixInstead", }, |
| { X86_VENDOR_AMD, "AuthenticAMD", }, |
| { X86_VENDOR_UMC, "UMC UMC UMC ", }, |
| { X86_VENDOR_NEXGEN, "NexGenDriven", }, |
| { X86_VENDOR_CENTAUR, "CentaurHauls", }, |
| { X86_VENDOR_RISE, "RiseRiseRise", }, |
| { X86_VENDOR_TRANSMETA, "GenuineTMx86", }, |
| { X86_VENDOR_TRANSMETA, "TransmetaCPU", }, |
| { X86_VENDOR_NSC, "Geode by NSC", }, |
| { X86_VENDOR_SIS, "SiS SiS SiS ", }, |
| }; |
| #endif |
| |
| static void load_ds(u32 segment) |
| { |
| asm volatile("movl %0, %%ds" : : "r" (segment * X86_GDT_ENTRY_SIZE)); |
| } |
| |
| static void load_es(u32 segment) |
| { |
| asm volatile("movl %0, %%es" : : "r" (segment * X86_GDT_ENTRY_SIZE)); |
| } |
| |
| static void load_fs(u32 segment) |
| { |
| asm volatile("movl %0, %%fs" : : "r" (segment * X86_GDT_ENTRY_SIZE)); |
| } |
| |
| static void load_gs(u32 segment) |
| { |
| asm volatile("movl %0, %%gs" : : "r" (segment * X86_GDT_ENTRY_SIZE)); |
| } |
| |
| static void load_ss(u32 segment) |
| { |
| asm volatile("movl %0, %%ss" : : "r" (segment * X86_GDT_ENTRY_SIZE)); |
| } |
| |
| static void load_gdt(const u64 *boot_gdt, u16 num_entries) |
| { |
| struct gdt_ptr gdt; |
| |
| gdt.len = (num_entries * X86_GDT_ENTRY_SIZE) - 1; |
| gdt.ptr = (ulong)boot_gdt; |
| |
| asm volatile("lgdtl %0\n" : : "m" (gdt)); |
| } |
| |
| void arch_setup_gd(gd_t *new_gd) |
| { |
| u64 *gdt_addr; |
| |
| gdt_addr = new_gd->arch.gdt; |
| |
| /* |
| * CS: code, read/execute, 4 GB, base 0 |
| * |
| * Some OS (like VxWorks) requires GDT entry 1 to be the 32-bit CS |
| */ |
| gdt_addr[X86_GDT_ENTRY_UNUSED] = GDT_ENTRY(0xc09b, 0, 0xfffff); |
| gdt_addr[X86_GDT_ENTRY_32BIT_CS] = GDT_ENTRY(0xc09b, 0, 0xfffff); |
| |
| /* DS: data, read/write, 4 GB, base 0 */ |
| gdt_addr[X86_GDT_ENTRY_32BIT_DS] = GDT_ENTRY(0xc093, 0, 0xfffff); |
| |
| /* |
| * FS: data, read/write, sizeof (Global Data Pointer), |
| * base (Global Data Pointer) |
| */ |
| new_gd->arch.gd_addr = new_gd; |
| gdt_addr[X86_GDT_ENTRY_32BIT_FS] = GDT_ENTRY(0x8093, |
| (ulong)&new_gd->arch.gd_addr, |
| sizeof(new_gd->arch.gd_addr) - 1); |
| |
| /* 16-bit CS: code, read/execute, 64 kB, base 0 */ |
| gdt_addr[X86_GDT_ENTRY_16BIT_CS] = GDT_ENTRY(0x009b, 0, 0x0ffff); |
| |
| /* 16-bit DS: data, read/write, 64 kB, base 0 */ |
| gdt_addr[X86_GDT_ENTRY_16BIT_DS] = GDT_ENTRY(0x0093, 0, 0x0ffff); |
| |
| gdt_addr[X86_GDT_ENTRY_16BIT_FLAT_CS] = GDT_ENTRY(0x809b, 0, 0xfffff); |
| gdt_addr[X86_GDT_ENTRY_16BIT_FLAT_DS] = GDT_ENTRY(0x8093, 0, 0xfffff); |
| |
| load_gdt(gdt_addr, X86_GDT_NUM_ENTRIES); |
| load_ds(X86_GDT_ENTRY_32BIT_DS); |
| load_es(X86_GDT_ENTRY_32BIT_DS); |
| load_gs(X86_GDT_ENTRY_32BIT_DS); |
| load_ss(X86_GDT_ENTRY_32BIT_DS); |
| load_fs(X86_GDT_ENTRY_32BIT_FS); |
| } |
| |
| #ifdef CONFIG_HAVE_FSP |
| /* |
| * Setup FSP execution environment GDT |
| * |
| * Per Intel FSP external architecture specification, before calling any FSP |
| * APIs, we need make sure the system is in flat 32-bit mode and both the code |
| * and data selectors should have full 4GB access range. Here we reuse the one |
| * we used in arch/x86/cpu/start16.S, and reload the segment registers. |
| */ |
| void setup_fsp_gdt(void) |
| { |
| load_gdt((const u64 *)(gdt_rom + CONFIG_RESET_SEG_START), 4); |
| load_ds(X86_GDT_ENTRY_32BIT_DS); |
| load_ss(X86_GDT_ENTRY_32BIT_DS); |
| load_es(X86_GDT_ENTRY_32BIT_DS); |
| load_fs(X86_GDT_ENTRY_32BIT_DS); |
| load_gs(X86_GDT_ENTRY_32BIT_DS); |
| } |
| #endif |
| |
| /* |
| * Cyrix CPUs without cpuid or with cpuid not yet enabled can be detected |
| * by the fact that they preserve the flags across the division of 5/2. |
| * PII and PPro exhibit this behavior too, but they have cpuid available. |
| */ |
| |
| /* |
| * Perform the Cyrix 5/2 test. A Cyrix won't change |
| * the flags, while other 486 chips will. |
| */ |
| static inline int test_cyrix_52div(void) |
| { |
| unsigned int test; |
| |
| __asm__ __volatile__( |
| "sahf\n\t" /* clear flags (%eax = 0x0005) */ |
| "div %b2\n\t" /* divide 5 by 2 */ |
| "lahf" /* store flags into %ah */ |
| : "=a" (test) |
| : "0" (5), "q" (2) |
| : "cc"); |
| |
| /* AH is 0x02 on Cyrix after the divide.. */ |
| return (unsigned char) (test >> 8) == 0x02; |
| } |
| |
| #ifndef CONFIG_TPL_BUILD |
| /* |
| * Detect a NexGen CPU running without BIOS hypercode new enough |
| * to have CPUID. (Thanks to Herbert Oppmann) |
| */ |
| static int deep_magic_nexgen_probe(void) |
| { |
| int ret; |
| |
| __asm__ __volatile__ ( |
| " movw $0x5555, %%ax\n" |
| " xorw %%dx,%%dx\n" |
| " movw $2, %%cx\n" |
| " divw %%cx\n" |
| " movl $0, %%eax\n" |
| " jnz 1f\n" |
| " movl $1, %%eax\n" |
| "1:\n" |
| : "=a" (ret) : : "cx", "dx"); |
| return ret; |
| } |
| #endif |
| |
| static bool has_cpuid(void) |
| { |
| return flag_is_changeable_p(X86_EFLAGS_ID); |
| } |
| |
| static bool has_mtrr(void) |
| { |
| return cpuid_edx(0x00000001) & (1 << 12) ? true : false; |
| } |
| |
| #ifndef CONFIG_TPL_BUILD |
| static int build_vendor_name(char *vendor_name) |
| { |
| struct cpuid_result result; |
| result = cpuid(0x00000000); |
| unsigned int *name_as_ints = (unsigned int *)vendor_name; |
| |
| name_as_ints[0] = result.ebx; |
| name_as_ints[1] = result.edx; |
| name_as_ints[2] = result.ecx; |
| |
| return result.eax; |
| } |
| #endif |
| |
| static void identify_cpu(struct cpu_device_id *cpu) |
| { |
| cpu->device = 0; /* fix gcc 4.4.4 warning */ |
| |
| /* |
| * Do a quick and dirty check to save space - Intel and AMD only and |
| * just the vendor. This is enough for most TPL code. |
| */ |
| if (spl_phase() == PHASE_TPL) { |
| struct cpuid_result result; |
| |
| result = cpuid(0x00000000); |
| switch (result.ecx >> 24) { |
| case 'l': /* GenuineIntel */ |
| cpu->vendor = X86_VENDOR_INTEL; |
| break; |
| case 'D': /* AuthenticAMD */ |
| cpu->vendor = X86_VENDOR_AMD; |
| break; |
| default: |
| cpu->vendor = X86_VENDOR_ANY; |
| break; |
| } |
| return; |
| } |
| |
| /* gcc 7.3 does not want to drop x86_vendors, so use #ifdef */ |
| #ifndef CONFIG_TPL_BUILD |
| char vendor_name[16]; |
| int i; |
| |
| vendor_name[0] = '\0'; /* Unset */ |
| |
| /* Find the id and vendor_name */ |
| if (!has_cpuid()) { |
| /* Its a 486 if we can modify the AC flag */ |
| if (flag_is_changeable_p(X86_EFLAGS_AC)) |
| cpu->device = 0x00000400; /* 486 */ |
| else |
| cpu->device = 0x00000300; /* 386 */ |
| if ((cpu->device == 0x00000400) && test_cyrix_52div()) { |
| memcpy(vendor_name, "CyrixInstead", 13); |
| /* If we ever care we can enable cpuid here */ |
| } |
| /* Detect NexGen with old hypercode */ |
| else if (deep_magic_nexgen_probe()) |
| memcpy(vendor_name, "NexGenDriven", 13); |
| } else { |
| int cpuid_level; |
| |
| cpuid_level = build_vendor_name(vendor_name); |
| vendor_name[12] = '\0'; |
| |
| /* Intel-defined flags: level 0x00000001 */ |
| if (cpuid_level >= 0x00000001) { |
| cpu->device = cpuid_eax(0x00000001); |
| } else { |
| /* Have CPUID level 0 only unheard of */ |
| cpu->device = 0x00000400; |
| } |
| } |
| cpu->vendor = X86_VENDOR_UNKNOWN; |
| for (i = 0; i < ARRAY_SIZE(x86_vendors); i++) { |
| if (memcmp(vendor_name, x86_vendors[i].name, 12) == 0) { |
| cpu->vendor = x86_vendors[i].vendor; |
| break; |
| } |
| } |
| #endif |
| } |
| |
| static inline void get_fms(struct cpuinfo_x86 *c, uint32_t tfms) |
| { |
| c->x86 = (tfms >> 8) & 0xf; |
| c->x86_model = (tfms >> 4) & 0xf; |
| c->x86_mask = tfms & 0xf; |
| if (c->x86 == 0xf) |
| c->x86 += (tfms >> 20) & 0xff; |
| if (c->x86 >= 0x6) |
| c->x86_model += ((tfms >> 16) & 0xF) << 4; |
| } |
| |
| u32 cpu_get_family_model(void) |
| { |
| return gd->arch.x86_device & 0x0fff0ff0; |
| } |
| |
| u32 cpu_get_stepping(void) |
| { |
| return gd->arch.x86_mask; |
| } |
| |
| /* initialise FPU, reset EM, set MP and NE */ |
| static void setup_cpu_features(void) |
| { |
| const u32 em_rst = ~X86_CR0_EM; |
| const u32 mp_ne_set = X86_CR0_MP | X86_CR0_NE; |
| |
| asm ("fninit\n" \ |
| "movl %%cr0, %%eax\n" \ |
| "andl %0, %%eax\n" \ |
| "orl %1, %%eax\n" \ |
| "movl %%eax, %%cr0\n" \ |
| : : "i" (em_rst), "i" (mp_ne_set) : "eax"); |
| } |
| |
| void cpu_reinit_fpu(void) |
| { |
| asm ("fninit\n"); |
| } |
| |
| static void setup_identity(void) |
| { |
| /* identify CPU via cpuid and store the decoded info into gd->arch */ |
| if (has_cpuid()) { |
| struct cpu_device_id cpu; |
| struct cpuinfo_x86 c; |
| |
| identify_cpu(&cpu); |
| get_fms(&c, cpu.device); |
| gd->arch.x86 = c.x86; |
| gd->arch.x86_vendor = cpu.vendor; |
| gd->arch.x86_model = c.x86_model; |
| gd->arch.x86_mask = c.x86_mask; |
| gd->arch.x86_device = cpu.device; |
| |
| gd->arch.has_mtrr = has_mtrr(); |
| } |
| } |
| |
| static uint cpu_cpuid_extended_level(void) |
| { |
| return cpuid_eax(0x80000000); |
| } |
| |
| int cpu_phys_address_size(void) |
| { |
| if (!has_cpuid()) |
| return 32; |
| |
| if (cpu_cpuid_extended_level() >= 0x80000008) |
| return cpuid_eax(0x80000008) & 0xff; |
| |
| if (cpuid_edx(1) & (CPUID_FEATURE_PAE | CPUID_FEATURE_PSE36)) |
| return 36; |
| |
| return 32; |
| } |
| |
| /* Don't allow PCI region 3 to use memory in the 2-4GB memory hole */ |
| static void setup_pci_ram_top(void) |
| { |
| gd->pci_ram_top = 0x80000000U; |
| } |
| |
| static void setup_mtrr(void) |
| { |
| u64 mtrr_cap; |
| |
| /* Configure fixed range MTRRs for some legacy regions */ |
| if (!gd->arch.has_mtrr) |
| return; |
| |
| mtrr_cap = native_read_msr(MTRR_CAP_MSR); |
| if (mtrr_cap & MTRR_CAP_FIX) { |
| /* Mark the VGA RAM area as uncacheable */ |
| native_write_msr(MTRR_FIX_16K_A0000_MSR, |
| MTRR_FIX_TYPE(MTRR_TYPE_UNCACHEABLE), |
| MTRR_FIX_TYPE(MTRR_TYPE_UNCACHEABLE)); |
| |
| /* |
| * Mark the PCI ROM area as cacheable to improve ROM |
| * execution performance. |
| */ |
| native_write_msr(MTRR_FIX_4K_C0000_MSR, |
| MTRR_FIX_TYPE(MTRR_TYPE_WRBACK), |
| MTRR_FIX_TYPE(MTRR_TYPE_WRBACK)); |
| native_write_msr(MTRR_FIX_4K_C8000_MSR, |
| MTRR_FIX_TYPE(MTRR_TYPE_WRBACK), |
| MTRR_FIX_TYPE(MTRR_TYPE_WRBACK)); |
| native_write_msr(MTRR_FIX_4K_D0000_MSR, |
| MTRR_FIX_TYPE(MTRR_TYPE_WRBACK), |
| MTRR_FIX_TYPE(MTRR_TYPE_WRBACK)); |
| native_write_msr(MTRR_FIX_4K_D8000_MSR, |
| MTRR_FIX_TYPE(MTRR_TYPE_WRBACK), |
| MTRR_FIX_TYPE(MTRR_TYPE_WRBACK)); |
| |
| /* Enable the fixed range MTRRs */ |
| msr_setbits_64(MTRR_DEF_TYPE_MSR, MTRR_DEF_TYPE_FIX_EN); |
| } |
| } |
| |
| int x86_cpu_init_tpl(void) |
| { |
| setup_cpu_features(); |
| setup_identity(); |
| |
| return 0; |
| } |
| |
| int x86_cpu_init_f(void) |
| { |
| if (ll_boot_init()) |
| setup_cpu_features(); |
| setup_identity(); |
| setup_mtrr(); |
| setup_pci_ram_top(); |
| |
| /* Set up the i8254 timer if required */ |
| if (IS_ENABLED(CONFIG_I8254_TIMER)) |
| i8254_init(); |
| |
| return 0; |
| } |
| |
| int x86_cpu_reinit_f(void) |
| { |
| long addr; |
| |
| setup_identity(); |
| setup_pci_ram_top(); |
| addr = locate_coreboot_table(); |
| if (addr >= 0) { |
| gd->arch.coreboot_table = addr; |
| gd->flags |= GD_FLG_SKIP_LL_INIT; |
| } |
| |
| return 0; |
| } |
| |
| void x86_enable_caches(void) |
| { |
| unsigned long cr0; |
| |
| cr0 = read_cr0(); |
| cr0 &= ~(X86_CR0_NW | X86_CR0_CD); |
| write_cr0(cr0); |
| wbinvd(); |
| } |
| void enable_caches(void) __attribute__((weak, alias("x86_enable_caches"))); |
| |
| void x86_disable_caches(void) |
| { |
| unsigned long cr0; |
| |
| cr0 = read_cr0(); |
| cr0 |= X86_CR0_NW | X86_CR0_CD; |
| wbinvd(); |
| write_cr0(cr0); |
| wbinvd(); |
| } |
| void disable_caches(void) __attribute__((weak, alias("x86_disable_caches"))); |
| |
| int dcache_status(void) |
| { |
| return !(read_cr0() & X86_CR0_CD); |
| } |
| |
| void cpu_enable_paging_pae(ulong cr3) |
| { |
| __asm__ __volatile__( |
| /* Load the page table address */ |
| "movl %0, %%cr3\n" |
| /* Enable pae */ |
| "movl %%cr4, %%eax\n" |
| "orl $0x00000020, %%eax\n" |
| "movl %%eax, %%cr4\n" |
| /* Enable paging */ |
| "movl %%cr0, %%eax\n" |
| "orl $0x80000000, %%eax\n" |
| "movl %%eax, %%cr0\n" |
| : |
| : "r" (cr3) |
| : "eax"); |
| } |
| |
| void cpu_disable_paging_pae(void) |
| { |
| /* Turn off paging */ |
| __asm__ __volatile__ ( |
| /* Disable paging */ |
| "movl %%cr0, %%eax\n" |
| "andl $0x7fffffff, %%eax\n" |
| "movl %%eax, %%cr0\n" |
| /* Disable pae */ |
| "movl %%cr4, %%eax\n" |
| "andl $0xffffffdf, %%eax\n" |
| "movl %%eax, %%cr4\n" |
| : |
| : |
| : "eax"); |
| } |
| |
| static bool can_detect_long_mode(void) |
| { |
| return cpuid_eax(0x80000000) > 0x80000000UL; |
| } |
| |
| static bool has_long_mode(void) |
| { |
| return cpuid_edx(0x80000001) & (1 << 29) ? true : false; |
| } |
| |
| int cpu_has_64bit(void) |
| { |
| return has_cpuid() && can_detect_long_mode() && |
| has_long_mode(); |
| } |
| |
| #define PAGETABLE_BASE 0x80000 |
| #define PAGETABLE_SIZE (6 * 4096) |
| |
| /** |
| * build_pagetable() - build a flat 4GiB page table structure for 64-bti mode |
| * |
| * @pgtable: Pointer to a 24iKB block of memory |
| */ |
| static void build_pagetable(uint32_t *pgtable) |
| { |
| uint i; |
| |
| memset(pgtable, '\0', PAGETABLE_SIZE); |
| |
| /* Level 4 needs a single entry */ |
| pgtable[0] = (ulong)&pgtable[1024] + 7; |
| |
| /* Level 3 has one 64-bit entry for each GiB of memory */ |
| for (i = 0; i < 4; i++) |
| pgtable[1024 + i * 2] = (ulong)&pgtable[2048] + 0x1000 * i + 7; |
| |
| /* Level 2 has 2048 64-bit entries, each repesenting 2MiB */ |
| for (i = 0; i < 2048; i++) |
| pgtable[2048 + i * 2] = 0x183 + (i << 21UL); |
| } |
| |
| int cpu_jump_to_64bit(ulong setup_base, ulong target) |
| { |
| uint32_t *pgtable; |
| |
| pgtable = memalign(4096, PAGETABLE_SIZE); |
| if (!pgtable) |
| return -ENOMEM; |
| |
| build_pagetable(pgtable); |
| cpu_call64((ulong)pgtable, setup_base, target); |
| free(pgtable); |
| |
| return -EFAULT; |
| } |
| |
| /* |
| * Jump from SPL to U-Boot |
| * |
| * This function is work-in-progress with many issues to resolve. |
| * |
| * It works by setting up several regions: |
| * ptr - a place to put the code that jumps into 64-bit mode |
| * gdt - a place to put the global descriptor table |
| * pgtable - a place to put the page tables |
| * |
| * The cpu_call64() code is copied from ROM and then manually patched so that |
| * it has the correct GDT address in RAM. U-Boot is copied from ROM into |
| * its pre-relocation address. Then we jump to the cpu_call64() code in RAM, |
| * which changes to 64-bit mode and starts U-Boot. |
| */ |
| int cpu_jump_to_64bit_uboot(ulong target) |
| { |
| typedef void (*func_t)(ulong pgtable, ulong setup_base, ulong target); |
| uint32_t *pgtable; |
| func_t func; |
| char *ptr; |
| |
| pgtable = (uint32_t *)PAGETABLE_BASE; |
| |
| build_pagetable(pgtable); |
| |
| extern long call64_stub_size; |
| ptr = malloc(call64_stub_size); |
| if (!ptr) { |
| printf("Failed to allocate the cpu_call64 stub\n"); |
| return -ENOMEM; |
| } |
| memcpy(ptr, cpu_call64, call64_stub_size); |
| |
| func = (func_t)ptr; |
| |
| /* Jump to U-Boot */ |
| func((ulong)pgtable, 0, (ulong)target); |
| |
| return -EFAULT; |
| } |
| |
| int x86_mp_init(void) |
| { |
| int ret; |
| |
| ret = mp_init(); |
| if (ret) { |
| printf("Warning: MP init failure\n"); |
| return log_ret(ret); |
| } |
| |
| return 0; |
| } |