blob: 926b249ff3b7e7097d14a61e9150f185f0d8b0be [file] [log] [blame]
/*
* Copyright (C) 2017, STMicroelectronics - All Rights Reserved
* Author(s): Vikas Manocha, <vikas.manocha@st.com> for STMicroelectronics.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <clk-uclass.h>
#include <dm.h>
#include <stm32_rcc.h>
#include <asm/io.h>
#include <asm/arch/stm32.h>
#include <asm/arch/stm32_pwr.h>
#include <dt-bindings/mfd/stm32f7-rcc.h>
#define RCC_CR_HSION BIT(0)
#define RCC_CR_HSEON BIT(16)
#define RCC_CR_HSERDY BIT(17)
#define RCC_CR_HSEBYP BIT(18)
#define RCC_CR_CSSON BIT(19)
#define RCC_CR_PLLON BIT(24)
#define RCC_CR_PLLRDY BIT(25)
#define RCC_CR_PLLSAION BIT(28)
#define RCC_CR_PLLSAIRDY BIT(29)
#define RCC_PLLCFGR_PLLM_MASK GENMASK(5, 0)
#define RCC_PLLCFGR_PLLN_MASK GENMASK(14, 6)
#define RCC_PLLCFGR_PLLP_MASK GENMASK(17, 16)
#define RCC_PLLCFGR_PLLQ_MASK GENMASK(27, 24)
#define RCC_PLLCFGR_PLLSRC BIT(22)
#define RCC_PLLCFGR_PLLM_SHIFT 0
#define RCC_PLLCFGR_PLLN_SHIFT 6
#define RCC_PLLCFGR_PLLP_SHIFT 16
#define RCC_PLLCFGR_PLLQ_SHIFT 24
#define RCC_CFGR_AHB_PSC_MASK GENMASK(7, 4)
#define RCC_CFGR_APB1_PSC_MASK GENMASK(12, 10)
#define RCC_CFGR_APB2_PSC_MASK GENMASK(15, 13)
#define RCC_CFGR_SW0 BIT(0)
#define RCC_CFGR_SW1 BIT(1)
#define RCC_CFGR_SW_MASK GENMASK(1, 0)
#define RCC_CFGR_SW_HSI 0
#define RCC_CFGR_SW_HSE RCC_CFGR_SW0
#define RCC_CFGR_SW_PLL RCC_CFGR_SW1
#define RCC_CFGR_SWS0 BIT(2)
#define RCC_CFGR_SWS1 BIT(3)
#define RCC_CFGR_SWS_MASK GENMASK(3, 2)
#define RCC_CFGR_SWS_HSI 0
#define RCC_CFGR_SWS_HSE RCC_CFGR_SWS0
#define RCC_CFGR_SWS_PLL RCC_CFGR_SWS1
#define RCC_CFGR_HPRE_SHIFT 4
#define RCC_CFGR_PPRE1_SHIFT 10
#define RCC_CFGR_PPRE2_SHIFT 13
#define RCC_PLLCFGR_PLLSAIN_MASK GENMASK(14, 6)
#define RCC_PLLCFGR_PLLSAIP_MASK GENMASK(17, 16)
#define RCC_PLLSAICFGR_PLLSAIN_SHIFT 6
#define RCC_PLLSAICFGR_PLLSAIP_SHIFT 16
#define RCC_PLLSAICFGR_PLLSAIP_4 BIT(16)
#define RCC_PLLSAICFGR_PLLSAIQ_4 BIT(26)
#define RCC_PLLSAICFGR_PLLSAIR_2 BIT(29)
#define RCC_DCKCFGRX_CK48MSEL BIT(27)
#define RCC_DCKCFGRX_SDMMC1SEL BIT(28)
#define RCC_DCKCFGR2_SDMMC2SEL BIT(29)
/*
* RCC AHB1ENR specific definitions
*/
#define RCC_AHB1ENR_ETHMAC_EN BIT(25)
#define RCC_AHB1ENR_ETHMAC_TX_EN BIT(26)
#define RCC_AHB1ENR_ETHMAC_RX_EN BIT(27)
/*
* RCC APB1ENR specific definitions
*/
#define RCC_APB1ENR_TIM2EN BIT(0)
#define RCC_APB1ENR_PWREN BIT(28)
/*
* RCC APB2ENR specific definitions
*/
#define RCC_APB2ENR_SYSCFGEN BIT(14)
#define RCC_APB2ENR_SAI1EN BIT(22)
enum periph_clock {
TIMER2_CLOCK_CFG,
};
static const struct stm32_clk_info stm32f4_clk_info = {
/* 180 MHz */
.sys_pll_psc = {
.pll_n = 360,
.pll_p = 2,
.pll_q = 8,
.ahb_psc = AHB_PSC_1,
.apb1_psc = APB_PSC_4,
.apb2_psc = APB_PSC_2,
},
.has_overdrive = false,
.v2 = false,
};
static const struct stm32_clk_info stm32f7_clk_info = {
/* 200 MHz */
.sys_pll_psc = {
.pll_n = 400,
.pll_p = 2,
.pll_q = 8,
.ahb_psc = AHB_PSC_1,
.apb1_psc = APB_PSC_4,
.apb2_psc = APB_PSC_2,
},
.has_overdrive = true,
.v2 = true,
};
struct stm32_clk {
struct stm32_rcc_regs *base;
struct stm32_pwr_regs *pwr_regs;
struct stm32_clk_info info;
unsigned long hse_rate;
};
static int configure_clocks(struct udevice *dev)
{
struct stm32_clk *priv = dev_get_priv(dev);
struct stm32_rcc_regs *regs = priv->base;
struct stm32_pwr_regs *pwr = priv->pwr_regs;
struct pll_psc *sys_pll_psc = &priv->info.sys_pll_psc;
u32 pllsaicfgr = 0;
/* Reset RCC configuration */
setbits_le32(&regs->cr, RCC_CR_HSION);
writel(0, &regs->cfgr); /* Reset CFGR */
clrbits_le32(&regs->cr, (RCC_CR_HSEON | RCC_CR_CSSON
| RCC_CR_PLLON | RCC_CR_PLLSAION));
writel(0x24003010, &regs->pllcfgr); /* Reset value from RM */
clrbits_le32(&regs->cr, RCC_CR_HSEBYP);
writel(0, &regs->cir); /* Disable all interrupts */
/* Configure for HSE+PLL operation */
setbits_le32(&regs->cr, RCC_CR_HSEON);
while (!(readl(&regs->cr) & RCC_CR_HSERDY))
;
setbits_le32(&regs->cfgr, ((
sys_pll_psc->ahb_psc << RCC_CFGR_HPRE_SHIFT)
| (sys_pll_psc->apb1_psc << RCC_CFGR_PPRE1_SHIFT)
| (sys_pll_psc->apb2_psc << RCC_CFGR_PPRE2_SHIFT)));
/* Configure the main PLL */
setbits_le32(&regs->pllcfgr, RCC_PLLCFGR_PLLSRC); /* pll source HSE */
clrsetbits_le32(&regs->pllcfgr, RCC_PLLCFGR_PLLM_MASK,
sys_pll_psc->pll_m << RCC_PLLCFGR_PLLM_SHIFT);
clrsetbits_le32(&regs->pllcfgr, RCC_PLLCFGR_PLLN_MASK,
sys_pll_psc->pll_n << RCC_PLLCFGR_PLLN_SHIFT);
clrsetbits_le32(&regs->pllcfgr, RCC_PLLCFGR_PLLP_MASK,
((sys_pll_psc->pll_p >> 1) - 1) << RCC_PLLCFGR_PLLP_SHIFT);
clrsetbits_le32(&regs->pllcfgr, RCC_PLLCFGR_PLLQ_MASK,
sys_pll_psc->pll_q << RCC_PLLCFGR_PLLQ_SHIFT);
/* Configure the SAI PLL to get a 48 MHz source */
pllsaicfgr = RCC_PLLSAICFGR_PLLSAIR_2 | RCC_PLLSAICFGR_PLLSAIQ_4 |
RCC_PLLSAICFGR_PLLSAIP_4;
pllsaicfgr |= 192 << RCC_PLLSAICFGR_PLLSAIN_SHIFT;
writel(pllsaicfgr, &regs->pllsaicfgr);
/* Enable the main PLL */
setbits_le32(&regs->cr, RCC_CR_PLLON);
while (!(readl(&regs->cr) & RCC_CR_PLLRDY))
;
if (priv->info.v2) { /*stm32f7 case */
/* select PLLSAI as 48MHz clock source */
setbits_le32(&regs->dckcfgr2, RCC_DCKCFGRX_CK48MSEL);
/* select 48MHz as SDMMC1 clock source */
clrbits_le32(&regs->dckcfgr2, RCC_DCKCFGRX_SDMMC1SEL);
/* select 48MHz as SDMMC2 clock source */
clrbits_le32(&regs->dckcfgr2, RCC_DCKCFGR2_SDMMC2SEL);
} else { /* stm32f4 case */
/* select PLLSAI as 48MHz clock source */
setbits_le32(&regs->dckcfgr, RCC_DCKCFGRX_CK48MSEL);
/* select 48MHz as SDMMC1 clock source */
clrbits_le32(&regs->dckcfgr, RCC_DCKCFGRX_SDMMC1SEL);
}
/* Enable the SAI PLL */
setbits_le32(&regs->cr, RCC_CR_PLLSAION);
while (!(readl(&regs->cr) & RCC_CR_PLLSAIRDY))
;
setbits_le32(&regs->apb1enr, RCC_APB1ENR_PWREN);
if (priv->info.has_overdrive) {
/*
* Enable high performance mode
* System frequency up to 200 MHz
*/
setbits_le32(&pwr->cr1, PWR_CR1_ODEN);
/* Infinite wait! */
while (!(readl(&pwr->csr1) & PWR_CSR1_ODRDY))
;
/* Enable the Over-drive switch */
setbits_le32(&pwr->cr1, PWR_CR1_ODSWEN);
/* Infinite wait! */
while (!(readl(&pwr->csr1) & PWR_CSR1_ODSWRDY))
;
}
stm32_flash_latency_cfg(5);
clrbits_le32(&regs->cfgr, (RCC_CFGR_SW0 | RCC_CFGR_SW1));
setbits_le32(&regs->cfgr, RCC_CFGR_SW_PLL);
while ((readl(&regs->cfgr) & RCC_CFGR_SWS_MASK) !=
RCC_CFGR_SWS_PLL)
;
/* gate the SAI clock, needed for MMC 1&2 clocks */
setbits_le32(&regs->apb2enr, RCC_APB2ENR_SAI1EN);
#ifdef CONFIG_ETH_DESIGNWARE
/* gate the SYSCFG clock, needed to set RMII ethernet interface */
setbits_le32(&regs->apb2enr, RCC_APB2ENR_SYSCFGEN);
#endif
return 0;
}
static unsigned long stm32_clk_pll48clk_rate(struct stm32_clk *priv,
u32 sysclk)
{
struct stm32_rcc_regs *regs = priv->base;
u16 pllq, pllm, pllsain, pllsaip;
bool pllsai;
pllq = (readl(&regs->pllcfgr) & RCC_PLLCFGR_PLLQ_MASK)
>> RCC_PLLCFGR_PLLQ_SHIFT;
if (priv->info.v2) /*stm32f7 case */
pllsai = readl(&regs->dckcfgr2) & RCC_DCKCFGRX_CK48MSEL;
else
pllsai = readl(&regs->dckcfgr) & RCC_DCKCFGRX_CK48MSEL;
if (pllsai) {
/* PLL48CLK is selected from PLLSAI, get PLLSAI value */
pllm = (readl(&regs->pllcfgr) & RCC_PLLCFGR_PLLM_MASK);
pllsain = ((readl(&regs->pllsaicfgr) & RCC_PLLCFGR_PLLSAIN_MASK)
>> RCC_PLLSAICFGR_PLLSAIN_SHIFT);
pllsaip = ((((readl(&regs->pllsaicfgr) & RCC_PLLCFGR_PLLSAIP_MASK)
>> RCC_PLLSAICFGR_PLLSAIP_SHIFT) + 1) << 1);
return ((priv->hse_rate / pllm) * pllsain) / pllsaip;
}
/* PLL48CLK is selected from PLLQ */
return sysclk / pllq;
}
static unsigned long stm32_clk_get_rate(struct clk *clk)
{
struct stm32_clk *priv = dev_get_priv(clk->dev);
struct stm32_rcc_regs *regs = priv->base;
u32 sysclk = 0;
u32 shift = 0;
u16 pllm, plln, pllp;
/* Prescaler table lookups for clock computation */
u8 ahb_psc_table[16] = {
0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9
};
u8 apb_psc_table[8] = {
0, 0, 0, 0, 1, 2, 3, 4
};
if ((readl(&regs->cfgr) & RCC_CFGR_SWS_MASK) ==
RCC_CFGR_SWS_PLL) {
pllm = (readl(&regs->pllcfgr) & RCC_PLLCFGR_PLLM_MASK);
plln = ((readl(&regs->pllcfgr) & RCC_PLLCFGR_PLLN_MASK)
>> RCC_PLLCFGR_PLLN_SHIFT);
pllp = ((((readl(&regs->pllcfgr) & RCC_PLLCFGR_PLLP_MASK)
>> RCC_PLLCFGR_PLLP_SHIFT) + 1) << 1);
sysclk = ((priv->hse_rate / pllm) * plln) / pllp;
} else {
return -EINVAL;
}
switch (clk->id) {
/*
* AHB CLOCK: 3 x 32 bits consecutive registers are used :
* AHB1, AHB2 and AHB3
*/
case STM32F7_AHB1_CLOCK(GPIOA) ... STM32F7_AHB3_CLOCK(QSPI):
shift = ahb_psc_table[(
(readl(&regs->cfgr) & RCC_CFGR_AHB_PSC_MASK)
>> RCC_CFGR_HPRE_SHIFT)];
return sysclk >>= shift;
/* APB1 CLOCK */
case STM32F7_APB1_CLOCK(TIM2) ... STM32F7_APB1_CLOCK(UART8):
shift = apb_psc_table[(
(readl(&regs->cfgr) & RCC_CFGR_APB1_PSC_MASK)
>> RCC_CFGR_PPRE1_SHIFT)];
return sysclk >>= shift;
/* APB2 CLOCK */
case STM32F7_APB2_CLOCK(TIM1) ... STM32F7_APB2_CLOCK(LTDC):
/*
* particular case for SDMMC1 and SDMMC2 :
* 48Mhz source clock can be from main PLL or from
* SAI PLL
*/
switch (clk->id) {
case STM32F7_APB2_CLOCK(SDMMC1):
if (readl(&regs->dckcfgr2) & RCC_DCKCFGRX_SDMMC1SEL)
/* System clock is selected as SDMMC1 clock */
return sysclk;
else
return stm32_clk_pll48clk_rate(priv, sysclk);
break;
case STM32F7_APB2_CLOCK(SDMMC2):
if (readl(&regs->dckcfgr2) & RCC_DCKCFGR2_SDMMC2SEL)
/* System clock is selected as SDMMC2 clock */
return sysclk;
else
return stm32_clk_pll48clk_rate(priv, sysclk);
break;
}
shift = apb_psc_table[(
(readl(&regs->cfgr) & RCC_CFGR_APB2_PSC_MASK)
>> RCC_CFGR_PPRE2_SHIFT)];
return sysclk >>= shift;
default:
pr_err("clock index %ld out of range\n", clk->id);
return -EINVAL;
}
}
static ulong stm32_set_rate(struct clk *clk, ulong rate)
{
return 0;
}
static int stm32_clk_enable(struct clk *clk)
{
struct stm32_clk *priv = dev_get_priv(clk->dev);
struct stm32_rcc_regs *regs = priv->base;
u32 offset = clk->id / 32;
u32 bit_index = clk->id % 32;
debug("%s: clkid = %ld, offset from AHB1ENR is %d, bit_index = %d\n",
__func__, clk->id, offset, bit_index);
setbits_le32(&regs->ahb1enr + offset, BIT(bit_index));
return 0;
}
void clock_setup(int peripheral)
{
switch (peripheral) {
case TIMER2_CLOCK_CFG:
setbits_le32(&STM32_RCC->apb1enr, RCC_APB1ENR_TIM2EN);
break;
default:
break;
}
}
static int stm32_clk_probe(struct udevice *dev)
{
struct ofnode_phandle_args args;
struct udevice *fixed_clock_dev = NULL;
struct clk clk;
int err;
debug("%s\n", __func__);
struct stm32_clk *priv = dev_get_priv(dev);
fdt_addr_t addr;
addr = dev_read_addr(dev);
if (addr == FDT_ADDR_T_NONE)
return -EINVAL;
priv->base = (struct stm32_rcc_regs *)addr;
switch (dev_get_driver_data(dev)) {
case STM32F4:
memcpy(&priv->info, &stm32f4_clk_info,
sizeof(struct stm32_clk_info));
break;
case STM32F7:
memcpy(&priv->info, &stm32f7_clk_info,
sizeof(struct stm32_clk_info));
break;
default:
return -EINVAL;
}
/* retrieve HSE frequency (external oscillator) */
err = uclass_get_device_by_name(UCLASS_CLK, "clk-hse",
&fixed_clock_dev);
if (err) {
pr_err("Can't find fixed clock (%d)", err);
return err;
}
err = clk_request(fixed_clock_dev, &clk);
if (err) {
pr_err("Can't request %s clk (%d)", fixed_clock_dev->name,
err);
return err;
}
/*
* set pllm factor accordingly to the external oscillator
* frequency (HSE). For STM32F4 and STM32F7, we want VCO
* freq at 1MHz
* if input PLL frequency is 25Mhz, divide it by 25
*/
clk.id = 0;
priv->hse_rate = clk_get_rate(&clk);
if (priv->hse_rate < 1000000) {
pr_err("%s: unexpected HSE clock rate = %ld \"n", __func__,
priv->hse_rate);
return -EINVAL;
}
priv->info.sys_pll_psc.pll_m = priv->hse_rate / 1000000;
if (priv->info.has_overdrive) {
err = dev_read_phandle_with_args(dev, "st,syscfg", NULL, 0, 0,
&args);
if (err) {
debug("%s: can't find syscon device (%d)\n", __func__,
err);
return err;
}
priv->pwr_regs = (struct stm32_pwr_regs *)ofnode_get_addr(args.node);
}
configure_clocks(dev);
return 0;
}
static int stm32_clk_of_xlate(struct clk *clk, struct ofnode_phandle_args *args)
{
debug("%s(clk=%p)\n", __func__, clk);
if (args->args_count != 2) {
debug("Invaild args_count: %d\n", args->args_count);
return -EINVAL;
}
if (args->args_count)
clk->id = args->args[1];
else
clk->id = 0;
return 0;
}
static struct clk_ops stm32_clk_ops = {
.of_xlate = stm32_clk_of_xlate,
.enable = stm32_clk_enable,
.get_rate = stm32_clk_get_rate,
.set_rate = stm32_set_rate,
};
U_BOOT_DRIVER(stm32fx_clk) = {
.name = "stm32fx_rcc_clock",
.id = UCLASS_CLK,
.ops = &stm32_clk_ops,
.probe = stm32_clk_probe,
.priv_auto_alloc_size = sizeof(struct stm32_clk),
.flags = DM_FLAG_PRE_RELOC,
};