blob: 7c47e415f05dd51e12310374b82c227504f18a69 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2008-2011 Freescale Semiconductor, Inc.
*/
#include <common.h>
#include <cpu_func.h>
#include <env.h>
#include <log.h>
#include <asm/global_data.h>
#include <asm/processor.h>
#include <env.h>
#include <ioports.h>
#include <lmb.h>
#include <asm/io.h>
#include <asm/mmu.h>
#include <asm/fsl_law.h>
#include <fsl_ddr_sdram.h>
#include <linux/delay.h>
#include "mp.h"
DECLARE_GLOBAL_DATA_PTR;
u32 fsl_ddr_get_intl3r(void);
extern u32 __spin_table[];
u32 get_my_id()
{
return mfspr(SPRN_PIR);
}
/*
* Determine if U-Boot should keep secondary cores in reset, or let them out
* of reset and hold them in a spinloop
*/
int hold_cores_in_reset(int verbose)
{
/* Default to no, overridden by 'y', 'yes', 'Y', 'Yes', or '1' */
if (env_get_yesno("mp_holdoff") == 1) {
if (verbose) {
puts("Secondary cores are being held in reset.\n");
puts("See 'mp_holdoff' environment variable\n");
}
return 1;
}
return 0;
}
int cpu_reset(u32 nr)
{
volatile ccsr_pic_t *pic = (void *)(CFG_SYS_MPC8xxx_PIC_ADDR);
out_be32(&pic->pir, 1 << nr);
/* the dummy read works around an errata on early 85xx MP PICs */
(void)in_be32(&pic->pir);
out_be32(&pic->pir, 0x0);
return 0;
}
int cpu_status(u32 nr)
{
u32 *table, id = get_my_id();
if (hold_cores_in_reset(1))
return 0;
if (nr == id) {
table = (u32 *)&__spin_table;
printf("table base @ 0x%p\n", table);
} else if (is_core_disabled(nr)) {
puts("Disabled\n");
} else {
table = (u32 *)&__spin_table + nr * NUM_BOOT_ENTRY;
printf("Running on cpu %d\n", id);
printf("\n");
printf("table @ 0x%p\n", table);
printf(" addr - 0x%08x\n", table[BOOT_ENTRY_ADDR_LOWER]);
printf(" r3 - 0x%08x\n", table[BOOT_ENTRY_R3_LOWER]);
printf(" pir - 0x%08x\n", table[BOOT_ENTRY_PIR]);
}
return 0;
}
#ifdef CONFIG_FSL_CORENET
int cpu_disable(u32 nr)
{
volatile ccsr_gur_t *gur = (void *)(CFG_SYS_MPC85xx_GUTS_ADDR);
setbits_be32(&gur->coredisrl, 1 << nr);
return 0;
}
int is_core_disabled(int nr) {
ccsr_gur_t *gur = (void *)(CFG_SYS_MPC85xx_GUTS_ADDR);
u32 coredisrl = in_be32(&gur->coredisrl);
return (coredisrl & (1 << nr));
}
#else
int cpu_disable(u32 nr)
{
volatile ccsr_gur_t *gur = (void *)(CFG_SYS_MPC85xx_GUTS_ADDR);
switch (nr) {
case 0:
setbits_be32(&gur->devdisr, MPC85xx_DEVDISR_CPU0);
break;
case 1:
setbits_be32(&gur->devdisr, MPC85xx_DEVDISR_CPU1);
break;
default:
printf("Invalid cpu number for disable %d\n", nr);
return 1;
}
return 0;
}
int is_core_disabled(int nr) {
ccsr_gur_t *gur = (void *)(CFG_SYS_MPC85xx_GUTS_ADDR);
u32 devdisr = in_be32(&gur->devdisr);
switch (nr) {
case 0:
return (devdisr & MPC85xx_DEVDISR_CPU0);
case 1:
return (devdisr & MPC85xx_DEVDISR_CPU1);
default:
printf("Invalid cpu number for disable %d\n", nr);
}
return 0;
}
#endif
static u8 boot_entry_map[4] = {
0,
BOOT_ENTRY_PIR,
BOOT_ENTRY_R3_LOWER,
};
int cpu_release(u32 nr, int argc, char *const argv[])
{
u32 i, val, *table = (u32 *)&__spin_table + nr * NUM_BOOT_ENTRY;
u64 boot_addr;
if (hold_cores_in_reset(1))
return 0;
if (nr == get_my_id()) {
printf("Invalid to release the boot core.\n\n");
return 1;
}
if (argc != 4) {
printf("Invalid number of arguments to release.\n\n");
return 1;
}
boot_addr = simple_strtoull(argv[0], NULL, 16);
/* handle pir, r3 */
for (i = 1; i < 3; i++) {
if (argv[i][0] != '-') {
u8 entry = boot_entry_map[i];
val = hextoul(argv[i], NULL);
table[entry] = val;
}
}
table[BOOT_ENTRY_ADDR_UPPER] = (u32)(boot_addr >> 32);
/* ensure all table updates complete before final address write */
eieio();
table[BOOT_ENTRY_ADDR_LOWER] = (u32)(boot_addr & 0xffffffff);
return 0;
}
u32 determine_mp_bootpg(unsigned int *pagesize)
{
u32 bootpg;
#ifdef CONFIG_SYS_FSL_ERRATUM_A004468
u32 svr = get_svr();
u32 granule_size, check;
struct law_entry e;
#endif
/* use last 4K of mapped memory */
bootpg = ((gd->ram_size > CFG_MAX_MEM_MAPPED) ?
CFG_MAX_MEM_MAPPED : gd->ram_size) +
CFG_SYS_SDRAM_BASE - 4096;
if (pagesize)
*pagesize = 4096;
#ifdef CONFIG_SYS_FSL_ERRATUM_A004468
/*
* Erratum A004468 has two parts. The 3-way interleaving applies to T4240,
* to be fixed in rev 2.0. The 2-way interleaving applies to many SoCs. But
* the way boot page chosen in u-boot avoids hitting this erratum. So only
* thw workaround for 3-way interleaving is needed.
*
* To make sure boot page translation works with 3-Way DDR interleaving
* enforce a check for the following constrains
* 8K granule size requires BRSIZE=8K and
* bootpg >> log2(BRSIZE) %3 == 1
* 4K and 1K granule size requires BRSIZE=4K and
* bootpg >> log2(BRSIZE) %3 == 0
*/
if (SVR_SOC_VER(svr) == SVR_T4240 && SVR_MAJ(svr) < 2) {
e = find_law(bootpg);
switch (e.trgt_id) {
case LAW_TRGT_IF_DDR_INTLV_123:
granule_size = fsl_ddr_get_intl3r() & 0x1f;
if (granule_size == FSL_DDR_3WAY_8KB_INTERLEAVING) {
if (pagesize)
*pagesize = 8192;
bootpg &= 0xffffe000; /* align to 8KB */
check = bootpg >> 13;
while ((check % 3) != 1)
check--;
bootpg = check << 13;
debug("Boot page (8K) at 0x%08x\n", bootpg);
break;
} else {
bootpg &= 0xfffff000; /* align to 4KB */
check = bootpg >> 12;
while ((check % 3) != 0)
check--;
bootpg = check << 12;
debug("Boot page (4K) at 0x%08x\n", bootpg);
}
break;
default:
break;
}
}
#endif /* CONFIG_SYS_FSL_ERRATUM_A004468 */
return bootpg;
}
phys_addr_t get_spin_phys_addr(void)
{
return virt_to_phys(&__spin_table);
}
#ifdef CONFIG_FSL_CORENET
static void plat_mp_up(unsigned long bootpg, unsigned int pagesize)
{
u32 cpu_up_mask, whoami, brsize = LAW_SIZE_4K;
u32 *table = (u32 *)&__spin_table;
volatile ccsr_gur_t *gur;
volatile ccsr_local_t *ccm;
volatile ccsr_rcpm_t *rcpm;
volatile ccsr_pic_t *pic;
int timeout = 10;
u32 mask = cpu_mask();
struct law_entry e;
gur = (void *)(CFG_SYS_MPC85xx_GUTS_ADDR);
ccm = (void *)(CFG_SYS_FSL_CORENET_CCM_ADDR);
rcpm = (void *)(CFG_SYS_FSL_CORENET_RCPM_ADDR);
pic = (void *)(CFG_SYS_MPC8xxx_PIC_ADDR);
whoami = in_be32(&pic->whoami);
cpu_up_mask = 1 << whoami;
out_be32(&ccm->bstrl, bootpg);
e = find_law(bootpg);
/* pagesize is only 4K or 8K */
if (pagesize == 8192)
brsize = LAW_SIZE_8K;
out_be32(&ccm->bstrar, LAW_EN | e.trgt_id << 20 | brsize);
debug("BRSIZE is 0x%x\n", brsize);
/* readback to sync write */
in_be32(&ccm->bstrar);
/* disable time base at the platform */
out_be32(&rcpm->ctbenrl, cpu_up_mask);
out_be32(&gur->brrl, mask);
/* wait for everyone */
while (timeout) {
unsigned int i, cpu, nr_cpus = cpu_numcores();
for_each_cpu(i, cpu, nr_cpus, mask) {
if (table[cpu * NUM_BOOT_ENTRY + BOOT_ENTRY_ADDR_LOWER])
cpu_up_mask |= (1 << cpu);
}
if ((cpu_up_mask & mask) == mask)
break;
udelay(100);
timeout--;
}
if (timeout == 0)
printf("CPU up timeout. CPU up mask is %x should be %x\n",
cpu_up_mask, mask);
/* enable time base at the platform */
out_be32(&rcpm->ctbenrl, 0);
/* readback to sync write */
in_be32(&rcpm->ctbenrl);
mtspr(SPRN_TBWU, 0);
mtspr(SPRN_TBWL, 0);
out_be32(&rcpm->ctbenrl, mask);
#ifdef CONFIG_MPC8xxx_DISABLE_BPTR
/*
* Disabling Boot Page Translation allows the memory region 0xfffff000
* to 0xffffffff to be used normally. Leaving Boot Page Translation
* enabled remaps 0xfffff000 to SDRAM which makes that memory region
* unusable for normal operation but it does allow OSes to easily
* reset a processor core to put it back into U-Boot's spinloop.
*/
clrbits_be32(&ccm->bstrar, LAW_EN);
#endif
}
#else
static void plat_mp_up(unsigned long bootpg, unsigned int pagesize)
{
u32 up, cpu_up_mask, whoami;
u32 *table = (u32 *)&__spin_table;
volatile u32 bpcr;
volatile ccsr_local_ecm_t *ecm = (void *)(CFG_SYS_MPC85xx_ECM_ADDR);
volatile ccsr_gur_t *gur = (void *)(CFG_SYS_MPC85xx_GUTS_ADDR);
volatile ccsr_pic_t *pic = (void *)(CFG_SYS_MPC8xxx_PIC_ADDR);
u32 devdisr;
int timeout = 10;
whoami = in_be32(&pic->whoami);
out_be32(&ecm->bptr, 0x80000000 | (bootpg >> 12));
/* disable time base at the platform */
devdisr = in_be32(&gur->devdisr);
if (whoami)
devdisr |= MPC85xx_DEVDISR_TB0;
else
devdisr |= MPC85xx_DEVDISR_TB1;
out_be32(&gur->devdisr, devdisr);
/* release the hounds */
up = ((1 << cpu_numcores()) - 1);
bpcr = in_be32(&ecm->eebpcr);
bpcr |= (up << 24);
out_be32(&ecm->eebpcr, bpcr);
asm("sync; isync; msync");
cpu_up_mask = 1 << whoami;
/* wait for everyone */
while (timeout) {
int i;
for (i = 0; i < cpu_numcores(); i++) {
if (table[i * NUM_BOOT_ENTRY + BOOT_ENTRY_ADDR_LOWER])
cpu_up_mask |= (1 << i);
};
if ((cpu_up_mask & up) == up)
break;
udelay(100);
timeout--;
}
if (timeout == 0)
printf("CPU up timeout. CPU up mask is %x should be %x\n",
cpu_up_mask, up);
/* enable time base at the platform */
if (whoami)
devdisr |= MPC85xx_DEVDISR_TB1;
else
devdisr |= MPC85xx_DEVDISR_TB0;
out_be32(&gur->devdisr, devdisr);
/* readback to sync write */
in_be32(&gur->devdisr);
mtspr(SPRN_TBWU, 0);
mtspr(SPRN_TBWL, 0);
devdisr &= ~(MPC85xx_DEVDISR_TB0 | MPC85xx_DEVDISR_TB1);
out_be32(&gur->devdisr, devdisr);
#ifdef CONFIG_MPC8xxx_DISABLE_BPTR
/*
* Disabling Boot Page Translation allows the memory region 0xfffff000
* to 0xffffffff to be used normally. Leaving Boot Page Translation
* enabled remaps 0xfffff000 to SDRAM which makes that memory region
* unusable for normal operation but it does allow OSes to easily
* reset a processor core to put it back into U-Boot's spinloop.
*/
clrbits_be32(&ecm->bptr, 0x80000000);
#endif
}
#endif
void cpu_mp_lmb_reserve(struct lmb *lmb)
{
u32 bootpg = determine_mp_bootpg(NULL);
lmb_reserve(lmb, bootpg, 4096);
}
void setup_mp(void)
{
extern u32 __secondary_start_page;
extern u32 __bootpg_addr, __spin_table_addr, __second_half_boot_page;
int i;
ulong fixup = (u32)&__secondary_start_page;
u32 bootpg, bootpg_map, pagesize;
bootpg = determine_mp_bootpg(&pagesize);
/*
* pagesize is only 4K or 8K
* we only use the last 4K of boot page
* bootpg_map saves the address for the boot page
* 8K is used for the workaround of 3-way DDR interleaving
*/
bootpg_map = bootpg;
if (pagesize == 8192)
bootpg += 4096; /* use 2nd half */
/* Some OSes expect secondary cores to be held in reset */
if (hold_cores_in_reset(0))
return;
/*
* Store the bootpg's cache-able half address for use by secondary
* CPU cores to continue to boot
*/
__bootpg_addr = (u32)virt_to_phys(&__second_half_boot_page);
/* Store spin table's physical address for use by secondary cores */
__spin_table_addr = (u32)get_spin_phys_addr();
/* flush bootpg it before copying invalidate any staled cacheline */
flush_cache(bootpg, 4096);
/* look for the tlb covering the reset page, there better be one */
i = find_tlb_idx((void *)BPTR_VIRT_ADDR, 1);
/* we found a match */
if (i != -1) {
/* map reset page to bootpg so we can copy code there */
disable_tlb(i);
set_tlb(1, BPTR_VIRT_ADDR, bootpg, /* tlb, epn, rpn */
MAS3_SX|MAS3_SW|MAS3_SR, MAS2_I|MAS2_G, /* perms, wimge */
0, i, BOOKE_PAGESZ_4K, 1); /* ts, esel, tsize, iprot */
memcpy((void *)BPTR_VIRT_ADDR, (void *)fixup, 4096);
plat_mp_up(bootpg_map, pagesize);
} else {
puts("WARNING: No reset page TLB. "
"Skipping secondary core setup\n");
}
}