| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Keystone2: DDR3 initialization |
| * |
| * (C) Copyright 2012-2014 |
| * Texas Instruments Incorporated, <www.ti.com> |
| */ |
| |
| #include <cpu_func.h> |
| #include <env.h> |
| #include <asm/io.h> |
| #include <common.h> |
| #include <asm/arch/msmc.h> |
| #include <asm/arch/ddr3.h> |
| #include <asm/arch/psc_defs.h> |
| #include <linux/delay.h> |
| |
| #include <asm/ti-common/ti-edma3.h> |
| |
| #define DDR3_EDMA_BLK_SIZE_SHIFT 10 |
| #define DDR3_EDMA_BLK_SIZE (1 << DDR3_EDMA_BLK_SIZE_SHIFT) |
| #define DDR3_EDMA_BCNT 0x8000 |
| #define DDR3_EDMA_CCNT 1 |
| #define DDR3_EDMA_XF_SIZE (DDR3_EDMA_BLK_SIZE * DDR3_EDMA_BCNT) |
| #define DDR3_EDMA_SLOT_NUM 1 |
| |
| void ddr3_init_ddrphy(u32 base, struct ddr3_phy_config *phy_cfg) |
| { |
| unsigned int tmp; |
| |
| while ((__raw_readl(base + KS2_DDRPHY_PGSR0_OFFSET) |
| & 0x00000001) != 0x00000001) |
| ; |
| |
| __raw_writel(phy_cfg->pllcr, base + KS2_DDRPHY_PLLCR_OFFSET); |
| |
| tmp = __raw_readl(base + KS2_DDRPHY_PGCR1_OFFSET); |
| tmp &= ~(phy_cfg->pgcr1_mask); |
| tmp |= phy_cfg->pgcr1_val; |
| __raw_writel(tmp, base + KS2_DDRPHY_PGCR1_OFFSET); |
| |
| __raw_writel(phy_cfg->ptr0, base + KS2_DDRPHY_PTR0_OFFSET); |
| __raw_writel(phy_cfg->ptr1, base + KS2_DDRPHY_PTR1_OFFSET); |
| __raw_writel(phy_cfg->ptr3, base + KS2_DDRPHY_PTR3_OFFSET); |
| __raw_writel(phy_cfg->ptr4, base + KS2_DDRPHY_PTR4_OFFSET); |
| |
| tmp = __raw_readl(base + KS2_DDRPHY_DCR_OFFSET); |
| tmp &= ~(phy_cfg->dcr_mask); |
| tmp |= phy_cfg->dcr_val; |
| __raw_writel(tmp, base + KS2_DDRPHY_DCR_OFFSET); |
| |
| __raw_writel(phy_cfg->dtpr0, base + KS2_DDRPHY_DTPR0_OFFSET); |
| __raw_writel(phy_cfg->dtpr1, base + KS2_DDRPHY_DTPR1_OFFSET); |
| __raw_writel(phy_cfg->dtpr2, base + KS2_DDRPHY_DTPR2_OFFSET); |
| __raw_writel(phy_cfg->mr0, base + KS2_DDRPHY_MR0_OFFSET); |
| __raw_writel(phy_cfg->mr1, base + KS2_DDRPHY_MR1_OFFSET); |
| __raw_writel(phy_cfg->mr2, base + KS2_DDRPHY_MR2_OFFSET); |
| __raw_writel(phy_cfg->dtcr, base + KS2_DDRPHY_DTCR_OFFSET); |
| __raw_writel(phy_cfg->pgcr2, base + KS2_DDRPHY_PGCR2_OFFSET); |
| |
| __raw_writel(phy_cfg->zq0cr1, base + KS2_DDRPHY_ZQ0CR1_OFFSET); |
| __raw_writel(phy_cfg->zq1cr1, base + KS2_DDRPHY_ZQ1CR1_OFFSET); |
| __raw_writel(phy_cfg->zq2cr1, base + KS2_DDRPHY_ZQ2CR1_OFFSET); |
| |
| __raw_writel(phy_cfg->pir_v1, base + KS2_DDRPHY_PIR_OFFSET); |
| while ((__raw_readl(base + KS2_DDRPHY_PGSR0_OFFSET) & 0x1) != 0x1) |
| ; |
| |
| if (cpu_is_k2g()) { |
| clrsetbits_le32(base + KS2_DDRPHY_DATX8_2_OFFSET, |
| phy_cfg->datx8_2_mask, |
| phy_cfg->datx8_2_val); |
| |
| clrsetbits_le32(base + KS2_DDRPHY_DATX8_3_OFFSET, |
| phy_cfg->datx8_3_mask, |
| phy_cfg->datx8_3_val); |
| |
| clrsetbits_le32(base + KS2_DDRPHY_DATX8_4_OFFSET, |
| phy_cfg->datx8_4_mask, |
| phy_cfg->datx8_4_val); |
| |
| clrsetbits_le32(base + KS2_DDRPHY_DATX8_5_OFFSET, |
| phy_cfg->datx8_5_mask, |
| phy_cfg->datx8_5_val); |
| |
| clrsetbits_le32(base + KS2_DDRPHY_DATX8_6_OFFSET, |
| phy_cfg->datx8_6_mask, |
| phy_cfg->datx8_6_val); |
| |
| clrsetbits_le32(base + KS2_DDRPHY_DATX8_7_OFFSET, |
| phy_cfg->datx8_7_mask, |
| phy_cfg->datx8_7_val); |
| |
| clrsetbits_le32(base + KS2_DDRPHY_DATX8_8_OFFSET, |
| phy_cfg->datx8_8_mask, |
| phy_cfg->datx8_8_val); |
| } |
| |
| __raw_writel(phy_cfg->pir_v2, base + KS2_DDRPHY_PIR_OFFSET); |
| while ((__raw_readl(base + KS2_DDRPHY_PGSR0_OFFSET) & 0x1) != 0x1) |
| ; |
| } |
| |
| void ddr3_init_ddremif(u32 base, struct ddr3_emif_config *emif_cfg) |
| { |
| __raw_writel(emif_cfg->sdcfg, base + KS2_DDR3_SDCFG_OFFSET); |
| __raw_writel(emif_cfg->sdtim1, base + KS2_DDR3_SDTIM1_OFFSET); |
| __raw_writel(emif_cfg->sdtim2, base + KS2_DDR3_SDTIM2_OFFSET); |
| __raw_writel(emif_cfg->sdtim3, base + KS2_DDR3_SDTIM3_OFFSET); |
| __raw_writel(emif_cfg->sdtim4, base + KS2_DDR3_SDTIM4_OFFSET); |
| __raw_writel(emif_cfg->zqcfg, base + KS2_DDR3_ZQCFG_OFFSET); |
| __raw_writel(emif_cfg->sdrfc, base + KS2_DDR3_SDRFC_OFFSET); |
| } |
| |
| int ddr3_ecc_support_rmw(u32 base) |
| { |
| u32 value = __raw_readl(base + KS2_DDR3_MIDR_OFFSET); |
| |
| /* Check the DDR3 controller ID reg if the controllers |
| supports ECC RMW or not */ |
| if (value == 0x40461C02) |
| return 1; |
| |
| return 0; |
| } |
| |
| static void ddr3_ecc_config(u32 base, u32 value) |
| { |
| u32 data; |
| |
| __raw_writel(value, base + KS2_DDR3_ECC_CTRL_OFFSET); |
| udelay(100000); /* delay required to synchronize across clock domains */ |
| |
| if (value & KS2_DDR3_ECC_EN) { |
| /* Clear the 1-bit error count */ |
| data = __raw_readl(base + KS2_DDR3_ONE_BIT_ECC_ERR_CNT_OFFSET); |
| __raw_writel(data, base + KS2_DDR3_ONE_BIT_ECC_ERR_CNT_OFFSET); |
| |
| /* enable the ECC interrupt */ |
| __raw_writel(KS2_DDR3_1B_ECC_ERR_SYS | KS2_DDR3_2B_ECC_ERR_SYS | |
| KS2_DDR3_WR_ECC_ERR_SYS, |
| base + KS2_DDR3_ECC_INT_ENABLE_SET_SYS_OFFSET); |
| |
| /* Clear the ECC error interrupt status */ |
| __raw_writel(KS2_DDR3_1B_ECC_ERR_SYS | KS2_DDR3_2B_ECC_ERR_SYS | |
| KS2_DDR3_WR_ECC_ERR_SYS, |
| base + KS2_DDR3_ECC_INT_STATUS_OFFSET); |
| } |
| } |
| |
| static void ddr3_reset_data(u32 base, u32 ddr3_size) |
| { |
| u32 mpax[2]; |
| u32 seg_num; |
| u32 seg, blks, dst, edma_blks; |
| struct edma3_slot_config slot; |
| struct edma3_channel_config edma_channel; |
| u32 edma_src[DDR3_EDMA_BLK_SIZE/4] __aligned(16) = {0, }; |
| |
| /* Setup an edma to copy the 1k block to the entire DDR */ |
| puts("\nClear entire DDR3 memory to enable ECC\n"); |
| |
| /* save the SES MPAX regs */ |
| if (cpu_is_k2g()) |
| msmc_get_ses_mpax(K2G_MSMC_SEGMENT_ARM, 0, mpax); |
| else |
| msmc_get_ses_mpax(K2HKLE_MSMC_SEGMENT_ARM, 0, mpax); |
| |
| /* setup edma slot 1 configuration */ |
| slot.opt = EDMA3_SLOPT_TRANS_COMP_INT_ENB | |
| EDMA3_SLOPT_COMP_CODE(0) | |
| EDMA3_SLOPT_STATIC | EDMA3_SLOPT_AB_SYNC; |
| slot.bcnt = DDR3_EDMA_BCNT; |
| slot.acnt = DDR3_EDMA_BLK_SIZE; |
| slot.ccnt = DDR3_EDMA_CCNT; |
| slot.src_bidx = 0; |
| slot.dst_bidx = DDR3_EDMA_BLK_SIZE; |
| slot.src_cidx = 0; |
| slot.dst_cidx = 0; |
| slot.link = EDMA3_PARSET_NULL_LINK; |
| slot.bcntrld = 0; |
| edma3_slot_configure(KS2_EDMA0_BASE, DDR3_EDMA_SLOT_NUM, &slot); |
| |
| /* configure quik edma channel */ |
| edma_channel.slot = DDR3_EDMA_SLOT_NUM; |
| edma_channel.chnum = 0; |
| edma_channel.complete_code = 0; |
| /* event trigger after dst update */ |
| edma_channel.trigger_slot_word = EDMA3_TWORD(dst); |
| qedma3_start(KS2_EDMA0_BASE, &edma_channel); |
| |
| /* DDR3 size in segments (4KB seg size) */ |
| seg_num = ddr3_size << (30 - KS2_MSMC_SEG_SIZE_SHIFT); |
| |
| for (seg = 0; seg < seg_num; seg += KS2_MSMC_MAP_SEG_NUM) { |
| /* map 2GB 36-bit DDR address to 32-bit DDR address in EMIF |
| access slave interface so that edma driver can access */ |
| if (cpu_is_k2g()) { |
| msmc_map_ses_segment(K2G_MSMC_SEGMENT_ARM, 0, |
| base >> KS2_MSMC_SEG_SIZE_SHIFT, |
| KS2_MSMC_DST_SEG_BASE + seg, |
| MPAX_SEG_2G); |
| } else { |
| msmc_map_ses_segment(K2HKLE_MSMC_SEGMENT_ARM, 0, |
| base >> KS2_MSMC_SEG_SIZE_SHIFT, |
| KS2_MSMC_DST_SEG_BASE + seg, |
| MPAX_SEG_2G); |
| } |
| |
| if ((seg_num - seg) > KS2_MSMC_MAP_SEG_NUM) |
| edma_blks = KS2_MSMC_MAP_SEG_NUM << |
| (KS2_MSMC_SEG_SIZE_SHIFT |
| - DDR3_EDMA_BLK_SIZE_SHIFT); |
| else |
| edma_blks = (seg_num - seg) << (KS2_MSMC_SEG_SIZE_SHIFT |
| - DDR3_EDMA_BLK_SIZE_SHIFT); |
| |
| /* Use edma driver to scrub 2GB DDR memory */ |
| for (dst = base, blks = 0; blks < edma_blks; |
| blks += DDR3_EDMA_BCNT, dst += DDR3_EDMA_XF_SIZE) { |
| edma3_set_src_addr(KS2_EDMA0_BASE, |
| edma_channel.slot, (u32)edma_src); |
| edma3_set_dest_addr(KS2_EDMA0_BASE, |
| edma_channel.slot, (u32)dst); |
| |
| while (edma3_check_for_transfer(KS2_EDMA0_BASE, |
| &edma_channel)) |
| udelay(10); |
| } |
| } |
| |
| qedma3_stop(KS2_EDMA0_BASE, &edma_channel); |
| |
| /* restore the SES MPAX regs */ |
| if (cpu_is_k2g()) |
| msmc_set_ses_mpax(K2G_MSMC_SEGMENT_ARM, 0, mpax); |
| else |
| msmc_set_ses_mpax(K2HKLE_MSMC_SEGMENT_ARM, 0, mpax); |
| } |
| |
| static void ddr3_ecc_init_range(u32 base) |
| { |
| u32 ecc_val = KS2_DDR3_ECC_EN; |
| u32 rmw = ddr3_ecc_support_rmw(base); |
| |
| if (rmw) |
| ecc_val |= KS2_DDR3_ECC_RMW_EN; |
| |
| __raw_writel(0, base + KS2_DDR3_ECC_ADDR_RANGE1_OFFSET); |
| |
| ddr3_ecc_config(base, ecc_val); |
| } |
| |
| void ddr3_enable_ecc(u32 base, int test) |
| { |
| u32 ecc_val = KS2_DDR3_ECC_ENABLE; |
| u32 rmw = ddr3_ecc_support_rmw(base); |
| |
| if (test) |
| ecc_val |= KS2_DDR3_ECC_ADDR_RNG_1_EN; |
| |
| if (!rmw) { |
| if (!test) |
| /* by default, disable ecc when rmw = 0 and no |
| ecc test */ |
| ecc_val = 0; |
| } else { |
| ecc_val |= KS2_DDR3_ECC_RMW_EN; |
| } |
| |
| ddr3_ecc_config(base, ecc_val); |
| } |
| |
| void ddr3_disable_ecc(u32 base) |
| { |
| ddr3_ecc_config(base, 0); |
| } |
| |
| #if defined(CONFIG_SOC_K2HK) || defined(CONFIG_SOC_K2L) |
| static void cic_init(u32 base) |
| { |
| /* Disable CIC global interrupts */ |
| __raw_writel(0, base + KS2_CIC_GLOBAL_ENABLE); |
| |
| /* Set to normal mode, no nesting, no priority hold */ |
| __raw_writel(0, base + KS2_CIC_CTRL); |
| __raw_writel(0, base + KS2_CIC_HOST_CTRL); |
| |
| /* Enable CIC global interrupts */ |
| __raw_writel(1, base + KS2_CIC_GLOBAL_ENABLE); |
| } |
| |
| static void cic_map_cic_to_gic(u32 base, u32 chan_num, u32 irq_num) |
| { |
| /* Map the system interrupt to a CIC channel */ |
| __raw_writeb(chan_num, base + KS2_CIC_CHAN_MAP(0) + irq_num); |
| |
| /* Enable CIC system interrupt */ |
| __raw_writel(irq_num, base + KS2_CIC_SYS_ENABLE_IDX_SET); |
| |
| /* Enable CIC Host interrupt */ |
| __raw_writel(chan_num, base + KS2_CIC_HOST_ENABLE_IDX_SET); |
| } |
| |
| static void ddr3_map_ecc_cic2_irq(u32 base) |
| { |
| cic_init(base); |
| cic_map_cic_to_gic(base, KS2_CIC2_DDR3_ECC_CHAN_NUM, |
| KS2_CIC2_DDR3_ECC_IRQ_NUM); |
| } |
| #endif |
| |
| void ddr3_init_ecc(u32 base, u32 ddr3_size) |
| { |
| if (!ddr3_ecc_support_rmw(base)) { |
| ddr3_disable_ecc(base); |
| return; |
| } |
| |
| ddr3_ecc_init_range(base); |
| ddr3_reset_data(CFG_SYS_SDRAM_BASE, ddr3_size); |
| |
| /* mapping DDR3 ECC system interrupt from CIC2 to GIC */ |
| #if defined(CONFIG_SOC_K2HK) || defined(CONFIG_SOC_K2L) |
| ddr3_map_ecc_cic2_irq(KS2_CIC2_BASE); |
| #endif |
| ddr3_enable_ecc(base, 0); |
| } |
| |
| void ddr3_check_ecc_int(u32 base) |
| { |
| char *env; |
| int ecc_test = 0; |
| u32 value = __raw_readl(base + KS2_DDR3_ECC_INT_STATUS_OFFSET); |
| |
| env = env_get("ecc_test"); |
| if (env) |
| ecc_test = simple_strtol(env, NULL, 0); |
| |
| if (value & KS2_DDR3_WR_ECC_ERR_SYS) |
| puts("DDR3 ECC write error interrupted\n"); |
| |
| if (value & KS2_DDR3_2B_ECC_ERR_SYS) { |
| puts("DDR3 ECC 2-bit error interrupted\n"); |
| |
| if (!ecc_test) { |
| puts("Resetting the device ...\n"); |
| reset_cpu(); |
| } |
| } |
| |
| value = __raw_readl(base + KS2_DDR3_ONE_BIT_ECC_ERR_CNT_OFFSET); |
| if (value) { |
| printf("1-bit ECC err count: 0x%x\n", value); |
| value = __raw_readl(base + |
| KS2_DDR3_ONE_BIT_ECC_ERR_ADDR_LOG_OFFSET); |
| printf("1-bit ECC err address log: 0x%x\n", value); |
| } |
| } |
| |
| void ddr3_reset_ddrphy(void) |
| { |
| u32 tmp; |
| |
| /* Assert DDR3A PHY reset */ |
| tmp = readl(KS2_DDR3APLLCTL1); |
| tmp |= KS2_DDR3_PLLCTRL_PHY_RESET; |
| writel(tmp, KS2_DDR3APLLCTL1); |
| |
| /* wait 10us to catch the reset */ |
| udelay(10); |
| |
| /* Release DDR3A PHY reset */ |
| tmp = readl(KS2_DDR3APLLCTL1); |
| tmp &= ~KS2_DDR3_PLLCTRL_PHY_RESET; |
| __raw_writel(tmp, KS2_DDR3APLLCTL1); |
| } |
| |
| #ifdef CONFIG_SOC_K2HK |
| /** |
| * ddr3_reset_workaround - reset workaround in case if leveling error |
| * detected for PG 1.0 and 1.1 k2hk SoCs |
| */ |
| void ddr3_err_reset_workaround(void) |
| { |
| unsigned int tmp; |
| unsigned int tmp_a; |
| unsigned int tmp_b; |
| |
| /* |
| * Check for PGSR0 error bits of DDR3 PHY. |
| * Check for WLERR, QSGERR, WLAERR, |
| * RDERR, WDERR, REERR, WEERR error to see if they are set or not |
| */ |
| tmp_a = __raw_readl(KS2_DDR3A_DDRPHYC + KS2_DDRPHY_PGSR0_OFFSET); |
| tmp_b = __raw_readl(KS2_DDR3B_DDRPHYC + KS2_DDRPHY_PGSR0_OFFSET); |
| |
| if (((tmp_a & 0x0FE00000) != 0) || ((tmp_b & 0x0FE00000) != 0)) { |
| printf("DDR Leveling Error Detected!\n"); |
| printf("DDR3A PGSR0 = 0x%x\n", tmp_a); |
| printf("DDR3B PGSR0 = 0x%x\n", tmp_b); |
| |
| /* |
| * Write Keys to KICK registers to enable writes to registers |
| * in boot config space |
| */ |
| __raw_writel(KS2_KICK0_MAGIC, KS2_KICK0); |
| __raw_writel(KS2_KICK1_MAGIC, KS2_KICK1); |
| |
| /* |
| * Move DDR3A Module out of reset isolation by setting |
| * MDCTL23[12] = 0 |
| */ |
| tmp_a = __raw_readl(KS2_PSC_BASE + |
| PSC_REG_MDCTL(KS2_LPSC_EMIF4F_DDR3A)); |
| |
| tmp_a = PSC_REG_MDCTL_SET_RESET_ISO(tmp_a, 0); |
| __raw_writel(tmp_a, KS2_PSC_BASE + |
| PSC_REG_MDCTL(KS2_LPSC_EMIF4F_DDR3A)); |
| |
| /* |
| * Move DDR3B Module out of reset isolation by setting |
| * MDCTL24[12] = 0 |
| */ |
| tmp_b = __raw_readl(KS2_PSC_BASE + |
| PSC_REG_MDCTL(KS2_LPSC_EMIF4F_DDR3B)); |
| tmp_b = PSC_REG_MDCTL_SET_RESET_ISO(tmp_b, 0); |
| __raw_writel(tmp_b, KS2_PSC_BASE + |
| PSC_REG_MDCTL(KS2_LPSC_EMIF4F_DDR3B)); |
| |
| /* |
| * Write 0x5A69 Key to RSTCTRL[15:0] to unlock writes |
| * to RSTCTRL and RSTCFG |
| */ |
| tmp = __raw_readl(KS2_RSTCTRL); |
| tmp &= KS2_RSTCTRL_MASK; |
| tmp |= KS2_RSTCTRL_KEY; |
| __raw_writel(tmp, KS2_RSTCTRL); |
| |
| /* |
| * Set PLL Controller to drive hard reset on SW trigger by |
| * setting RSTCFG[13] = 0 |
| */ |
| tmp = __raw_readl(KS2_RSTCTRL_RSCFG); |
| tmp &= ~KS2_RSTYPE_PLL_SOFT; |
| __raw_writel(tmp, KS2_RSTCTRL_RSCFG); |
| |
| reset_cpu(); |
| } |
| } |
| #endif |