Ruchika Gupta | b9eebfa | 2014-10-15 11:35:30 +0530 | [diff] [blame] | 1 | /* |
| 2 | * SEC Descriptor Construction Library |
| 3 | * Basic job descriptor construction |
| 4 | * |
| 5 | * Copyright 2014 Freescale Semiconductor, Inc. |
| 6 | * |
| 7 | * SPDX-License-Identifier: GPL-2.0+ |
| 8 | * |
| 9 | */ |
| 10 | |
| 11 | #include <common.h> |
Raul Cardenas | 0200020 | 2015-02-27 11:22:06 -0600 | [diff] [blame^] | 12 | #include <fsl_sec.h> |
Ruchika Gupta | b9eebfa | 2014-10-15 11:35:30 +0530 | [diff] [blame] | 13 | #include "desc_constr.h" |
| 14 | #include "jobdesc.h" |
Ruchika Gupta | 3427647 | 2015-01-23 16:01:55 +0530 | [diff] [blame] | 15 | #include "rsa_caam.h" |
Ruchika Gupta | b9eebfa | 2014-10-15 11:35:30 +0530 | [diff] [blame] | 16 | |
Raul Cardenas | 0200020 | 2015-02-27 11:22:06 -0600 | [diff] [blame^] | 17 | #ifdef CONFIG_MX6 |
| 18 | /*! |
| 19 | * Secure memory run command |
| 20 | * |
| 21 | * @param sec_mem_cmd Secure memory command register |
| 22 | * @return cmd_status Secure memory command status register |
| 23 | */ |
| 24 | uint32_t secmem_set_cmd(uint32_t sec_mem_cmd) |
| 25 | { |
| 26 | uint32_t temp_reg; |
| 27 | |
| 28 | sec_out32(CAAM_SMCJR0, sec_mem_cmd); |
| 29 | |
| 30 | do { |
| 31 | temp_reg = sec_in32(CAAM_SMCSJR0); |
| 32 | } while (temp_reg & CMD_COMPLETE); |
| 33 | |
| 34 | return temp_reg; |
| 35 | } |
| 36 | |
| 37 | /*! |
| 38 | * CAAM page allocation: |
| 39 | * Allocates a partition from secure memory, with the id |
| 40 | * equal to partion_num. This will de-allocate the page |
| 41 | * if it is already allocated. The partition will have |
| 42 | * full access permissions. The permissions are set before, |
| 43 | * running a job descriptor. A memory page of secure RAM |
| 44 | * is allocated for the partition. |
| 45 | * |
| 46 | * @param page Number of the page to allocate. |
| 47 | * @param partition Number of the partition to allocate. |
| 48 | * @return 0 on success, ERROR_IN_PAGE_ALLOC otherwise |
| 49 | */ |
| 50 | int caam_page_alloc(uint8_t page_num, uint8_t partition_num) |
| 51 | { |
| 52 | uint32_t temp_reg; |
| 53 | |
| 54 | /* |
| 55 | * De-Allocate partition_num if already allocated to ARM core |
| 56 | */ |
| 57 | if (sec_in32(CAAM_SMPO_0) & PARTITION_OWNER(partition_num)) { |
| 58 | temp_reg = secmem_set_cmd(PARTITION(partition_num) | |
| 59 | CMD_PART_DEALLOC); |
| 60 | if (temp_reg & SMCSJR_AERR) { |
| 61 | printf("Error: De-allocation status 0x%X\n", temp_reg); |
| 62 | return ERROR_IN_PAGE_ALLOC; |
| 63 | } |
| 64 | } |
| 65 | |
| 66 | /* set the access rights to allow full access */ |
| 67 | sec_out32(CAAM_SMAG1JR0(partition_num), 0xF); |
| 68 | sec_out32(CAAM_SMAG2JR0(partition_num), 0xF); |
| 69 | sec_out32(CAAM_SMAPJR0(partition_num), 0xFF); |
| 70 | |
| 71 | /* Now need to allocate partition_num of secure RAM. */ |
| 72 | /* De-Allocate page_num by starting with a page inquiry command */ |
| 73 | temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_INQUIRY); |
| 74 | |
| 75 | /* if the page is owned, de-allocate it */ |
| 76 | if ((temp_reg & SMCSJR_PO) == PAGE_OWNED) { |
| 77 | temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_PAGE_DEALLOC); |
| 78 | if (temp_reg & SMCSJR_AERR) { |
| 79 | printf("Error: Allocation status 0x%X\n", temp_reg); |
| 80 | return ERROR_IN_PAGE_ALLOC; |
| 81 | } |
| 82 | } |
| 83 | |
| 84 | /* Allocate page_num to partition_num */ |
| 85 | temp_reg = secmem_set_cmd(PAGE(page_num) | PARTITION(partition_num) |
| 86 | | CMD_PAGE_ALLOC); |
| 87 | if (temp_reg & SMCSJR_AERR) { |
| 88 | printf("Error: Allocation status 0x%X\n", temp_reg); |
| 89 | return ERROR_IN_PAGE_ALLOC; |
| 90 | } |
| 91 | /* page inquiry command to ensure that the page was allocated */ |
| 92 | temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_INQUIRY); |
| 93 | |
| 94 | /* if the page is not owned => problem */ |
| 95 | if ((temp_reg & SMCSJR_PO) != PAGE_OWNED) { |
| 96 | printf("Allocation of page %d in partition %d failed 0x%X\n", |
| 97 | temp_reg, page_num, partition_num); |
| 98 | |
| 99 | return ERROR_IN_PAGE_ALLOC; |
| 100 | } |
| 101 | |
| 102 | return 0; |
| 103 | } |
| 104 | |
| 105 | int inline_cnstr_jobdesc_blob_dek(uint32_t *desc, const uint8_t *plain_txt, |
| 106 | uint8_t *dek_blob, uint32_t in_sz) |
| 107 | { |
| 108 | uint32_t ret = 0; |
| 109 | u32 aad_w1, aad_w2; |
| 110 | /* output blob will have 32 bytes key blob in beginning and |
| 111 | * 16 byte HMAC identifier at end of data blob */ |
| 112 | uint32_t out_sz = in_sz + KEY_BLOB_SIZE + MAC_SIZE; |
| 113 | /* Setting HDR for blob */ |
| 114 | uint8_t wrapped_key_hdr[8] = {HDR_TAG, 0x00, WRP_HDR_SIZE + out_sz, |
| 115 | HDR_PAR, HAB_MOD, HAB_ALG, in_sz, HAB_FLG}; |
| 116 | |
| 117 | /* initialize the blob array */ |
| 118 | memset(dek_blob, 0, out_sz + 8); |
| 119 | /* Copy the header into the DEK blob buffer */ |
| 120 | memcpy(dek_blob, wrapped_key_hdr, sizeof(wrapped_key_hdr)); |
| 121 | |
| 122 | /* allocating secure memory */ |
| 123 | ret = caam_page_alloc(PAGE_1, PARTITION_1); |
| 124 | if (ret) |
| 125 | return ret; |
| 126 | |
| 127 | /* Write DEK to secure memory */ |
| 128 | memcpy((uint32_t *)SEC_MEM_PAGE1, (uint32_t *)plain_txt, in_sz); |
| 129 | |
| 130 | unsigned long start = (unsigned long)SEC_MEM_PAGE1 & |
| 131 | ~(ARCH_DMA_MINALIGN - 1); |
| 132 | unsigned long end = ALIGN(start + 0x1000, ARCH_DMA_MINALIGN); |
| 133 | flush_dcache_range(start, end); |
| 134 | |
| 135 | /* Now configure the access rights of the partition */ |
| 136 | sec_out32(CAAM_SMAG1JR0(PARTITION_1), KS_G1); /* set group 1 */ |
| 137 | sec_out32(CAAM_SMAG2JR0(PARTITION_1), 0); /* clear group 2 */ |
| 138 | sec_out32(CAAM_SMAPJR0(PARTITION_1), PERM); /* set perm & locks */ |
| 139 | |
| 140 | /* construct aad for AES */ |
| 141 | aad_w1 = (in_sz << OP_ALG_ALGSEL_SHIFT) | KEY_AES_SRC | LD_CCM_MODE; |
| 142 | aad_w2 = 0x0; |
| 143 | |
| 144 | init_job_desc(desc, 0); |
| 145 | |
| 146 | append_cmd(desc, CMD_LOAD | CLASS_2 | KEY_IMM | KEY_ENC | |
| 147 | (0x0c << LDST_OFFSET_SHIFT) | 0x08); |
| 148 | |
| 149 | append_u32(desc, aad_w1); |
| 150 | |
| 151 | append_u32(desc, aad_w2); |
| 152 | |
| 153 | append_cmd_ptr(desc, (dma_addr_t)SEC_MEM_PAGE1, in_sz, CMD_SEQ_IN_PTR); |
| 154 | |
| 155 | append_cmd_ptr(desc, (dma_addr_t)dek_blob + 8, out_sz, CMD_SEQ_OUT_PTR); |
| 156 | |
| 157 | append_operation(desc, OP_TYPE_ENCAP_PROTOCOL | OP_PCLID_BLOB | |
| 158 | OP_PCLID_SECMEM); |
| 159 | |
| 160 | return ret; |
| 161 | } |
| 162 | #endif |
Ruchika Gupta | c5de15c | 2014-10-07 15:46:20 +0530 | [diff] [blame] | 163 | |
Ruchika Gupta | b9eebfa | 2014-10-15 11:35:30 +0530 | [diff] [blame] | 164 | void inline_cnstr_jobdesc_hash(uint32_t *desc, |
| 165 | const uint8_t *msg, uint32_t msgsz, uint8_t *digest, |
| 166 | u32 alg_type, uint32_t alg_size, int sg_tbl) |
| 167 | { |
| 168 | /* SHA 256 , output is of length 32 words */ |
| 169 | uint32_t storelen = alg_size; |
| 170 | u32 options; |
| 171 | dma_addr_t dma_addr_in, dma_addr_out; |
| 172 | |
| 173 | dma_addr_in = virt_to_phys((void *)msg); |
| 174 | dma_addr_out = virt_to_phys((void *)digest); |
| 175 | |
| 176 | init_job_desc(desc, 0); |
| 177 | append_operation(desc, OP_TYPE_CLASS2_ALG | |
| 178 | OP_ALG_AAI_HASH | OP_ALG_AS_INITFINAL | |
| 179 | OP_ALG_ENCRYPT | OP_ALG_ICV_OFF | alg_type); |
| 180 | |
| 181 | options = LDST_CLASS_2_CCB | FIFOLD_TYPE_MSG | FIFOLD_TYPE_LAST2; |
| 182 | if (sg_tbl) |
| 183 | options |= FIFOLDST_SGF; |
| 184 | if (msgsz > 0xffff) { |
| 185 | options |= FIFOLDST_EXT; |
| 186 | append_fifo_load(desc, dma_addr_in, 0, options); |
| 187 | append_cmd(desc, msgsz); |
| 188 | } else { |
| 189 | append_fifo_load(desc, dma_addr_in, msgsz, options); |
| 190 | } |
| 191 | |
| 192 | append_store(desc, dma_addr_out, storelen, |
| 193 | LDST_CLASS_2_CCB | LDST_SRCDST_BYTE_CONTEXT); |
| 194 | } |
Ruchika Gupta | c5de15c | 2014-10-07 15:46:20 +0530 | [diff] [blame] | 195 | |
| 196 | void inline_cnstr_jobdesc_blob_encap(uint32_t *desc, uint8_t *key_idnfr, |
| 197 | uint8_t *plain_txt, uint8_t *enc_blob, |
| 198 | uint32_t in_sz) |
| 199 | { |
| 200 | dma_addr_t dma_addr_key_idnfr, dma_addr_in, dma_addr_out; |
| 201 | uint32_t key_sz = KEY_IDNFR_SZ_BYTES; |
| 202 | /* output blob will have 32 bytes key blob in beginning and |
| 203 | * 16 byte HMAC identifier at end of data blob */ |
| 204 | uint32_t out_sz = in_sz + KEY_BLOB_SIZE + MAC_SIZE; |
| 205 | |
| 206 | dma_addr_key_idnfr = virt_to_phys((void *)key_idnfr); |
| 207 | dma_addr_in = virt_to_phys((void *)plain_txt); |
| 208 | dma_addr_out = virt_to_phys((void *)enc_blob); |
| 209 | |
| 210 | init_job_desc(desc, 0); |
| 211 | |
| 212 | append_key(desc, dma_addr_key_idnfr, key_sz, CLASS_2); |
| 213 | |
| 214 | append_seq_in_ptr(desc, dma_addr_in, in_sz, 0); |
| 215 | |
| 216 | append_seq_out_ptr(desc, dma_addr_out, out_sz, 0); |
| 217 | |
| 218 | append_operation(desc, OP_TYPE_ENCAP_PROTOCOL | OP_PCLID_BLOB); |
| 219 | } |
| 220 | |
| 221 | void inline_cnstr_jobdesc_blob_decap(uint32_t *desc, uint8_t *key_idnfr, |
| 222 | uint8_t *enc_blob, uint8_t *plain_txt, |
| 223 | uint32_t out_sz) |
| 224 | { |
| 225 | dma_addr_t dma_addr_key_idnfr, dma_addr_in, dma_addr_out; |
| 226 | uint32_t key_sz = KEY_IDNFR_SZ_BYTES; |
| 227 | uint32_t in_sz = out_sz + KEY_BLOB_SIZE + MAC_SIZE; |
| 228 | |
| 229 | dma_addr_key_idnfr = virt_to_phys((void *)key_idnfr); |
| 230 | dma_addr_in = virt_to_phys((void *)enc_blob); |
| 231 | dma_addr_out = virt_to_phys((void *)plain_txt); |
| 232 | |
| 233 | init_job_desc(desc, 0); |
| 234 | |
| 235 | append_key(desc, dma_addr_key_idnfr, key_sz, CLASS_2); |
| 236 | |
| 237 | append_seq_in_ptr(desc, dma_addr_in, in_sz, 0); |
| 238 | |
| 239 | append_seq_out_ptr(desc, dma_addr_out, out_sz, 0); |
| 240 | |
| 241 | append_operation(desc, OP_TYPE_DECAP_PROTOCOL | OP_PCLID_BLOB); |
| 242 | } |
| 243 | |
| 244 | /* |
| 245 | * Descriptor to instantiate RNG State Handle 0 in normal mode and |
| 246 | * load the JDKEK, TDKEK and TDSK registers |
| 247 | */ |
| 248 | void inline_cnstr_jobdesc_rng_instantiation(uint32_t *desc) |
| 249 | { |
| 250 | u32 *jump_cmd; |
| 251 | |
| 252 | init_job_desc(desc, 0); |
| 253 | |
| 254 | /* INIT RNG in non-test mode */ |
| 255 | append_operation(desc, OP_TYPE_CLASS1_ALG | OP_ALG_ALGSEL_RNG | |
| 256 | OP_ALG_AS_INIT); |
| 257 | |
| 258 | /* wait for done */ |
| 259 | jump_cmd = append_jump(desc, JUMP_CLASS_CLASS1); |
| 260 | set_jump_tgt_here(desc, jump_cmd); |
| 261 | |
| 262 | /* |
| 263 | * load 1 to clear written reg: |
| 264 | * resets the done interrrupt and returns the RNG to idle. |
| 265 | */ |
| 266 | append_load_imm_u32(desc, 1, LDST_SRCDST_WORD_CLRW); |
| 267 | |
| 268 | /* generate secure keys (non-test) */ |
| 269 | append_operation(desc, OP_TYPE_CLASS1_ALG | OP_ALG_ALGSEL_RNG | |
| 270 | OP_ALG_RNG4_SK); |
| 271 | } |
Ruchika Gupta | 3427647 | 2015-01-23 16:01:55 +0530 | [diff] [blame] | 272 | |
| 273 | /* Change key size to bytes form bits in calling function*/ |
| 274 | void inline_cnstr_jobdesc_pkha_rsaexp(uint32_t *desc, |
| 275 | struct pk_in_params *pkin, uint8_t *out, |
| 276 | uint32_t out_siz) |
| 277 | { |
| 278 | dma_addr_t dma_addr_e, dma_addr_a, dma_addr_n, dma_addr_out; |
| 279 | |
| 280 | dma_addr_e = virt_to_phys((void *)pkin->e); |
| 281 | dma_addr_a = virt_to_phys((void *)pkin->a); |
| 282 | dma_addr_n = virt_to_phys((void *)pkin->n); |
| 283 | dma_addr_out = virt_to_phys((void *)out); |
| 284 | |
| 285 | init_job_desc(desc, 0); |
| 286 | append_key(desc, dma_addr_e, pkin->e_siz, KEY_DEST_PKHA_E | CLASS_1); |
| 287 | |
| 288 | append_fifo_load(desc, dma_addr_a, |
| 289 | pkin->a_siz, LDST_CLASS_1_CCB | FIFOLD_TYPE_PK_A); |
| 290 | |
| 291 | append_fifo_load(desc, dma_addr_n, |
| 292 | pkin->n_siz, LDST_CLASS_1_CCB | FIFOLD_TYPE_PK_N); |
| 293 | |
| 294 | append_operation(desc, OP_TYPE_PK | OP_ALG_PK | OP_ALG_PKMODE_MOD_EXPO); |
| 295 | |
| 296 | append_fifo_store(desc, dma_addr_out, out_siz, |
| 297 | LDST_CLASS_1_CCB | FIFOST_TYPE_PKHA_B); |
| 298 | } |