blob: 3cee431c71ebda31f8d442c89e7733189f7b0e65 [file] [log] [blame]
Bartlomiej Sieka0ede0c32008-03-14 16:22:34 +01001/*
2 * This file was transplanted with slight modifications from Linux sources
3 * (fs/cifs/md5.c) into U-Boot by Bartlomiej Sieka <tur@semihalf.com>.
4 */
5
6/*
7 * This code implements the MD5 message-digest algorithm.
8 * The algorithm is due to Ron Rivest. This code was
9 * written by Colin Plumb in 1993, no copyright is claimed.
10 * This code is in the public domain; do with it what you wish.
11 *
12 * Equivalent code is available from RSA Data Security, Inc.
13 * This code has been tested against that, and is equivalent,
14 * except that you don't need to include two pages of legalese
15 * with every copy.
16 *
17 * To compute the message digest of a chunk of bytes, declare an
18 * MD5Context structure, pass it to MD5Init, call MD5Update as
19 * needed on buffers full of bytes, and then call MD5Final, which
20 * will fill a supplied 16-byte array with the digest.
21 */
22
23/* This code slightly modified to fit into Samba by
24 abartlet@samba.org Jun 2001
25 and to fit the cifs vfs by
26 Steve French sfrench@us.ibm.com */
27
28#include <linux/types.h>
29#include <linux/string.h>
Andy Fleming20a14a42008-04-02 16:19:07 -050030#include <u-boot/md5.h>
Bartlomiej Sieka0ede0c32008-03-14 16:22:34 +010031
32static void
33MD5Transform(__u32 buf[4], __u32 const in[16]);
34
35/*
36 * Note: this code is harmless on little-endian machines.
37 */
38static void
39byteReverse(unsigned char *buf, unsigned longs)
40{
41 __u32 t;
42 do {
43 t = (__u32) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
44 ((unsigned) buf[1] << 8 | buf[0]);
45 *(__u32 *) buf = t;
46 buf += 4;
47 } while (--longs);
48}
49
50/*
51 * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
52 * initialization constants.
53 */
54static void
55MD5Init(struct MD5Context *ctx)
56{
57 ctx->buf[0] = 0x67452301;
58 ctx->buf[1] = 0xefcdab89;
59 ctx->buf[2] = 0x98badcfe;
60 ctx->buf[3] = 0x10325476;
61
62 ctx->bits[0] = 0;
63 ctx->bits[1] = 0;
64}
65
66/*
67 * Update context to reflect the concatenation of another buffer full
68 * of bytes.
69 */
70static void
71MD5Update(struct MD5Context *ctx, unsigned char const *buf, unsigned len)
72{
73 register __u32 t;
74
75 /* Update bitcount */
76
77 t = ctx->bits[0];
78 if ((ctx->bits[0] = t + ((__u32) len << 3)) < t)
79 ctx->bits[1]++; /* Carry from low to high */
80 ctx->bits[1] += len >> 29;
81
82 t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
83
84 /* Handle any leading odd-sized chunks */
85
86 if (t) {
87 unsigned char *p = (unsigned char *) ctx->in + t;
88
89 t = 64 - t;
90 if (len < t) {
91 memmove(p, buf, len);
92 return;
93 }
94 memmove(p, buf, t);
95 byteReverse(ctx->in, 16);
96 MD5Transform(ctx->buf, (__u32 *) ctx->in);
97 buf += t;
98 len -= t;
99 }
100 /* Process data in 64-byte chunks */
101
102 while (len >= 64) {
103 memmove(ctx->in, buf, 64);
104 byteReverse(ctx->in, 16);
105 MD5Transform(ctx->buf, (__u32 *) ctx->in);
106 buf += 64;
107 len -= 64;
108 }
109
110 /* Handle any remaining bytes of data. */
111
112 memmove(ctx->in, buf, len);
113}
114
115/*
116 * Final wrapup - pad to 64-byte boundary with the bit pattern
117 * 1 0* (64-bit count of bits processed, MSB-first)
118 */
119static void
120MD5Final(unsigned char digest[16], struct MD5Context *ctx)
121{
122 unsigned int count;
123 unsigned char *p;
124
125 /* Compute number of bytes mod 64 */
126 count = (ctx->bits[0] >> 3) & 0x3F;
127
128 /* Set the first char of padding to 0x80. This is safe since there is
129 always at least one byte free */
130 p = ctx->in + count;
131 *p++ = 0x80;
132
133 /* Bytes of padding needed to make 64 bytes */
134 count = 64 - 1 - count;
135
136 /* Pad out to 56 mod 64 */
137 if (count < 8) {
138 /* Two lots of padding: Pad the first block to 64 bytes */
139 memset(p, 0, count);
140 byteReverse(ctx->in, 16);
141 MD5Transform(ctx->buf, (__u32 *) ctx->in);
142
143 /* Now fill the next block with 56 bytes */
144 memset(ctx->in, 0, 56);
145 } else {
146 /* Pad block to 56 bytes */
147 memset(p, 0, count - 8);
148 }
149 byteReverse(ctx->in, 14);
150
151 /* Append length in bits and transform */
152 ((__u32 *) ctx->in)[14] = ctx->bits[0];
153 ((__u32 *) ctx->in)[15] = ctx->bits[1];
154
155 MD5Transform(ctx->buf, (__u32 *) ctx->in);
156 byteReverse((unsigned char *) ctx->buf, 4);
157 memmove(digest, ctx->buf, 16);
158 memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */
159}
160
161/* The four core functions - F1 is optimized somewhat */
162
163/* #define F1(x, y, z) (x & y | ~x & z) */
164#define F1(x, y, z) (z ^ (x & (y ^ z)))
165#define F2(x, y, z) F1(z, x, y)
166#define F3(x, y, z) (x ^ y ^ z)
167#define F4(x, y, z) (y ^ (x | ~z))
168
169/* This is the central step in the MD5 algorithm. */
170#define MD5STEP(f, w, x, y, z, data, s) \
171 ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
172
173/*
174 * The core of the MD5 algorithm, this alters an existing MD5 hash to
175 * reflect the addition of 16 longwords of new data. MD5Update blocks
176 * the data and converts bytes into longwords for this routine.
177 */
178static void
179MD5Transform(__u32 buf[4], __u32 const in[16])
180{
181 register __u32 a, b, c, d;
182
183 a = buf[0];
184 b = buf[1];
185 c = buf[2];
186 d = buf[3];
187
188 MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
189 MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
190 MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
191 MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
192 MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
193 MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
194 MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
195 MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
196 MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
197 MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
198 MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
199 MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
200 MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
201 MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
202 MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
203 MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
204
205 MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
206 MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
207 MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
208 MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
209 MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
210 MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
211 MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
212 MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
213 MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
214 MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
215 MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
216 MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
217 MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
218 MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
219 MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
220 MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
221
222 MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
223 MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
224 MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
225 MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
226 MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
227 MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
228 MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
229 MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
230 MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
231 MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
232 MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
233 MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
234 MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
235 MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
236 MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
237 MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
238
239 MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
240 MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
241 MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
242 MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
243 MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
244 MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
245 MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
246 MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
247 MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
248 MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
249 MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
250 MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
251 MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
252 MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
253 MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
254 MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
255
256 buf[0] += a;
257 buf[1] += b;
258 buf[2] += c;
259 buf[3] += d;
260}
261
262/*
263 * Calculate and store in 'output' the MD5 digest of 'len' bytes at
264 * 'input'. 'output' must have enough space to hold 16 bytes.
265 */
266void
267md5 (unsigned char *input, int len, unsigned char output[16])
268{
269 struct MD5Context context;
270
271 MD5Init(&context);
272 MD5Update(&context, input, len);
273 MD5Final(output, &context);
274}