Jim Lin | 312693c | 2012-07-29 20:53:29 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2011 The Chromium OS Authors. |
| 3 | * (C) Copyright 2011 NVIDIA Corporation <www.nvidia.com> |
| 4 | * (C) Copyright 2006 Detlev Zundel, dzu@denx.de |
| 5 | * (C) Copyright 2006 DENX Software Engineering |
| 6 | * |
| 7 | * See file CREDITS for list of people who contributed to this |
| 8 | * project. |
| 9 | * |
| 10 | * This program is free software; you can redistribute it and/or |
| 11 | * modify it under the terms of the GNU General Public License as |
| 12 | * published by the Free Software Foundation; either version 2 of |
| 13 | * the License, or (at your option) any later version. |
| 14 | * |
| 15 | * This program is distributed in the hope that it will be useful, |
| 16 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 17 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 18 | * GNU General Public License for more details. |
| 19 | * |
| 20 | * You should have received a copy of the GNU General Public License |
| 21 | * along with this program; if not, write to the Free Software |
| 22 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| 23 | * MA 02111-1307 USA |
| 24 | */ |
| 25 | |
| 26 | #include <common.h> |
| 27 | #include <asm/io.h> |
| 28 | #include <nand.h> |
Jim Lin | 312693c | 2012-07-29 20:53:29 +0000 | [diff] [blame] | 29 | #include <asm/arch/clock.h> |
| 30 | #include <asm/arch/funcmux.h> |
Tom Warren | 150c249 | 2012-09-19 15:50:56 -0700 | [diff] [blame^] | 31 | #include <asm/arch-tegra/clk_rst.h> |
Jim Lin | 312693c | 2012-07-29 20:53:29 +0000 | [diff] [blame] | 32 | #include <asm/errno.h> |
Tom Warren | 150c249 | 2012-09-19 15:50:56 -0700 | [diff] [blame^] | 33 | #include <asm/gpio.h> |
Jim Lin | 312693c | 2012-07-29 20:53:29 +0000 | [diff] [blame] | 34 | #include <fdtdec.h> |
| 35 | #include "tegra_nand.h" |
| 36 | |
| 37 | DECLARE_GLOBAL_DATA_PTR; |
| 38 | |
| 39 | #define NAND_CMD_TIMEOUT_MS 10 |
| 40 | |
| 41 | #define SKIPPED_SPARE_BYTES 4 |
| 42 | |
| 43 | /* ECC bytes to be generated for tag data */ |
| 44 | #define TAG_ECC_BYTES 4 |
| 45 | |
| 46 | /* 64 byte oob block info for large page (== 2KB) device |
| 47 | * |
| 48 | * OOB flash layout for Tegra with Reed-Solomon 4 symbol correct ECC: |
| 49 | * Skipped bytes(4) |
| 50 | * Main area Ecc(36) |
| 51 | * Tag data(20) |
| 52 | * Tag data Ecc(4) |
| 53 | * |
| 54 | * Yaffs2 will use 16 tag bytes. |
| 55 | */ |
| 56 | static struct nand_ecclayout eccoob = { |
| 57 | .eccbytes = 36, |
| 58 | .eccpos = { |
| 59 | 4, 5, 6, 7, 8, 9, 10, 11, 12, |
| 60 | 13, 14, 15, 16, 17, 18, 19, 20, 21, |
| 61 | 22, 23, 24, 25, 26, 27, 28, 29, 30, |
| 62 | 31, 32, 33, 34, 35, 36, 37, 38, 39, |
| 63 | }, |
| 64 | .oobavail = 20, |
| 65 | .oobfree = { |
| 66 | { |
| 67 | .offset = 40, |
| 68 | .length = 20, |
| 69 | }, |
| 70 | } |
| 71 | }; |
| 72 | |
| 73 | enum { |
| 74 | ECC_OK, |
| 75 | ECC_TAG_ERROR = 1 << 0, |
| 76 | ECC_DATA_ERROR = 1 << 1 |
| 77 | }; |
| 78 | |
| 79 | /* Timing parameters */ |
| 80 | enum { |
| 81 | FDT_NAND_MAX_TRP_TREA, |
| 82 | FDT_NAND_TWB, |
| 83 | FDT_NAND_MAX_TCR_TAR_TRR, |
| 84 | FDT_NAND_TWHR, |
| 85 | FDT_NAND_MAX_TCS_TCH_TALS_TALH, |
| 86 | FDT_NAND_TWH, |
| 87 | FDT_NAND_TWP, |
| 88 | FDT_NAND_TRH, |
| 89 | FDT_NAND_TADL, |
| 90 | |
| 91 | FDT_NAND_TIMING_COUNT |
| 92 | }; |
| 93 | |
| 94 | /* Information about an attached NAND chip */ |
| 95 | struct fdt_nand { |
| 96 | struct nand_ctlr *reg; |
| 97 | int enabled; /* 1 to enable, 0 to disable */ |
| 98 | struct fdt_gpio_state wp_gpio; /* write-protect GPIO */ |
| 99 | s32 width; /* bit width, normally 8 */ |
| 100 | u32 timing[FDT_NAND_TIMING_COUNT]; |
| 101 | }; |
| 102 | |
| 103 | struct nand_drv { |
| 104 | struct nand_ctlr *reg; |
| 105 | |
| 106 | /* |
| 107 | * When running in PIO mode to get READ ID bytes from register |
| 108 | * RESP_0, we need this variable as an index to know which byte in |
| 109 | * register RESP_0 should be read. |
| 110 | * Because common code in nand_base.c invokes read_byte function two |
| 111 | * times for NAND_CMD_READID. |
| 112 | * And our controller returns 4 bytes at once in register RESP_0. |
| 113 | */ |
| 114 | int pio_byte_index; |
| 115 | struct fdt_nand config; |
| 116 | }; |
| 117 | |
| 118 | static struct nand_drv nand_ctrl; |
| 119 | static struct mtd_info *our_mtd; |
| 120 | static struct nand_chip nand_chip[CONFIG_SYS_MAX_NAND_DEVICE]; |
| 121 | |
| 122 | #ifdef CONFIG_SYS_DCACHE_OFF |
| 123 | static inline void dma_prepare(void *start, unsigned long length, |
| 124 | int is_writing) |
| 125 | { |
| 126 | } |
| 127 | #else |
| 128 | /** |
| 129 | * Prepare for a DMA transaction |
| 130 | * |
| 131 | * For a write we flush out our data. For a read we invalidate, since we |
| 132 | * need to do this before we read from the buffer after the DMA has |
| 133 | * completed, so may as well do it now. |
| 134 | * |
| 135 | * @param start Start address for DMA buffer (should be cache-aligned) |
| 136 | * @param length Length of DMA buffer in bytes |
| 137 | * @param is_writing 0 if reading, non-zero if writing |
| 138 | */ |
| 139 | static void dma_prepare(void *start, unsigned long length, int is_writing) |
| 140 | { |
| 141 | unsigned long addr = (unsigned long)start; |
| 142 | |
| 143 | length = ALIGN(length, ARCH_DMA_MINALIGN); |
| 144 | if (is_writing) |
| 145 | flush_dcache_range(addr, addr + length); |
| 146 | else |
| 147 | invalidate_dcache_range(addr, addr + length); |
| 148 | } |
| 149 | #endif |
| 150 | |
| 151 | /** |
| 152 | * Wait for command completion |
| 153 | * |
| 154 | * @param reg nand_ctlr structure |
| 155 | * @return |
| 156 | * 1 - Command completed |
| 157 | * 0 - Timeout |
| 158 | */ |
| 159 | static int nand_waitfor_cmd_completion(struct nand_ctlr *reg) |
| 160 | { |
| 161 | u32 reg_val; |
| 162 | int running; |
| 163 | int i; |
| 164 | |
| 165 | for (i = 0; i < NAND_CMD_TIMEOUT_MS * 1000; i++) { |
| 166 | if ((readl(®->command) & CMD_GO) || |
| 167 | !(readl(®->status) & STATUS_RBSY0) || |
| 168 | !(readl(®->isr) & ISR_IS_CMD_DONE)) { |
| 169 | udelay(1); |
| 170 | continue; |
| 171 | } |
| 172 | reg_val = readl(®->dma_mst_ctrl); |
| 173 | /* |
| 174 | * If DMA_MST_CTRL_EN_A_ENABLE or DMA_MST_CTRL_EN_B_ENABLE |
| 175 | * is set, that means DMA engine is running. |
| 176 | * |
| 177 | * Then we have to wait until DMA_MST_CTRL_IS_DMA_DONE |
| 178 | * is cleared, indicating DMA transfer completion. |
| 179 | */ |
| 180 | running = reg_val & (DMA_MST_CTRL_EN_A_ENABLE | |
| 181 | DMA_MST_CTRL_EN_B_ENABLE); |
| 182 | if (!running || (reg_val & DMA_MST_CTRL_IS_DMA_DONE)) |
| 183 | return 1; |
| 184 | udelay(1); |
| 185 | } |
| 186 | return 0; |
| 187 | } |
| 188 | |
| 189 | /** |
| 190 | * Read one byte from the chip |
| 191 | * |
| 192 | * @param mtd MTD device structure |
| 193 | * @return data byte |
| 194 | * |
| 195 | * Read function for 8bit bus-width |
| 196 | */ |
| 197 | static uint8_t read_byte(struct mtd_info *mtd) |
| 198 | { |
| 199 | struct nand_chip *chip = mtd->priv; |
| 200 | u32 dword_read; |
| 201 | struct nand_drv *info; |
| 202 | |
| 203 | info = (struct nand_drv *)chip->priv; |
| 204 | |
| 205 | /* In PIO mode, only 4 bytes can be transferred with single CMD_GO. */ |
| 206 | if (info->pio_byte_index > 3) { |
| 207 | info->pio_byte_index = 0; |
| 208 | writel(CMD_GO | CMD_PIO |
| 209 | | CMD_RX | CMD_CE0, |
| 210 | &info->reg->command); |
| 211 | if (!nand_waitfor_cmd_completion(info->reg)) |
| 212 | printf("Command timeout\n"); |
| 213 | } |
| 214 | |
| 215 | dword_read = readl(&info->reg->resp); |
| 216 | dword_read = dword_read >> (8 * info->pio_byte_index); |
| 217 | info->pio_byte_index++; |
| 218 | return (uint8_t)dword_read; |
| 219 | } |
| 220 | |
| 221 | /** |
| 222 | * Check NAND status to see if it is ready or not |
| 223 | * |
| 224 | * @param mtd MTD device structure |
| 225 | * @return |
| 226 | * 1 - ready |
| 227 | * 0 - not ready |
| 228 | */ |
| 229 | static int nand_dev_ready(struct mtd_info *mtd) |
| 230 | { |
| 231 | struct nand_chip *chip = mtd->priv; |
| 232 | int reg_val; |
| 233 | struct nand_drv *info; |
| 234 | |
| 235 | info = (struct nand_drv *)chip->priv; |
| 236 | |
| 237 | reg_val = readl(&info->reg->status); |
| 238 | if (reg_val & STATUS_RBSY0) |
| 239 | return 1; |
| 240 | else |
| 241 | return 0; |
| 242 | } |
| 243 | |
| 244 | /* Dummy implementation: we don't support multiple chips */ |
| 245 | static void nand_select_chip(struct mtd_info *mtd, int chipnr) |
| 246 | { |
| 247 | switch (chipnr) { |
| 248 | case -1: |
| 249 | case 0: |
| 250 | break; |
| 251 | |
| 252 | default: |
| 253 | BUG(); |
| 254 | } |
| 255 | } |
| 256 | |
| 257 | /** |
| 258 | * Clear all interrupt status bits |
| 259 | * |
| 260 | * @param reg nand_ctlr structure |
| 261 | */ |
| 262 | static void nand_clear_interrupt_status(struct nand_ctlr *reg) |
| 263 | { |
| 264 | u32 reg_val; |
| 265 | |
| 266 | /* Clear interrupt status */ |
| 267 | reg_val = readl(®->isr); |
| 268 | writel(reg_val, ®->isr); |
| 269 | } |
| 270 | |
| 271 | /** |
| 272 | * Send command to NAND device |
| 273 | * |
| 274 | * @param mtd MTD device structure |
| 275 | * @param command the command to be sent |
| 276 | * @param column the column address for this command, -1 if none |
| 277 | * @param page_addr the page address for this command, -1 if none |
| 278 | */ |
| 279 | static void nand_command(struct mtd_info *mtd, unsigned int command, |
| 280 | int column, int page_addr) |
| 281 | { |
| 282 | struct nand_chip *chip = mtd->priv; |
| 283 | struct nand_drv *info; |
| 284 | |
| 285 | info = (struct nand_drv *)chip->priv; |
| 286 | |
| 287 | /* |
| 288 | * Write out the command to the device. |
| 289 | * |
| 290 | * Only command NAND_CMD_RESET or NAND_CMD_READID will come |
| 291 | * here before mtd->writesize is initialized. |
| 292 | */ |
| 293 | |
| 294 | /* Emulate NAND_CMD_READOOB */ |
| 295 | if (command == NAND_CMD_READOOB) { |
| 296 | assert(mtd->writesize != 0); |
| 297 | column += mtd->writesize; |
| 298 | command = NAND_CMD_READ0; |
| 299 | } |
| 300 | |
| 301 | /* Adjust columns for 16 bit bus-width */ |
| 302 | if (column != -1 && (chip->options & NAND_BUSWIDTH_16)) |
| 303 | column >>= 1; |
| 304 | |
| 305 | nand_clear_interrupt_status(info->reg); |
| 306 | |
| 307 | /* Stop DMA engine, clear DMA completion status */ |
| 308 | writel(DMA_MST_CTRL_EN_A_DISABLE |
| 309 | | DMA_MST_CTRL_EN_B_DISABLE |
| 310 | | DMA_MST_CTRL_IS_DMA_DONE, |
| 311 | &info->reg->dma_mst_ctrl); |
| 312 | |
| 313 | /* |
| 314 | * Program and erase have their own busy handlers |
| 315 | * status and sequential in needs no delay |
| 316 | */ |
| 317 | switch (command) { |
| 318 | case NAND_CMD_READID: |
| 319 | writel(NAND_CMD_READID, &info->reg->cmd_reg1); |
| 320 | writel(CMD_GO | CMD_CLE | CMD_ALE | CMD_PIO |
| 321 | | CMD_RX | |
| 322 | ((4 - 1) << CMD_TRANS_SIZE_SHIFT) |
| 323 | | CMD_CE0, |
| 324 | &info->reg->command); |
| 325 | info->pio_byte_index = 0; |
| 326 | break; |
| 327 | case NAND_CMD_READ0: |
| 328 | writel(NAND_CMD_READ0, &info->reg->cmd_reg1); |
| 329 | writel(NAND_CMD_READSTART, &info->reg->cmd_reg2); |
| 330 | writel((page_addr << 16) | (column & 0xFFFF), |
| 331 | &info->reg->addr_reg1); |
| 332 | writel(page_addr >> 16, &info->reg->addr_reg2); |
| 333 | return; |
| 334 | case NAND_CMD_SEQIN: |
| 335 | writel(NAND_CMD_SEQIN, &info->reg->cmd_reg1); |
| 336 | writel(NAND_CMD_PAGEPROG, &info->reg->cmd_reg2); |
| 337 | writel((page_addr << 16) | (column & 0xFFFF), |
| 338 | &info->reg->addr_reg1); |
| 339 | writel(page_addr >> 16, |
| 340 | &info->reg->addr_reg2); |
| 341 | return; |
| 342 | case NAND_CMD_PAGEPROG: |
| 343 | return; |
| 344 | case NAND_CMD_ERASE1: |
| 345 | writel(NAND_CMD_ERASE1, &info->reg->cmd_reg1); |
| 346 | writel(NAND_CMD_ERASE2, &info->reg->cmd_reg2); |
| 347 | writel(page_addr, &info->reg->addr_reg1); |
| 348 | writel(CMD_GO | CMD_CLE | CMD_ALE | |
| 349 | CMD_SEC_CMD | CMD_CE0 | CMD_ALE_BYTES3, |
| 350 | &info->reg->command); |
| 351 | break; |
| 352 | case NAND_CMD_ERASE2: |
| 353 | return; |
| 354 | case NAND_CMD_STATUS: |
| 355 | writel(NAND_CMD_STATUS, &info->reg->cmd_reg1); |
| 356 | writel(CMD_GO | CMD_CLE | CMD_PIO | CMD_RX |
| 357 | | ((1 - 0) << CMD_TRANS_SIZE_SHIFT) |
| 358 | | CMD_CE0, |
| 359 | &info->reg->command); |
| 360 | info->pio_byte_index = 0; |
| 361 | break; |
| 362 | case NAND_CMD_RESET: |
| 363 | writel(NAND_CMD_RESET, &info->reg->cmd_reg1); |
| 364 | writel(CMD_GO | CMD_CLE | CMD_CE0, |
| 365 | &info->reg->command); |
| 366 | break; |
| 367 | case NAND_CMD_RNDOUT: |
| 368 | default: |
| 369 | printf("%s: Unsupported command %d\n", __func__, command); |
| 370 | return; |
| 371 | } |
| 372 | if (!nand_waitfor_cmd_completion(info->reg)) |
| 373 | printf("Command 0x%02X timeout\n", command); |
| 374 | } |
| 375 | |
| 376 | /** |
| 377 | * Check whether the pointed buffer are all 0xff (blank). |
| 378 | * |
| 379 | * @param buf data buffer for blank check |
| 380 | * @param len length of the buffer in byte |
| 381 | * @return |
| 382 | * 1 - blank |
| 383 | * 0 - non-blank |
| 384 | */ |
| 385 | static int blank_check(u8 *buf, int len) |
| 386 | { |
| 387 | int i; |
| 388 | |
| 389 | for (i = 0; i < len; i++) |
| 390 | if (buf[i] != 0xFF) |
| 391 | return 0; |
| 392 | return 1; |
| 393 | } |
| 394 | |
| 395 | /** |
| 396 | * After a DMA transfer for read, we call this function to see whether there |
| 397 | * is any uncorrectable error on the pointed data buffer or oob buffer. |
| 398 | * |
| 399 | * @param reg nand_ctlr structure |
| 400 | * @param databuf data buffer |
| 401 | * @param a_len data buffer length |
| 402 | * @param oobbuf oob buffer |
| 403 | * @param b_len oob buffer length |
| 404 | * @return |
| 405 | * ECC_OK - no ECC error or correctable ECC error |
| 406 | * ECC_TAG_ERROR - uncorrectable tag ECC error |
| 407 | * ECC_DATA_ERROR - uncorrectable data ECC error |
| 408 | * ECC_DATA_ERROR + ECC_TAG_ERROR - uncorrectable data+tag ECC error |
| 409 | */ |
| 410 | static int check_ecc_error(struct nand_ctlr *reg, u8 *databuf, |
| 411 | int a_len, u8 *oobbuf, int b_len) |
| 412 | { |
| 413 | int return_val = ECC_OK; |
| 414 | u32 reg_val; |
| 415 | |
| 416 | if (!(readl(®->isr) & ISR_IS_ECC_ERR)) |
| 417 | return ECC_OK; |
| 418 | |
| 419 | /* |
| 420 | * Area A is used for the data block (databuf). Area B is used for |
| 421 | * the spare block (oobbuf) |
| 422 | */ |
| 423 | reg_val = readl(®->dec_status); |
| 424 | if ((reg_val & DEC_STATUS_A_ECC_FAIL) && databuf) { |
| 425 | reg_val = readl(®->bch_dec_status_buf); |
| 426 | /* |
| 427 | * If uncorrectable error occurs on data area, then see whether |
| 428 | * they are all FF. If all are FF, it's a blank page. |
| 429 | * Not error. |
| 430 | */ |
| 431 | if ((reg_val & BCH_DEC_STATUS_FAIL_SEC_FLAG_MASK) && |
| 432 | !blank_check(databuf, a_len)) |
| 433 | return_val |= ECC_DATA_ERROR; |
| 434 | } |
| 435 | |
| 436 | if ((reg_val & DEC_STATUS_B_ECC_FAIL) && oobbuf) { |
| 437 | reg_val = readl(®->bch_dec_status_buf); |
| 438 | /* |
| 439 | * If uncorrectable error occurs on tag area, then see whether |
| 440 | * they are all FF. If all are FF, it's a blank page. |
| 441 | * Not error. |
| 442 | */ |
| 443 | if ((reg_val & BCH_DEC_STATUS_FAIL_TAG_MASK) && |
| 444 | !blank_check(oobbuf, b_len)) |
| 445 | return_val |= ECC_TAG_ERROR; |
| 446 | } |
| 447 | |
| 448 | return return_val; |
| 449 | } |
| 450 | |
| 451 | /** |
| 452 | * Set GO bit to send command to device |
| 453 | * |
| 454 | * @param reg nand_ctlr structure |
| 455 | */ |
| 456 | static void start_command(struct nand_ctlr *reg) |
| 457 | { |
| 458 | u32 reg_val; |
| 459 | |
| 460 | reg_val = readl(®->command); |
| 461 | reg_val |= CMD_GO; |
| 462 | writel(reg_val, ®->command); |
| 463 | } |
| 464 | |
| 465 | /** |
| 466 | * Clear command GO bit, DMA GO bit, and DMA completion status |
| 467 | * |
| 468 | * @param reg nand_ctlr structure |
| 469 | */ |
| 470 | static void stop_command(struct nand_ctlr *reg) |
| 471 | { |
| 472 | /* Stop command */ |
| 473 | writel(0, ®->command); |
| 474 | |
| 475 | /* Stop DMA engine and clear DMA completion status */ |
| 476 | writel(DMA_MST_CTRL_GO_DISABLE |
| 477 | | DMA_MST_CTRL_IS_DMA_DONE, |
| 478 | ®->dma_mst_ctrl); |
| 479 | } |
| 480 | |
| 481 | /** |
| 482 | * Set up NAND bus width and page size |
| 483 | * |
| 484 | * @param info nand_info structure |
| 485 | * @param *reg_val address of reg_val |
| 486 | * @return 0 if ok, -1 on error |
| 487 | */ |
| 488 | static int set_bus_width_page_size(struct fdt_nand *config, |
| 489 | u32 *reg_val) |
| 490 | { |
| 491 | if (config->width == 8) |
| 492 | *reg_val = CFG_BUS_WIDTH_8BIT; |
| 493 | else if (config->width == 16) |
| 494 | *reg_val = CFG_BUS_WIDTH_16BIT; |
| 495 | else { |
| 496 | debug("%s: Unsupported bus width %d\n", __func__, |
| 497 | config->width); |
| 498 | return -1; |
| 499 | } |
| 500 | |
| 501 | if (our_mtd->writesize == 512) |
| 502 | *reg_val |= CFG_PAGE_SIZE_512; |
| 503 | else if (our_mtd->writesize == 2048) |
| 504 | *reg_val |= CFG_PAGE_SIZE_2048; |
| 505 | else if (our_mtd->writesize == 4096) |
| 506 | *reg_val |= CFG_PAGE_SIZE_4096; |
| 507 | else { |
| 508 | debug("%s: Unsupported page size %d\n", __func__, |
| 509 | our_mtd->writesize); |
| 510 | return -1; |
| 511 | } |
| 512 | |
| 513 | return 0; |
| 514 | } |
| 515 | |
| 516 | /** |
| 517 | * Page read/write function |
| 518 | * |
| 519 | * @param mtd mtd info structure |
| 520 | * @param chip nand chip info structure |
| 521 | * @param buf data buffer |
| 522 | * @param page page number |
| 523 | * @param with_ecc 1 to enable ECC, 0 to disable ECC |
| 524 | * @param is_writing 0 for read, 1 for write |
| 525 | * @return 0 when successfully completed |
| 526 | * -EIO when command timeout |
| 527 | */ |
| 528 | static int nand_rw_page(struct mtd_info *mtd, struct nand_chip *chip, |
| 529 | uint8_t *buf, int page, int with_ecc, int is_writing) |
| 530 | { |
| 531 | u32 reg_val; |
| 532 | int tag_size; |
| 533 | struct nand_oobfree *free = chip->ecc.layout->oobfree; |
| 534 | /* 4*128=512 (byte) is the value that our HW can support. */ |
| 535 | ALLOC_CACHE_ALIGN_BUFFER(u32, tag_buf, 128); |
| 536 | char *tag_ptr; |
| 537 | struct nand_drv *info; |
| 538 | struct fdt_nand *config; |
| 539 | |
| 540 | if ((uintptr_t)buf & 0x03) { |
| 541 | printf("buf %p has to be 4-byte aligned\n", buf); |
| 542 | return -EINVAL; |
| 543 | } |
| 544 | |
| 545 | info = (struct nand_drv *)chip->priv; |
| 546 | config = &info->config; |
| 547 | if (set_bus_width_page_size(config, ®_val)) |
| 548 | return -EINVAL; |
| 549 | |
| 550 | /* Need to be 4-byte aligned */ |
| 551 | tag_ptr = (char *)tag_buf; |
| 552 | |
| 553 | stop_command(info->reg); |
| 554 | |
| 555 | writel((1 << chip->page_shift) - 1, &info->reg->dma_cfg_a); |
| 556 | writel(virt_to_phys(buf), &info->reg->data_block_ptr); |
| 557 | |
| 558 | if (with_ecc) { |
| 559 | writel(virt_to_phys(tag_ptr), &info->reg->tag_ptr); |
| 560 | if (is_writing) |
| 561 | memcpy(tag_ptr, chip->oob_poi + free->offset, |
| 562 | chip->ecc.layout->oobavail + |
| 563 | TAG_ECC_BYTES); |
| 564 | } else { |
| 565 | writel(virt_to_phys(chip->oob_poi), &info->reg->tag_ptr); |
| 566 | } |
| 567 | |
| 568 | /* Set ECC selection, configure ECC settings */ |
| 569 | if (with_ecc) { |
| 570 | tag_size = chip->ecc.layout->oobavail + TAG_ECC_BYTES; |
| 571 | reg_val |= (CFG_SKIP_SPARE_SEL_4 |
| 572 | | CFG_SKIP_SPARE_ENABLE |
| 573 | | CFG_HW_ECC_CORRECTION_ENABLE |
| 574 | | CFG_ECC_EN_TAG_DISABLE |
| 575 | | CFG_HW_ECC_SEL_RS |
| 576 | | CFG_HW_ECC_ENABLE |
| 577 | | CFG_TVAL4 |
| 578 | | (tag_size - 1)); |
| 579 | |
| 580 | if (!is_writing) |
| 581 | tag_size += SKIPPED_SPARE_BYTES; |
| 582 | dma_prepare(tag_ptr, tag_size, is_writing); |
| 583 | } else { |
| 584 | tag_size = mtd->oobsize; |
| 585 | reg_val |= (CFG_SKIP_SPARE_DISABLE |
| 586 | | CFG_HW_ECC_CORRECTION_DISABLE |
| 587 | | CFG_ECC_EN_TAG_DISABLE |
| 588 | | CFG_HW_ECC_DISABLE |
| 589 | | (tag_size - 1)); |
| 590 | dma_prepare(chip->oob_poi, tag_size, is_writing); |
| 591 | } |
| 592 | writel(reg_val, &info->reg->config); |
| 593 | |
| 594 | dma_prepare(buf, 1 << chip->page_shift, is_writing); |
| 595 | |
| 596 | writel(BCH_CONFIG_BCH_ECC_DISABLE, &info->reg->bch_config); |
| 597 | |
| 598 | writel(tag_size - 1, &info->reg->dma_cfg_b); |
| 599 | |
| 600 | nand_clear_interrupt_status(info->reg); |
| 601 | |
| 602 | reg_val = CMD_CLE | CMD_ALE |
| 603 | | CMD_SEC_CMD |
| 604 | | (CMD_ALE_BYTES5 << CMD_ALE_BYTE_SIZE_SHIFT) |
| 605 | | CMD_A_VALID |
| 606 | | CMD_B_VALID |
| 607 | | (CMD_TRANS_SIZE_PAGE << CMD_TRANS_SIZE_SHIFT) |
| 608 | | CMD_CE0; |
| 609 | if (!is_writing) |
| 610 | reg_val |= (CMD_AFT_DAT_DISABLE | CMD_RX); |
| 611 | else |
| 612 | reg_val |= (CMD_AFT_DAT_ENABLE | CMD_TX); |
| 613 | writel(reg_val, &info->reg->command); |
| 614 | |
| 615 | /* Setup DMA engine */ |
| 616 | reg_val = DMA_MST_CTRL_GO_ENABLE |
| 617 | | DMA_MST_CTRL_BURST_8WORDS |
| 618 | | DMA_MST_CTRL_EN_A_ENABLE |
| 619 | | DMA_MST_CTRL_EN_B_ENABLE; |
| 620 | |
| 621 | if (!is_writing) |
| 622 | reg_val |= DMA_MST_CTRL_DIR_READ; |
| 623 | else |
| 624 | reg_val |= DMA_MST_CTRL_DIR_WRITE; |
| 625 | |
| 626 | writel(reg_val, &info->reg->dma_mst_ctrl); |
| 627 | |
| 628 | start_command(info->reg); |
| 629 | |
| 630 | if (!nand_waitfor_cmd_completion(info->reg)) { |
| 631 | if (!is_writing) |
| 632 | printf("Read Page 0x%X timeout ", page); |
| 633 | else |
| 634 | printf("Write Page 0x%X timeout ", page); |
| 635 | if (with_ecc) |
| 636 | printf("with ECC"); |
| 637 | else |
| 638 | printf("without ECC"); |
| 639 | printf("\n"); |
| 640 | return -EIO; |
| 641 | } |
| 642 | |
| 643 | if (with_ecc && !is_writing) { |
| 644 | memcpy(chip->oob_poi, tag_ptr, |
| 645 | SKIPPED_SPARE_BYTES); |
| 646 | memcpy(chip->oob_poi + free->offset, |
| 647 | tag_ptr + SKIPPED_SPARE_BYTES, |
| 648 | chip->ecc.layout->oobavail); |
| 649 | reg_val = (u32)check_ecc_error(info->reg, (u8 *)buf, |
| 650 | 1 << chip->page_shift, |
| 651 | (u8 *)(tag_ptr + SKIPPED_SPARE_BYTES), |
| 652 | chip->ecc.layout->oobavail); |
| 653 | if (reg_val & ECC_TAG_ERROR) |
| 654 | printf("Read Page 0x%X tag ECC error\n", page); |
| 655 | if (reg_val & ECC_DATA_ERROR) |
| 656 | printf("Read Page 0x%X data ECC error\n", |
| 657 | page); |
| 658 | if (reg_val & (ECC_DATA_ERROR | ECC_TAG_ERROR)) |
| 659 | return -EIO; |
| 660 | } |
| 661 | return 0; |
| 662 | } |
| 663 | |
| 664 | /** |
| 665 | * Hardware ecc based page read function |
| 666 | * |
| 667 | * @param mtd mtd info structure |
| 668 | * @param chip nand chip info structure |
| 669 | * @param buf buffer to store read data |
| 670 | * @param page page number to read |
| 671 | * @return 0 when successfully completed |
| 672 | * -EIO when command timeout |
| 673 | */ |
| 674 | static int nand_read_page_hwecc(struct mtd_info *mtd, |
| 675 | struct nand_chip *chip, uint8_t *buf, int page) |
| 676 | { |
| 677 | return nand_rw_page(mtd, chip, buf, page, 1, 0); |
| 678 | } |
| 679 | |
| 680 | /** |
| 681 | * Hardware ecc based page write function |
| 682 | * |
| 683 | * @param mtd mtd info structure |
| 684 | * @param chip nand chip info structure |
| 685 | * @param buf data buffer |
| 686 | */ |
| 687 | static void nand_write_page_hwecc(struct mtd_info *mtd, |
| 688 | struct nand_chip *chip, const uint8_t *buf) |
| 689 | { |
| 690 | int page; |
| 691 | struct nand_drv *info; |
| 692 | |
| 693 | info = (struct nand_drv *)chip->priv; |
| 694 | |
| 695 | page = (readl(&info->reg->addr_reg1) >> 16) | |
| 696 | (readl(&info->reg->addr_reg2) << 16); |
| 697 | |
| 698 | nand_rw_page(mtd, chip, (uint8_t *)buf, page, 1, 1); |
| 699 | } |
| 700 | |
| 701 | |
| 702 | /** |
| 703 | * Read raw page data without ecc |
| 704 | * |
| 705 | * @param mtd mtd info structure |
| 706 | * @param chip nand chip info structure |
| 707 | * @param buf buffer to store read data |
| 708 | * @param page page number to read |
| 709 | * @return 0 when successfully completed |
| 710 | * -EINVAL when chip->oob_poi is not double-word aligned |
| 711 | * -EIO when command timeout |
| 712 | */ |
| 713 | static int nand_read_page_raw(struct mtd_info *mtd, |
| 714 | struct nand_chip *chip, uint8_t *buf, int page) |
| 715 | { |
| 716 | return nand_rw_page(mtd, chip, buf, page, 0, 0); |
| 717 | } |
| 718 | |
| 719 | /** |
| 720 | * Raw page write function |
| 721 | * |
| 722 | * @param mtd mtd info structure |
| 723 | * @param chip nand chip info structure |
| 724 | * @param buf data buffer |
| 725 | */ |
| 726 | static void nand_write_page_raw(struct mtd_info *mtd, |
| 727 | struct nand_chip *chip, const uint8_t *buf) |
| 728 | { |
| 729 | int page; |
| 730 | struct nand_drv *info; |
| 731 | |
| 732 | info = (struct nand_drv *)chip->priv; |
| 733 | page = (readl(&info->reg->addr_reg1) >> 16) | |
| 734 | (readl(&info->reg->addr_reg2) << 16); |
| 735 | |
| 736 | nand_rw_page(mtd, chip, (uint8_t *)buf, page, 0, 1); |
| 737 | } |
| 738 | |
| 739 | /** |
| 740 | * OOB data read/write function |
| 741 | * |
| 742 | * @param mtd mtd info structure |
| 743 | * @param chip nand chip info structure |
| 744 | * @param page page number to read |
| 745 | * @param with_ecc 1 to enable ECC, 0 to disable ECC |
| 746 | * @param is_writing 0 for read, 1 for write |
| 747 | * @return 0 when successfully completed |
| 748 | * -EINVAL when chip->oob_poi is not double-word aligned |
| 749 | * -EIO when command timeout |
| 750 | */ |
| 751 | static int nand_rw_oob(struct mtd_info *mtd, struct nand_chip *chip, |
| 752 | int page, int with_ecc, int is_writing) |
| 753 | { |
| 754 | u32 reg_val; |
| 755 | int tag_size; |
| 756 | struct nand_oobfree *free = chip->ecc.layout->oobfree; |
| 757 | struct nand_drv *info; |
| 758 | |
| 759 | if (((int)chip->oob_poi) & 0x03) |
| 760 | return -EINVAL; |
| 761 | info = (struct nand_drv *)chip->priv; |
| 762 | if (set_bus_width_page_size(&info->config, ®_val)) |
| 763 | return -EINVAL; |
| 764 | |
| 765 | stop_command(info->reg); |
| 766 | |
| 767 | writel(virt_to_phys(chip->oob_poi), &info->reg->tag_ptr); |
| 768 | |
| 769 | /* Set ECC selection */ |
| 770 | tag_size = mtd->oobsize; |
| 771 | if (with_ecc) |
| 772 | reg_val |= CFG_ECC_EN_TAG_ENABLE; |
| 773 | else |
| 774 | reg_val |= (CFG_ECC_EN_TAG_DISABLE); |
| 775 | |
| 776 | reg_val |= ((tag_size - 1) | |
| 777 | CFG_SKIP_SPARE_DISABLE | |
| 778 | CFG_HW_ECC_CORRECTION_DISABLE | |
| 779 | CFG_HW_ECC_DISABLE); |
| 780 | writel(reg_val, &info->reg->config); |
| 781 | |
| 782 | dma_prepare(chip->oob_poi, tag_size, is_writing); |
| 783 | |
| 784 | writel(BCH_CONFIG_BCH_ECC_DISABLE, &info->reg->bch_config); |
| 785 | |
| 786 | if (is_writing && with_ecc) |
| 787 | tag_size -= TAG_ECC_BYTES; |
| 788 | |
| 789 | writel(tag_size - 1, &info->reg->dma_cfg_b); |
| 790 | |
| 791 | nand_clear_interrupt_status(info->reg); |
| 792 | |
| 793 | reg_val = CMD_CLE | CMD_ALE |
| 794 | | CMD_SEC_CMD |
| 795 | | (CMD_ALE_BYTES5 << CMD_ALE_BYTE_SIZE_SHIFT) |
| 796 | | CMD_B_VALID |
| 797 | | CMD_CE0; |
| 798 | if (!is_writing) |
| 799 | reg_val |= (CMD_AFT_DAT_DISABLE | CMD_RX); |
| 800 | else |
| 801 | reg_val |= (CMD_AFT_DAT_ENABLE | CMD_TX); |
| 802 | writel(reg_val, &info->reg->command); |
| 803 | |
| 804 | /* Setup DMA engine */ |
| 805 | reg_val = DMA_MST_CTRL_GO_ENABLE |
| 806 | | DMA_MST_CTRL_BURST_8WORDS |
| 807 | | DMA_MST_CTRL_EN_B_ENABLE; |
| 808 | if (!is_writing) |
| 809 | reg_val |= DMA_MST_CTRL_DIR_READ; |
| 810 | else |
| 811 | reg_val |= DMA_MST_CTRL_DIR_WRITE; |
| 812 | |
| 813 | writel(reg_val, &info->reg->dma_mst_ctrl); |
| 814 | |
| 815 | start_command(info->reg); |
| 816 | |
| 817 | if (!nand_waitfor_cmd_completion(info->reg)) { |
| 818 | if (!is_writing) |
| 819 | printf("Read OOB of Page 0x%X timeout\n", page); |
| 820 | else |
| 821 | printf("Write OOB of Page 0x%X timeout\n", page); |
| 822 | return -EIO; |
| 823 | } |
| 824 | |
| 825 | if (with_ecc && !is_writing) { |
| 826 | reg_val = (u32)check_ecc_error(info->reg, 0, 0, |
| 827 | (u8 *)(chip->oob_poi + free->offset), |
| 828 | chip->ecc.layout->oobavail); |
| 829 | if (reg_val & ECC_TAG_ERROR) |
| 830 | printf("Read OOB of Page 0x%X tag ECC error\n", page); |
| 831 | } |
| 832 | return 0; |
| 833 | } |
| 834 | |
| 835 | /** |
| 836 | * OOB data read function |
| 837 | * |
| 838 | * @param mtd mtd info structure |
| 839 | * @param chip nand chip info structure |
| 840 | * @param page page number to read |
| 841 | * @param sndcmd flag whether to issue read command or not |
| 842 | * @return 1 - issue read command next time |
| 843 | * 0 - not to issue |
| 844 | */ |
| 845 | static int nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip, |
| 846 | int page, int sndcmd) |
| 847 | { |
| 848 | if (sndcmd) { |
| 849 | chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page); |
| 850 | sndcmd = 0; |
| 851 | } |
| 852 | nand_rw_oob(mtd, chip, page, 0, 0); |
| 853 | return sndcmd; |
| 854 | } |
| 855 | |
| 856 | /** |
| 857 | * OOB data write function |
| 858 | * |
| 859 | * @param mtd mtd info structure |
| 860 | * @param chip nand chip info structure |
| 861 | * @param page page number to write |
| 862 | * @return 0 when successfully completed |
| 863 | * -EINVAL when chip->oob_poi is not double-word aligned |
| 864 | * -EIO when command timeout |
| 865 | */ |
| 866 | static int nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip, |
| 867 | int page) |
| 868 | { |
| 869 | chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page); |
| 870 | |
| 871 | return nand_rw_oob(mtd, chip, page, 0, 1); |
| 872 | } |
| 873 | |
| 874 | /** |
| 875 | * Set up NAND memory timings according to the provided parameters |
| 876 | * |
| 877 | * @param timing Timing parameters |
| 878 | * @param reg NAND controller register address |
| 879 | */ |
| 880 | static void setup_timing(unsigned timing[FDT_NAND_TIMING_COUNT], |
| 881 | struct nand_ctlr *reg) |
| 882 | { |
| 883 | u32 reg_val, clk_rate, clk_period, time_val; |
| 884 | |
| 885 | clk_rate = (u32)clock_get_periph_rate(PERIPH_ID_NDFLASH, |
| 886 | CLOCK_ID_PERIPH) / 1000000; |
| 887 | clk_period = 1000 / clk_rate; |
| 888 | reg_val = ((timing[FDT_NAND_MAX_TRP_TREA] / clk_period) << |
| 889 | TIMING_TRP_RESP_CNT_SHIFT) & TIMING_TRP_RESP_CNT_MASK; |
| 890 | reg_val |= ((timing[FDT_NAND_TWB] / clk_period) << |
| 891 | TIMING_TWB_CNT_SHIFT) & TIMING_TWB_CNT_MASK; |
| 892 | time_val = timing[FDT_NAND_MAX_TCR_TAR_TRR] / clk_period; |
| 893 | if (time_val > 2) |
| 894 | reg_val |= ((time_val - 2) << TIMING_TCR_TAR_TRR_CNT_SHIFT) & |
| 895 | TIMING_TCR_TAR_TRR_CNT_MASK; |
| 896 | reg_val |= ((timing[FDT_NAND_TWHR] / clk_period) << |
| 897 | TIMING_TWHR_CNT_SHIFT) & TIMING_TWHR_CNT_MASK; |
| 898 | time_val = timing[FDT_NAND_MAX_TCS_TCH_TALS_TALH] / clk_period; |
| 899 | if (time_val > 1) |
| 900 | reg_val |= ((time_val - 1) << TIMING_TCS_CNT_SHIFT) & |
| 901 | TIMING_TCS_CNT_MASK; |
| 902 | reg_val |= ((timing[FDT_NAND_TWH] / clk_period) << |
| 903 | TIMING_TWH_CNT_SHIFT) & TIMING_TWH_CNT_MASK; |
| 904 | reg_val |= ((timing[FDT_NAND_TWP] / clk_period) << |
| 905 | TIMING_TWP_CNT_SHIFT) & TIMING_TWP_CNT_MASK; |
| 906 | reg_val |= ((timing[FDT_NAND_TRH] / clk_period) << |
| 907 | TIMING_TRH_CNT_SHIFT) & TIMING_TRH_CNT_MASK; |
| 908 | reg_val |= ((timing[FDT_NAND_MAX_TRP_TREA] / clk_period) << |
| 909 | TIMING_TRP_CNT_SHIFT) & TIMING_TRP_CNT_MASK; |
| 910 | writel(reg_val, ®->timing); |
| 911 | |
| 912 | reg_val = 0; |
| 913 | time_val = timing[FDT_NAND_TADL] / clk_period; |
| 914 | if (time_val > 2) |
| 915 | reg_val = (time_val - 2) & TIMING2_TADL_CNT_MASK; |
| 916 | writel(reg_val, ®->timing2); |
| 917 | } |
| 918 | |
| 919 | /** |
| 920 | * Decode NAND parameters from the device tree |
| 921 | * |
| 922 | * @param blob Device tree blob |
| 923 | * @param node Node containing "nand-flash" compatble node |
| 924 | * @return 0 if ok, -ve on error (FDT_ERR_...) |
| 925 | */ |
| 926 | static int fdt_decode_nand(const void *blob, int node, struct fdt_nand *config) |
| 927 | { |
| 928 | int err; |
| 929 | |
| 930 | config->reg = (struct nand_ctlr *)fdtdec_get_addr(blob, node, "reg"); |
| 931 | config->enabled = fdtdec_get_is_enabled(blob, node); |
| 932 | config->width = fdtdec_get_int(blob, node, "nvidia,nand-width", 8); |
| 933 | err = fdtdec_decode_gpio(blob, node, "nvidia,wp-gpios", |
| 934 | &config->wp_gpio); |
| 935 | if (err) |
| 936 | return err; |
| 937 | err = fdtdec_get_int_array(blob, node, "nvidia,timing", |
| 938 | config->timing, FDT_NAND_TIMING_COUNT); |
| 939 | if (err < 0) |
| 940 | return err; |
| 941 | |
| 942 | /* Now look up the controller and decode that */ |
| 943 | node = fdt_next_node(blob, node, NULL); |
| 944 | if (node < 0) |
| 945 | return node; |
| 946 | |
| 947 | return 0; |
| 948 | } |
| 949 | |
| 950 | /** |
| 951 | * Board-specific NAND initialization |
| 952 | * |
| 953 | * @param nand nand chip info structure |
| 954 | * @return 0, after initialized, -1 on error |
| 955 | */ |
| 956 | int tegra_nand_init(struct nand_chip *nand, int devnum) |
| 957 | { |
| 958 | struct nand_drv *info = &nand_ctrl; |
| 959 | struct fdt_nand *config = &info->config; |
| 960 | int node, ret; |
| 961 | |
| 962 | node = fdtdec_next_compatible(gd->fdt_blob, 0, |
| 963 | COMPAT_NVIDIA_TEGRA20_NAND); |
| 964 | if (node < 0) |
| 965 | return -1; |
| 966 | if (fdt_decode_nand(gd->fdt_blob, node, config)) { |
| 967 | printf("Could not decode nand-flash in device tree\n"); |
| 968 | return -1; |
| 969 | } |
| 970 | if (!config->enabled) |
| 971 | return -1; |
| 972 | info->reg = config->reg; |
| 973 | nand->ecc.mode = NAND_ECC_HW; |
| 974 | nand->ecc.layout = &eccoob; |
| 975 | |
| 976 | nand->options = LP_OPTIONS; |
| 977 | nand->cmdfunc = nand_command; |
| 978 | nand->read_byte = read_byte; |
| 979 | nand->ecc.read_page = nand_read_page_hwecc; |
| 980 | nand->ecc.write_page = nand_write_page_hwecc; |
| 981 | nand->ecc.read_page_raw = nand_read_page_raw; |
| 982 | nand->ecc.write_page_raw = nand_write_page_raw; |
| 983 | nand->ecc.read_oob = nand_read_oob; |
| 984 | nand->ecc.write_oob = nand_write_oob; |
| 985 | nand->select_chip = nand_select_chip; |
| 986 | nand->dev_ready = nand_dev_ready; |
| 987 | nand->priv = &nand_ctrl; |
| 988 | |
| 989 | /* Adjust controller clock rate */ |
| 990 | clock_start_periph_pll(PERIPH_ID_NDFLASH, CLOCK_ID_PERIPH, 52000000); |
| 991 | |
| 992 | /* Adjust timing for NAND device */ |
| 993 | setup_timing(config->timing, info->reg); |
| 994 | |
| 995 | funcmux_select(PERIPH_ID_NDFLASH, FUNCMUX_DEFAULT); |
| 996 | fdtdec_setup_gpio(&config->wp_gpio); |
| 997 | gpio_direction_output(config->wp_gpio.gpio, 1); |
| 998 | |
| 999 | our_mtd = &nand_info[devnum]; |
| 1000 | our_mtd->priv = nand; |
| 1001 | ret = nand_scan_ident(our_mtd, CONFIG_SYS_NAND_MAX_CHIPS, NULL); |
| 1002 | if (ret) |
| 1003 | return ret; |
| 1004 | |
| 1005 | nand->ecc.size = our_mtd->writesize; |
| 1006 | nand->ecc.bytes = our_mtd->oobsize; |
| 1007 | |
| 1008 | ret = nand_scan_tail(our_mtd); |
| 1009 | if (ret) |
| 1010 | return ret; |
| 1011 | |
| 1012 | ret = nand_register(devnum); |
| 1013 | if (ret) |
| 1014 | return ret; |
| 1015 | |
| 1016 | return 0; |
| 1017 | } |
| 1018 | |
| 1019 | void board_nand_init(void) |
| 1020 | { |
| 1021 | struct nand_chip *nand = &nand_chip[0]; |
| 1022 | |
| 1023 | if (tegra_nand_init(nand, 0)) |
| 1024 | puts("Tegra NAND init failed\n"); |
| 1025 | } |