Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2014 Panasonic Corporation |
| 3 | * Copyright (C) 2013-2014, Altera Corporation <www.altera.com> |
| 4 | * Copyright (C) 2009-2010, Intel Corporation and its suppliers. |
| 5 | * |
| 6 | * SPDX-License-Identifier: GPL-2.0+ |
| 7 | */ |
| 8 | |
| 9 | #include <common.h> |
| 10 | #include <malloc.h> |
| 11 | #include <nand.h> |
| 12 | #include <asm/errno.h> |
| 13 | #include <asm/io.h> |
| 14 | |
| 15 | #include "denali.h" |
| 16 | |
| 17 | #define NAND_DEFAULT_TIMINGS -1 |
| 18 | |
| 19 | static int onfi_timing_mode = NAND_DEFAULT_TIMINGS; |
| 20 | |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 21 | /* |
| 22 | * We define a macro here that combines all interrupts this driver uses into |
| 23 | * a single constant value, for convenience. |
| 24 | */ |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 25 | #define DENALI_IRQ_ALL (INTR_STATUS__DMA_CMD_COMP | \ |
| 26 | INTR_STATUS__ECC_TRANSACTION_DONE | \ |
| 27 | INTR_STATUS__ECC_ERR | \ |
| 28 | INTR_STATUS__PROGRAM_FAIL | \ |
| 29 | INTR_STATUS__LOAD_COMP | \ |
| 30 | INTR_STATUS__PROGRAM_COMP | \ |
| 31 | INTR_STATUS__TIME_OUT | \ |
| 32 | INTR_STATUS__ERASE_FAIL | \ |
| 33 | INTR_STATUS__RST_COMP | \ |
| 34 | INTR_STATUS__ERASE_COMP | \ |
| 35 | INTR_STATUS__ECC_UNCOR_ERR | \ |
| 36 | INTR_STATUS__INT_ACT | \ |
| 37 | INTR_STATUS__LOCKED_BLK) |
| 38 | |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 39 | /* |
| 40 | * indicates whether or not the internal value for the flash bank is |
| 41 | * valid or not |
| 42 | */ |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 43 | #define CHIP_SELECT_INVALID -1 |
| 44 | |
| 45 | #define SUPPORT_8BITECC 1 |
| 46 | |
| 47 | /* |
| 48 | * this macro allows us to convert from an MTD structure to our own |
| 49 | * device context (denali) structure. |
| 50 | */ |
Scott Wood | 17cb4b8 | 2016-05-30 13:57:56 -0500 | [diff] [blame^] | 51 | #define mtd_to_denali(m) \ |
| 52 | container_of(mtd_to_nand(m), struct denali_nand_info, nand) |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 53 | |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 54 | /* |
| 55 | * These constants are defined by the driver to enable common driver |
| 56 | * configuration options. |
| 57 | */ |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 58 | #define SPARE_ACCESS 0x41 |
| 59 | #define MAIN_ACCESS 0x42 |
| 60 | #define MAIN_SPARE_ACCESS 0x43 |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 61 | #define PIPELINE_ACCESS 0x2000 |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 62 | |
| 63 | #define DENALI_UNLOCK_START 0x10 |
| 64 | #define DENALI_UNLOCK_END 0x11 |
| 65 | #define DENALI_LOCK 0x21 |
| 66 | #define DENALI_LOCK_TIGHT 0x31 |
| 67 | #define DENALI_BUFFER_LOAD 0x60 |
| 68 | #define DENALI_BUFFER_WRITE 0x62 |
| 69 | |
| 70 | #define DENALI_READ 0 |
| 71 | #define DENALI_WRITE 0x100 |
| 72 | |
| 73 | /* types of device accesses. We can issue commands and get status */ |
| 74 | #define COMMAND_CYCLE 0 |
| 75 | #define ADDR_CYCLE 1 |
| 76 | #define STATUS_CYCLE 2 |
| 77 | |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 78 | /* |
| 79 | * this is a helper macro that allows us to |
| 80 | * format the bank into the proper bits for the controller |
| 81 | */ |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 82 | #define BANK(x) ((x) << 24) |
| 83 | |
| 84 | /* Interrupts are cleared by writing a 1 to the appropriate status bit */ |
| 85 | static inline void clear_interrupt(struct denali_nand_info *denali, |
| 86 | uint32_t irq_mask) |
| 87 | { |
| 88 | uint32_t intr_status_reg; |
| 89 | |
| 90 | intr_status_reg = INTR_STATUS(denali->flash_bank); |
| 91 | |
| 92 | writel(irq_mask, denali->flash_reg + intr_status_reg); |
| 93 | } |
| 94 | |
| 95 | static uint32_t read_interrupt_status(struct denali_nand_info *denali) |
| 96 | { |
| 97 | uint32_t intr_status_reg; |
| 98 | |
| 99 | intr_status_reg = INTR_STATUS(denali->flash_bank); |
| 100 | |
| 101 | return readl(denali->flash_reg + intr_status_reg); |
| 102 | } |
| 103 | |
| 104 | static void clear_interrupts(struct denali_nand_info *denali) |
| 105 | { |
| 106 | uint32_t status; |
| 107 | |
| 108 | status = read_interrupt_status(denali); |
| 109 | clear_interrupt(denali, status); |
| 110 | |
| 111 | denali->irq_status = 0; |
| 112 | } |
| 113 | |
| 114 | static void denali_irq_enable(struct denali_nand_info *denali, |
| 115 | uint32_t int_mask) |
| 116 | { |
| 117 | int i; |
| 118 | |
| 119 | for (i = 0; i < denali->max_banks; ++i) |
| 120 | writel(int_mask, denali->flash_reg + INTR_EN(i)); |
| 121 | } |
| 122 | |
| 123 | static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask) |
| 124 | { |
| 125 | unsigned long timeout = 1000000; |
| 126 | uint32_t intr_status; |
| 127 | |
| 128 | do { |
| 129 | intr_status = read_interrupt_status(denali) & DENALI_IRQ_ALL; |
| 130 | if (intr_status & irq_mask) { |
| 131 | denali->irq_status &= ~irq_mask; |
| 132 | /* our interrupt was detected */ |
| 133 | break; |
| 134 | } |
| 135 | udelay(1); |
| 136 | timeout--; |
| 137 | } while (timeout != 0); |
| 138 | |
| 139 | if (timeout == 0) { |
| 140 | /* timeout */ |
| 141 | printf("Denali timeout with interrupt status %08x\n", |
| 142 | read_interrupt_status(denali)); |
| 143 | intr_status = 0; |
| 144 | } |
| 145 | return intr_status; |
| 146 | } |
| 147 | |
| 148 | /* |
| 149 | * Certain operations for the denali NAND controller use an indexed mode to |
| 150 | * read/write data. The operation is performed by writing the address value |
| 151 | * of the command to the device memory followed by the data. This function |
| 152 | * abstracts this common operation. |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 153 | */ |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 154 | static void index_addr(struct denali_nand_info *denali, |
| 155 | uint32_t address, uint32_t data) |
| 156 | { |
| 157 | writel(address, denali->flash_mem + INDEX_CTRL_REG); |
| 158 | writel(data, denali->flash_mem + INDEX_DATA_REG); |
| 159 | } |
| 160 | |
| 161 | /* Perform an indexed read of the device */ |
| 162 | static void index_addr_read_data(struct denali_nand_info *denali, |
| 163 | uint32_t address, uint32_t *pdata) |
| 164 | { |
| 165 | writel(address, denali->flash_mem + INDEX_CTRL_REG); |
| 166 | *pdata = readl(denali->flash_mem + INDEX_DATA_REG); |
| 167 | } |
| 168 | |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 169 | /* |
| 170 | * We need to buffer some data for some of the NAND core routines. |
| 171 | * The operations manage buffering that data. |
| 172 | */ |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 173 | static void reset_buf(struct denali_nand_info *denali) |
| 174 | { |
| 175 | denali->buf.head = 0; |
| 176 | denali->buf.tail = 0; |
| 177 | } |
| 178 | |
| 179 | static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte) |
| 180 | { |
| 181 | denali->buf.buf[denali->buf.tail++] = byte; |
| 182 | } |
| 183 | |
| 184 | /* resets a specific device connected to the core */ |
| 185 | static void reset_bank(struct denali_nand_info *denali) |
| 186 | { |
| 187 | uint32_t irq_status; |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 188 | uint32_t irq_mask = INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT; |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 189 | |
| 190 | clear_interrupts(denali); |
| 191 | |
| 192 | writel(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET); |
| 193 | |
| 194 | irq_status = wait_for_irq(denali, irq_mask); |
| 195 | if (irq_status & INTR_STATUS__TIME_OUT) |
| 196 | debug("reset bank failed.\n"); |
| 197 | } |
| 198 | |
| 199 | /* Reset the flash controller */ |
| 200 | static uint32_t denali_nand_reset(struct denali_nand_info *denali) |
| 201 | { |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 202 | int i; |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 203 | |
| 204 | for (i = 0; i < denali->max_banks; i++) |
| 205 | writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT, |
| 206 | denali->flash_reg + INTR_STATUS(i)); |
| 207 | |
| 208 | for (i = 0; i < denali->max_banks; i++) { |
| 209 | writel(1 << i, denali->flash_reg + DEVICE_RESET); |
| 210 | while (!(readl(denali->flash_reg + INTR_STATUS(i)) & |
| 211 | (INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT))) |
| 212 | if (readl(denali->flash_reg + INTR_STATUS(i)) & |
| 213 | INTR_STATUS__TIME_OUT) |
| 214 | debug("NAND Reset operation timed out on bank" |
| 215 | " %d\n", i); |
| 216 | } |
| 217 | |
| 218 | for (i = 0; i < denali->max_banks; i++) |
| 219 | writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT, |
| 220 | denali->flash_reg + INTR_STATUS(i)); |
| 221 | |
| 222 | return 0; |
| 223 | } |
| 224 | |
| 225 | /* |
| 226 | * this routine calculates the ONFI timing values for a given mode and |
| 227 | * programs the clocking register accordingly. The mode is determined by |
| 228 | * the get_onfi_nand_para routine. |
| 229 | */ |
| 230 | static void nand_onfi_timing_set(struct denali_nand_info *denali, |
| 231 | uint16_t mode) |
| 232 | { |
| 233 | uint32_t trea[6] = {40, 30, 25, 20, 20, 16}; |
| 234 | uint32_t trp[6] = {50, 25, 17, 15, 12, 10}; |
| 235 | uint32_t treh[6] = {30, 15, 15, 10, 10, 7}; |
| 236 | uint32_t trc[6] = {100, 50, 35, 30, 25, 20}; |
| 237 | uint32_t trhoh[6] = {0, 15, 15, 15, 15, 15}; |
| 238 | uint32_t trloh[6] = {0, 0, 0, 0, 5, 5}; |
| 239 | uint32_t tcea[6] = {100, 45, 30, 25, 25, 25}; |
| 240 | uint32_t tadl[6] = {200, 100, 100, 100, 70, 70}; |
| 241 | uint32_t trhw[6] = {200, 100, 100, 100, 100, 100}; |
| 242 | uint32_t trhz[6] = {200, 100, 100, 100, 100, 100}; |
| 243 | uint32_t twhr[6] = {120, 80, 80, 60, 60, 60}; |
| 244 | uint32_t tcs[6] = {70, 35, 25, 25, 20, 15}; |
| 245 | |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 246 | uint32_t data_invalid_rhoh, data_invalid_rloh, data_invalid; |
| 247 | uint32_t dv_window = 0; |
| 248 | uint32_t en_lo, en_hi; |
| 249 | uint32_t acc_clks; |
| 250 | uint32_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt; |
| 251 | |
| 252 | en_lo = DIV_ROUND_UP(trp[mode], CLK_X); |
| 253 | en_hi = DIV_ROUND_UP(treh[mode], CLK_X); |
| 254 | if ((en_hi * CLK_X) < (treh[mode] + 2)) |
| 255 | en_hi++; |
| 256 | |
| 257 | if ((en_lo + en_hi) * CLK_X < trc[mode]) |
| 258 | en_lo += DIV_ROUND_UP((trc[mode] - (en_lo + en_hi) * CLK_X), |
| 259 | CLK_X); |
| 260 | |
| 261 | if ((en_lo + en_hi) < CLK_MULTI) |
| 262 | en_lo += CLK_MULTI - en_lo - en_hi; |
| 263 | |
| 264 | while (dv_window < 8) { |
| 265 | data_invalid_rhoh = en_lo * CLK_X + trhoh[mode]; |
| 266 | |
| 267 | data_invalid_rloh = (en_lo + en_hi) * CLK_X + trloh[mode]; |
| 268 | |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 269 | data_invalid = data_invalid_rhoh < data_invalid_rloh ? |
| 270 | data_invalid_rhoh : data_invalid_rloh; |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 271 | |
| 272 | dv_window = data_invalid - trea[mode]; |
| 273 | |
| 274 | if (dv_window < 8) |
| 275 | en_lo++; |
| 276 | } |
| 277 | |
| 278 | acc_clks = DIV_ROUND_UP(trea[mode], CLK_X); |
| 279 | |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 280 | while (acc_clks * CLK_X - trea[mode] < 3) |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 281 | acc_clks++; |
| 282 | |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 283 | if (data_invalid - acc_clks * CLK_X < 2) |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 284 | debug("%s, Line %d: Warning!\n", __FILE__, __LINE__); |
| 285 | |
| 286 | addr_2_data = DIV_ROUND_UP(tadl[mode], CLK_X); |
| 287 | re_2_we = DIV_ROUND_UP(trhw[mode], CLK_X); |
| 288 | re_2_re = DIV_ROUND_UP(trhz[mode], CLK_X); |
| 289 | we_2_re = DIV_ROUND_UP(twhr[mode], CLK_X); |
| 290 | cs_cnt = DIV_ROUND_UP((tcs[mode] - trp[mode]), CLK_X); |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 291 | if (cs_cnt == 0) |
| 292 | cs_cnt = 1; |
| 293 | |
| 294 | if (tcea[mode]) { |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 295 | while (cs_cnt * CLK_X + trea[mode] < tcea[mode]) |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 296 | cs_cnt++; |
| 297 | } |
| 298 | |
| 299 | /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */ |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 300 | if (readl(denali->flash_reg + MANUFACTURER_ID) == 0 && |
| 301 | readl(denali->flash_reg + DEVICE_ID) == 0x88) |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 302 | acc_clks = 6; |
| 303 | |
| 304 | writel(acc_clks, denali->flash_reg + ACC_CLKS); |
| 305 | writel(re_2_we, denali->flash_reg + RE_2_WE); |
| 306 | writel(re_2_re, denali->flash_reg + RE_2_RE); |
| 307 | writel(we_2_re, denali->flash_reg + WE_2_RE); |
| 308 | writel(addr_2_data, denali->flash_reg + ADDR_2_DATA); |
| 309 | writel(en_lo, denali->flash_reg + RDWR_EN_LO_CNT); |
| 310 | writel(en_hi, denali->flash_reg + RDWR_EN_HI_CNT); |
| 311 | writel(cs_cnt, denali->flash_reg + CS_SETUP_CNT); |
| 312 | } |
| 313 | |
| 314 | /* queries the NAND device to see what ONFI modes it supports. */ |
| 315 | static uint32_t get_onfi_nand_para(struct denali_nand_info *denali) |
| 316 | { |
| 317 | int i; |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 318 | |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 319 | /* |
| 320 | * we needn't to do a reset here because driver has already |
| 321 | * reset all the banks before |
| 322 | */ |
| 323 | if (!(readl(denali->flash_reg + ONFI_TIMING_MODE) & |
| 324 | ONFI_TIMING_MODE__VALUE)) |
| 325 | return -EIO; |
| 326 | |
| 327 | for (i = 5; i > 0; i--) { |
| 328 | if (readl(denali->flash_reg + ONFI_TIMING_MODE) & |
| 329 | (0x01 << i)) |
| 330 | break; |
| 331 | } |
| 332 | |
| 333 | nand_onfi_timing_set(denali, i); |
| 334 | |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 335 | /* |
| 336 | * By now, all the ONFI devices we know support the page cache |
| 337 | * rw feature. So here we enable the pipeline_rw_ahead feature |
| 338 | */ |
| 339 | |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 340 | return 0; |
| 341 | } |
| 342 | |
| 343 | static void get_samsung_nand_para(struct denali_nand_info *denali, |
| 344 | uint8_t device_id) |
| 345 | { |
| 346 | if (device_id == 0xd3) { /* Samsung K9WAG08U1A */ |
| 347 | /* Set timing register values according to datasheet */ |
| 348 | writel(5, denali->flash_reg + ACC_CLKS); |
| 349 | writel(20, denali->flash_reg + RE_2_WE); |
| 350 | writel(12, denali->flash_reg + WE_2_RE); |
| 351 | writel(14, denali->flash_reg + ADDR_2_DATA); |
| 352 | writel(3, denali->flash_reg + RDWR_EN_LO_CNT); |
| 353 | writel(2, denali->flash_reg + RDWR_EN_HI_CNT); |
| 354 | writel(2, denali->flash_reg + CS_SETUP_CNT); |
| 355 | } |
| 356 | } |
| 357 | |
| 358 | static void get_toshiba_nand_para(struct denali_nand_info *denali) |
| 359 | { |
| 360 | uint32_t tmp; |
| 361 | |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 362 | /* |
| 363 | * Workaround to fix a controller bug which reports a wrong |
| 364 | * spare area size for some kind of Toshiba NAND device |
| 365 | */ |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 366 | if ((readl(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) && |
| 367 | (readl(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) { |
| 368 | writel(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE); |
| 369 | tmp = readl(denali->flash_reg + DEVICES_CONNECTED) * |
| 370 | readl(denali->flash_reg + DEVICE_SPARE_AREA_SIZE); |
| 371 | writel(tmp, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE); |
| 372 | } |
| 373 | } |
| 374 | |
| 375 | static void get_hynix_nand_para(struct denali_nand_info *denali, |
| 376 | uint8_t device_id) |
| 377 | { |
| 378 | uint32_t main_size, spare_size; |
| 379 | |
| 380 | switch (device_id) { |
| 381 | case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */ |
| 382 | case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */ |
| 383 | writel(128, denali->flash_reg + PAGES_PER_BLOCK); |
| 384 | writel(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE); |
| 385 | writel(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE); |
| 386 | main_size = 4096 * |
| 387 | readl(denali->flash_reg + DEVICES_CONNECTED); |
| 388 | spare_size = 224 * |
| 389 | readl(denali->flash_reg + DEVICES_CONNECTED); |
| 390 | writel(main_size, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE); |
| 391 | writel(spare_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE); |
| 392 | writel(0, denali->flash_reg + DEVICE_WIDTH); |
| 393 | break; |
| 394 | default: |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 395 | debug("Spectra: Unknown Hynix NAND (Device ID: 0x%x).\n" |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 396 | "Will use default parameter values instead.\n", |
| 397 | device_id); |
| 398 | } |
| 399 | } |
| 400 | |
| 401 | /* |
| 402 | * determines how many NAND chips are connected to the controller. Note for |
| 403 | * Intel CE4100 devices we don't support more than one device. |
| 404 | */ |
| 405 | static void find_valid_banks(struct denali_nand_info *denali) |
| 406 | { |
| 407 | uint32_t id[denali->max_banks]; |
| 408 | int i; |
| 409 | |
| 410 | denali->total_used_banks = 1; |
| 411 | for (i = 0; i < denali->max_banks; i++) { |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 412 | index_addr(denali, MODE_11 | (i << 24) | 0, 0x90); |
| 413 | index_addr(denali, MODE_11 | (i << 24) | 1, 0); |
| 414 | index_addr_read_data(denali, MODE_11 | (i << 24) | 2, &id[i]); |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 415 | |
| 416 | if (i == 0) { |
| 417 | if (!(id[i] & 0x0ff)) |
| 418 | break; |
| 419 | } else { |
| 420 | if ((id[i] & 0x0ff) == (id[0] & 0x0ff)) |
| 421 | denali->total_used_banks++; |
| 422 | else |
| 423 | break; |
| 424 | } |
| 425 | } |
| 426 | } |
| 427 | |
| 428 | /* |
| 429 | * Use the configuration feature register to determine the maximum number of |
| 430 | * banks that the hardware supports. |
| 431 | */ |
| 432 | static void detect_max_banks(struct denali_nand_info *denali) |
| 433 | { |
| 434 | uint32_t features = readl(denali->flash_reg + FEATURES); |
Graham Moore | 15305c2 | 2016-03-24 22:14:35 +0900 | [diff] [blame] | 435 | /* |
| 436 | * Read the revision register, so we can calculate the max_banks |
| 437 | * properly: the encoding changed from rev 5.0 to 5.1 |
| 438 | */ |
| 439 | u32 revision = MAKE_COMPARABLE_REVISION( |
| 440 | readl(denali->flash_reg + REVISION)); |
| 441 | if (revision < REVISION_5_1) |
| 442 | denali->max_banks = 2 << (features & FEATURES__N_BANKS); |
| 443 | else |
| 444 | denali->max_banks = 1 << (features & FEATURES__N_BANKS); |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 445 | } |
| 446 | |
| 447 | static void detect_partition_feature(struct denali_nand_info *denali) |
| 448 | { |
| 449 | /* |
| 450 | * For MRST platform, denali->fwblks represent the |
| 451 | * number of blocks firmware is taken, |
| 452 | * FW is in protect partition and MTD driver has no |
| 453 | * permission to access it. So let driver know how many |
| 454 | * blocks it can't touch. |
| 455 | */ |
| 456 | if (readl(denali->flash_reg + FEATURES) & FEATURES__PARTITION) { |
| 457 | if ((readl(denali->flash_reg + PERM_SRC_ID(1)) & |
| 458 | PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) { |
| 459 | denali->fwblks = |
| 460 | ((readl(denali->flash_reg + MIN_MAX_BANK(1)) & |
| 461 | MIN_MAX_BANK__MIN_VALUE) * |
| 462 | denali->blksperchip) |
| 463 | + |
| 464 | (readl(denali->flash_reg + MIN_BLK_ADDR(1)) & |
| 465 | MIN_BLK_ADDR__VALUE); |
| 466 | } else { |
| 467 | denali->fwblks = SPECTRA_START_BLOCK; |
| 468 | } |
| 469 | } else { |
| 470 | denali->fwblks = SPECTRA_START_BLOCK; |
| 471 | } |
| 472 | } |
| 473 | |
| 474 | static uint32_t denali_nand_timing_set(struct denali_nand_info *denali) |
| 475 | { |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 476 | uint32_t id_bytes[8], addr; |
| 477 | uint8_t maf_id, device_id; |
| 478 | int i; |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 479 | |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 480 | /* |
| 481 | * Use read id method to get device ID and other params. |
| 482 | * For some NAND chips, controller can't report the correct |
| 483 | * device ID by reading from DEVICE_ID register |
| 484 | */ |
| 485 | addr = MODE_11 | BANK(denali->flash_bank); |
| 486 | index_addr(denali, addr | 0, 0x90); |
| 487 | index_addr(denali, addr | 1, 0); |
| 488 | for (i = 0; i < 8; i++) |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 489 | index_addr_read_data(denali, addr | 2, &id_bytes[i]); |
| 490 | maf_id = id_bytes[0]; |
| 491 | device_id = id_bytes[1]; |
| 492 | |
| 493 | if (readl(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) & |
| 494 | ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */ |
| 495 | if (get_onfi_nand_para(denali)) |
| 496 | return -EIO; |
| 497 | } else if (maf_id == 0xEC) { /* Samsung NAND */ |
| 498 | get_samsung_nand_para(denali, device_id); |
| 499 | } else if (maf_id == 0x98) { /* Toshiba NAND */ |
| 500 | get_toshiba_nand_para(denali); |
| 501 | } else if (maf_id == 0xAD) { /* Hynix NAND */ |
| 502 | get_hynix_nand_para(denali, device_id); |
| 503 | } |
| 504 | |
| 505 | find_valid_banks(denali); |
| 506 | |
| 507 | detect_partition_feature(denali); |
| 508 | |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 509 | /* |
| 510 | * If the user specified to override the default timings |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 511 | * with a specific ONFI mode, we apply those changes here. |
| 512 | */ |
| 513 | if (onfi_timing_mode != NAND_DEFAULT_TIMINGS) |
| 514 | nand_onfi_timing_set(denali, onfi_timing_mode); |
| 515 | |
| 516 | return 0; |
| 517 | } |
| 518 | |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 519 | /* |
| 520 | * validation function to verify that the controlling software is making |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 521 | * a valid request |
| 522 | */ |
| 523 | static inline bool is_flash_bank_valid(int flash_bank) |
| 524 | { |
| 525 | return flash_bank >= 0 && flash_bank < 4; |
| 526 | } |
| 527 | |
| 528 | static void denali_irq_init(struct denali_nand_info *denali) |
| 529 | { |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 530 | uint32_t int_mask; |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 531 | int i; |
| 532 | |
| 533 | /* Disable global interrupts */ |
| 534 | writel(0, denali->flash_reg + GLOBAL_INT_ENABLE); |
| 535 | |
| 536 | int_mask = DENALI_IRQ_ALL; |
| 537 | |
| 538 | /* Clear all status bits */ |
| 539 | for (i = 0; i < denali->max_banks; ++i) |
| 540 | writel(0xFFFF, denali->flash_reg + INTR_STATUS(i)); |
| 541 | |
| 542 | denali_irq_enable(denali, int_mask); |
| 543 | } |
| 544 | |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 545 | /* |
| 546 | * This helper function setups the registers for ECC and whether or not |
| 547 | * the spare area will be transferred. |
| 548 | */ |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 549 | static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en, |
| 550 | bool transfer_spare) |
| 551 | { |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 552 | int ecc_en_flag, transfer_spare_flag; |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 553 | |
| 554 | /* set ECC, transfer spare bits if needed */ |
| 555 | ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0; |
| 556 | transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0; |
| 557 | |
| 558 | /* Enable spare area/ECC per user's request. */ |
| 559 | writel(ecc_en_flag, denali->flash_reg + ECC_ENABLE); |
| 560 | /* applicable for MAP01 only */ |
| 561 | writel(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG); |
| 562 | } |
| 563 | |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 564 | /* |
| 565 | * sends a pipeline command operation to the controller. See the Denali NAND |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 566 | * controller's user guide for more information (section 4.2.3.6). |
| 567 | */ |
| 568 | static int denali_send_pipeline_cmd(struct denali_nand_info *denali, |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 569 | bool ecc_en, bool transfer_spare, |
| 570 | int access_type, int op) |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 571 | { |
| 572 | uint32_t addr, cmd, irq_status; |
| 573 | static uint32_t page_count = 1; |
| 574 | |
| 575 | setup_ecc_for_xfer(denali, ecc_en, transfer_spare); |
| 576 | |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 577 | clear_interrupts(denali); |
| 578 | |
| 579 | addr = BANK(denali->flash_bank) | denali->page; |
| 580 | |
| 581 | /* setup the acccess type */ |
| 582 | cmd = MODE_10 | addr; |
| 583 | index_addr(denali, cmd, access_type); |
| 584 | |
| 585 | /* setup the pipeline command */ |
| 586 | index_addr(denali, cmd, 0x2000 | op | page_count); |
| 587 | |
| 588 | cmd = MODE_01 | addr; |
| 589 | writel(cmd, denali->flash_mem + INDEX_CTRL_REG); |
| 590 | |
| 591 | if (op == DENALI_READ) { |
| 592 | /* wait for command to be accepted */ |
| 593 | irq_status = wait_for_irq(denali, INTR_STATUS__LOAD_COMP); |
| 594 | |
| 595 | if (irq_status == 0) |
| 596 | return -EIO; |
| 597 | } |
| 598 | |
| 599 | return 0; |
| 600 | } |
| 601 | |
| 602 | /* helper function that simply writes a buffer to the flash */ |
| 603 | static int write_data_to_flash_mem(struct denali_nand_info *denali, |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 604 | const uint8_t *buf, int len) |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 605 | { |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 606 | uint32_t *buf32; |
| 607 | int i; |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 608 | |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 609 | /* |
| 610 | * verify that the len is a multiple of 4. |
| 611 | * see comment in read_data_from_flash_mem() |
| 612 | */ |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 613 | BUG_ON((len % 4) != 0); |
| 614 | |
| 615 | /* write the data to the flash memory */ |
| 616 | buf32 = (uint32_t *)buf; |
| 617 | for (i = 0; i < len / 4; i++) |
| 618 | writel(*buf32++, denali->flash_mem + INDEX_DATA_REG); |
| 619 | return i * 4; /* intent is to return the number of bytes read */ |
| 620 | } |
| 621 | |
| 622 | /* helper function that simply reads a buffer from the flash */ |
| 623 | static int read_data_from_flash_mem(struct denali_nand_info *denali, |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 624 | uint8_t *buf, int len) |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 625 | { |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 626 | uint32_t *buf32; |
| 627 | int i; |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 628 | |
| 629 | /* |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 630 | * we assume that len will be a multiple of 4, if not it would be nice |
| 631 | * to know about it ASAP rather than have random failures... |
| 632 | * This assumption is based on the fact that this function is designed |
| 633 | * to be used to read flash pages, which are typically multiples of 4. |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 634 | */ |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 635 | BUG_ON((len % 4) != 0); |
| 636 | |
| 637 | /* transfer the data from the flash */ |
| 638 | buf32 = (uint32_t *)buf; |
| 639 | for (i = 0; i < len / 4; i++) |
| 640 | *buf32++ = readl(denali->flash_mem + INDEX_DATA_REG); |
| 641 | |
| 642 | return i * 4; /* intent is to return the number of bytes read */ |
| 643 | } |
| 644 | |
| 645 | static void denali_mode_main_access(struct denali_nand_info *denali) |
| 646 | { |
| 647 | uint32_t addr, cmd; |
| 648 | |
| 649 | addr = BANK(denali->flash_bank) | denali->page; |
| 650 | cmd = MODE_10 | addr; |
| 651 | index_addr(denali, cmd, MAIN_ACCESS); |
| 652 | } |
| 653 | |
| 654 | static void denali_mode_main_spare_access(struct denali_nand_info *denali) |
| 655 | { |
| 656 | uint32_t addr, cmd; |
| 657 | |
| 658 | addr = BANK(denali->flash_bank) | denali->page; |
| 659 | cmd = MODE_10 | addr; |
| 660 | index_addr(denali, cmd, MAIN_SPARE_ACCESS); |
| 661 | } |
| 662 | |
| 663 | /* writes OOB data to the device */ |
| 664 | static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) |
| 665 | { |
| 666 | struct denali_nand_info *denali = mtd_to_denali(mtd); |
| 667 | uint32_t irq_status; |
| 668 | uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP | |
| 669 | INTR_STATUS__PROGRAM_FAIL; |
| 670 | int status = 0; |
| 671 | |
| 672 | denali->page = page; |
| 673 | |
| 674 | if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS, |
| 675 | DENALI_WRITE) == 0) { |
| 676 | write_data_to_flash_mem(denali, buf, mtd->oobsize); |
| 677 | |
| 678 | /* wait for operation to complete */ |
| 679 | irq_status = wait_for_irq(denali, irq_mask); |
| 680 | |
| 681 | if (irq_status == 0) { |
| 682 | dev_err(denali->dev, "OOB write failed\n"); |
| 683 | status = -EIO; |
| 684 | } |
| 685 | } else { |
| 686 | printf("unable to send pipeline command\n"); |
| 687 | status = -EIO; |
| 688 | } |
| 689 | return status; |
| 690 | } |
| 691 | |
| 692 | /* reads OOB data from the device */ |
| 693 | static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) |
| 694 | { |
| 695 | struct denali_nand_info *denali = mtd_to_denali(mtd); |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 696 | uint32_t irq_mask = INTR_STATUS__LOAD_COMP; |
| 697 | uint32_t irq_status, addr, cmd; |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 698 | |
| 699 | denali->page = page; |
| 700 | |
| 701 | if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS, |
| 702 | DENALI_READ) == 0) { |
| 703 | read_data_from_flash_mem(denali, buf, mtd->oobsize); |
| 704 | |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 705 | /* |
| 706 | * wait for command to be accepted |
| 707 | * can always use status0 bit as the |
| 708 | * mask is identical for each bank. |
| 709 | */ |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 710 | irq_status = wait_for_irq(denali, irq_mask); |
| 711 | |
| 712 | if (irq_status == 0) |
| 713 | printf("page on OOB timeout %d\n", denali->page); |
| 714 | |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 715 | /* |
| 716 | * We set the device back to MAIN_ACCESS here as I observed |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 717 | * instability with the controller if you do a block erase |
| 718 | * and the last transaction was a SPARE_ACCESS. Block erase |
| 719 | * is reliable (according to the MTD test infrastructure) |
| 720 | * if you are in MAIN_ACCESS. |
| 721 | */ |
| 722 | addr = BANK(denali->flash_bank) | denali->page; |
| 723 | cmd = MODE_10 | addr; |
| 724 | index_addr(denali, cmd, MAIN_ACCESS); |
| 725 | } |
| 726 | } |
| 727 | |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 728 | /* |
| 729 | * this function examines buffers to see if they contain data that |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 730 | * indicate that the buffer is part of an erased region of flash. |
| 731 | */ |
| 732 | static bool is_erased(uint8_t *buf, int len) |
| 733 | { |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 734 | int i; |
| 735 | |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 736 | for (i = 0; i < len; i++) |
| 737 | if (buf[i] != 0xFF) |
| 738 | return false; |
| 739 | return true; |
| 740 | } |
| 741 | |
| 742 | /* programs the controller to either enable/disable DMA transfers */ |
| 743 | static void denali_enable_dma(struct denali_nand_info *denali, bool en) |
| 744 | { |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 745 | writel(en ? DMA_ENABLE__FLAG : 0, denali->flash_reg + DMA_ENABLE); |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 746 | readl(denali->flash_reg + DMA_ENABLE); |
| 747 | } |
| 748 | |
| 749 | /* setups the HW to perform the data DMA */ |
| 750 | static void denali_setup_dma(struct denali_nand_info *denali, int op) |
| 751 | { |
| 752 | uint32_t mode; |
| 753 | const int page_count = 1; |
Masahiro Yamada | 73b5b27 | 2016-02-29 20:57:29 +0900 | [diff] [blame] | 754 | uint64_t addr = (unsigned long)denali->buf.dma_buf; |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 755 | |
| 756 | flush_dcache_range(addr, addr + sizeof(denali->buf.dma_buf)); |
| 757 | |
| 758 | /* For Denali controller that is 64 bit bus IP core */ |
| 759 | #ifdef CONFIG_SYS_NAND_DENALI_64BIT |
| 760 | mode = MODE_10 | BANK(denali->flash_bank) | denali->page; |
| 761 | |
| 762 | /* DMA is a three step process */ |
| 763 | |
| 764 | /* 1. setup transfer type, interrupt when complete, |
| 765 | burst len = 64 bytes, the number of pages */ |
| 766 | index_addr(denali, mode, 0x01002000 | (64 << 16) | op | page_count); |
| 767 | |
| 768 | /* 2. set memory low address bits 31:0 */ |
| 769 | index_addr(denali, mode, addr); |
| 770 | |
| 771 | /* 3. set memory high address bits 64:32 */ |
Masahiro Yamada | 73b5b27 | 2016-02-29 20:57:29 +0900 | [diff] [blame] | 772 | index_addr(denali, mode, addr >> 32); |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 773 | #else |
| 774 | mode = MODE_10 | BANK(denali->flash_bank); |
| 775 | |
| 776 | /* DMA is a four step process */ |
| 777 | |
| 778 | /* 1. setup transfer type and # of pages */ |
| 779 | index_addr(denali, mode | denali->page, 0x2000 | op | page_count); |
| 780 | |
| 781 | /* 2. set memory high address bits 23:8 */ |
Masahiro Yamada | 73b5b27 | 2016-02-29 20:57:29 +0900 | [diff] [blame] | 782 | index_addr(denali, mode | (((addr >> 16) & 0xffff) << 8), 0x2200); |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 783 | |
| 784 | /* 3. set memory low address bits 23:8 */ |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 785 | index_addr(denali, mode | ((addr & 0xffff) << 8), 0x2300); |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 786 | |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 787 | /* 4. interrupt when complete, burst len = 64 bytes */ |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 788 | index_addr(denali, mode | 0x14000, 0x2400); |
| 789 | #endif |
| 790 | } |
| 791 | |
| 792 | /* Common DMA function */ |
| 793 | static uint32_t denali_dma_configuration(struct denali_nand_info *denali, |
| 794 | uint32_t ops, bool raw_xfer, |
| 795 | uint32_t irq_mask, int oob_required) |
| 796 | { |
| 797 | uint32_t irq_status = 0; |
| 798 | /* setup_ecc_for_xfer(bool ecc_en, bool transfer_spare) */ |
| 799 | setup_ecc_for_xfer(denali, !raw_xfer, oob_required); |
| 800 | |
| 801 | /* clear any previous interrupt flags */ |
| 802 | clear_interrupts(denali); |
| 803 | |
| 804 | /* enable the DMA */ |
| 805 | denali_enable_dma(denali, true); |
| 806 | |
| 807 | /* setup the DMA */ |
| 808 | denali_setup_dma(denali, ops); |
| 809 | |
| 810 | /* wait for operation to complete */ |
| 811 | irq_status = wait_for_irq(denali, irq_mask); |
| 812 | |
| 813 | /* if ECC fault happen, seems we need delay before turning off DMA. |
| 814 | * If not, the controller will go into non responsive condition */ |
| 815 | if (irq_status & INTR_STATUS__ECC_UNCOR_ERR) |
| 816 | udelay(100); |
| 817 | |
| 818 | /* disable the DMA */ |
| 819 | denali_enable_dma(denali, false); |
| 820 | |
| 821 | return irq_status; |
| 822 | } |
| 823 | |
| 824 | static int write_page(struct mtd_info *mtd, struct nand_chip *chip, |
| 825 | const uint8_t *buf, bool raw_xfer, int oob_required) |
| 826 | { |
| 827 | struct denali_nand_info *denali = mtd_to_denali(mtd); |
| 828 | |
| 829 | uint32_t irq_status = 0; |
| 830 | uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP; |
| 831 | |
| 832 | denali->status = 0; |
| 833 | |
| 834 | /* copy buffer into DMA buffer */ |
| 835 | memcpy(denali->buf.dma_buf, buf, mtd->writesize); |
| 836 | |
| 837 | /* need extra memcpy for raw transfer */ |
| 838 | if (raw_xfer) |
| 839 | memcpy(denali->buf.dma_buf + mtd->writesize, |
| 840 | chip->oob_poi, mtd->oobsize); |
| 841 | |
| 842 | /* setting up DMA */ |
| 843 | irq_status = denali_dma_configuration(denali, DENALI_WRITE, raw_xfer, |
| 844 | irq_mask, oob_required); |
| 845 | |
| 846 | /* if timeout happen, error out */ |
| 847 | if (!(irq_status & INTR_STATUS__DMA_CMD_COMP)) { |
| 848 | debug("DMA timeout for denali write_page\n"); |
| 849 | denali->status = NAND_STATUS_FAIL; |
| 850 | return -EIO; |
| 851 | } |
| 852 | |
| 853 | if (irq_status & INTR_STATUS__LOCKED_BLK) { |
| 854 | debug("Failed as write to locked block\n"); |
| 855 | denali->status = NAND_STATUS_FAIL; |
| 856 | return -EIO; |
| 857 | } |
| 858 | return 0; |
| 859 | } |
| 860 | |
| 861 | /* NAND core entry points */ |
| 862 | |
| 863 | /* |
| 864 | * this is the callback that the NAND core calls to write a page. Since |
| 865 | * writing a page with ECC or without is similar, all the work is done |
| 866 | * by write_page above. |
| 867 | */ |
| 868 | static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip, |
| 869 | const uint8_t *buf, int oob_required) |
| 870 | { |
| 871 | struct denali_nand_info *denali = mtd_to_denali(mtd); |
| 872 | |
| 873 | /* |
| 874 | * for regular page writes, we let HW handle all the ECC |
| 875 | * data written to the device. |
| 876 | */ |
| 877 | if (oob_required) |
| 878 | /* switch to main + spare access */ |
| 879 | denali_mode_main_spare_access(denali); |
| 880 | else |
| 881 | /* switch to main access only */ |
| 882 | denali_mode_main_access(denali); |
| 883 | |
| 884 | return write_page(mtd, chip, buf, false, oob_required); |
| 885 | } |
| 886 | |
| 887 | /* |
| 888 | * This is the callback that the NAND core calls to write a page without ECC. |
| 889 | * raw access is similar to ECC page writes, so all the work is done in the |
| 890 | * write_page() function above. |
| 891 | */ |
| 892 | static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, |
| 893 | const uint8_t *buf, int oob_required) |
| 894 | { |
| 895 | struct denali_nand_info *denali = mtd_to_denali(mtd); |
| 896 | |
| 897 | /* |
| 898 | * for raw page writes, we want to disable ECC and simply write |
| 899 | * whatever data is in the buffer. |
| 900 | */ |
| 901 | |
| 902 | if (oob_required) |
| 903 | /* switch to main + spare access */ |
| 904 | denali_mode_main_spare_access(denali); |
| 905 | else |
| 906 | /* switch to main access only */ |
| 907 | denali_mode_main_access(denali); |
| 908 | |
| 909 | return write_page(mtd, chip, buf, true, oob_required); |
| 910 | } |
| 911 | |
| 912 | static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip, |
| 913 | int page) |
| 914 | { |
| 915 | return write_oob_data(mtd, chip->oob_poi, page); |
| 916 | } |
| 917 | |
| 918 | /* raw include ECC value and all the spare area */ |
| 919 | static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, |
| 920 | uint8_t *buf, int oob_required, int page) |
| 921 | { |
| 922 | struct denali_nand_info *denali = mtd_to_denali(mtd); |
| 923 | |
| 924 | uint32_t irq_status, irq_mask = INTR_STATUS__DMA_CMD_COMP; |
| 925 | |
| 926 | if (denali->page != page) { |
| 927 | debug("Missing NAND_CMD_READ0 command\n"); |
| 928 | return -EIO; |
| 929 | } |
| 930 | |
| 931 | if (oob_required) |
| 932 | /* switch to main + spare access */ |
| 933 | denali_mode_main_spare_access(denali); |
| 934 | else |
| 935 | /* switch to main access only */ |
| 936 | denali_mode_main_access(denali); |
| 937 | |
| 938 | /* setting up the DMA where ecc_enable is false */ |
| 939 | irq_status = denali_dma_configuration(denali, DENALI_READ, true, |
| 940 | irq_mask, oob_required); |
| 941 | |
| 942 | /* if timeout happen, error out */ |
| 943 | if (!(irq_status & INTR_STATUS__DMA_CMD_COMP)) { |
| 944 | debug("DMA timeout for denali_read_page_raw\n"); |
| 945 | return -EIO; |
| 946 | } |
| 947 | |
| 948 | /* splitting the content to destination buffer holder */ |
| 949 | memcpy(chip->oob_poi, (denali->buf.dma_buf + mtd->writesize), |
| 950 | mtd->oobsize); |
| 951 | memcpy(buf, denali->buf.dma_buf, mtd->writesize); |
| 952 | |
| 953 | return 0; |
| 954 | } |
| 955 | |
| 956 | static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip, |
| 957 | uint8_t *buf, int oob_required, int page) |
| 958 | { |
| 959 | struct denali_nand_info *denali = mtd_to_denali(mtd); |
| 960 | uint32_t irq_status, irq_mask = INTR_STATUS__DMA_CMD_COMP; |
| 961 | |
| 962 | if (denali->page != page) { |
| 963 | debug("Missing NAND_CMD_READ0 command\n"); |
| 964 | return -EIO; |
| 965 | } |
| 966 | |
| 967 | if (oob_required) |
| 968 | /* switch to main + spare access */ |
| 969 | denali_mode_main_spare_access(denali); |
| 970 | else |
| 971 | /* switch to main access only */ |
| 972 | denali_mode_main_access(denali); |
| 973 | |
| 974 | /* setting up the DMA where ecc_enable is true */ |
| 975 | irq_status = denali_dma_configuration(denali, DENALI_READ, false, |
| 976 | irq_mask, oob_required); |
| 977 | |
| 978 | memcpy(buf, denali->buf.dma_buf, mtd->writesize); |
| 979 | |
| 980 | /* check whether any ECC error */ |
| 981 | if (irq_status & INTR_STATUS__ECC_UNCOR_ERR) { |
| 982 | /* is the ECC cause by erase page, check using read_page_raw */ |
| 983 | debug(" Uncorrected ECC detected\n"); |
| 984 | denali_read_page_raw(mtd, chip, buf, oob_required, |
| 985 | denali->page); |
| 986 | |
| 987 | if (is_erased(buf, mtd->writesize) == true && |
| 988 | is_erased(chip->oob_poi, mtd->oobsize) == true) { |
| 989 | debug(" ECC error cause by erased block\n"); |
| 990 | /* false alarm, return the 0xFF */ |
| 991 | } else { |
| 992 | return -EIO; |
| 993 | } |
| 994 | } |
| 995 | memcpy(buf, denali->buf.dma_buf, mtd->writesize); |
| 996 | return 0; |
| 997 | } |
| 998 | |
| 999 | static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip, |
| 1000 | int page) |
| 1001 | { |
| 1002 | read_oob_data(mtd, chip->oob_poi, page); |
| 1003 | |
| 1004 | return 0; |
| 1005 | } |
| 1006 | |
| 1007 | static uint8_t denali_read_byte(struct mtd_info *mtd) |
| 1008 | { |
| 1009 | struct denali_nand_info *denali = mtd_to_denali(mtd); |
| 1010 | uint32_t addr, result; |
| 1011 | |
| 1012 | addr = (uint32_t)MODE_11 | BANK(denali->flash_bank); |
| 1013 | index_addr_read_data(denali, addr | 2, &result); |
| 1014 | return (uint8_t)result & 0xFF; |
| 1015 | } |
| 1016 | |
| 1017 | static void denali_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) |
| 1018 | { |
| 1019 | struct denali_nand_info *denali = mtd_to_denali(mtd); |
| 1020 | uint32_t i, addr, result; |
| 1021 | |
| 1022 | /* delay for tR (data transfer from Flash array to data register) */ |
| 1023 | udelay(25); |
| 1024 | |
| 1025 | /* ensure device completed else additional delay and polling */ |
| 1026 | wait_for_irq(denali, INTR_STATUS__INT_ACT); |
| 1027 | |
| 1028 | addr = (uint32_t)MODE_11 | BANK(denali->flash_bank); |
| 1029 | for (i = 0; i < len; i++) { |
| 1030 | index_addr_read_data(denali, (uint32_t)addr | 2, &result); |
| 1031 | write_byte_to_buf(denali, result); |
| 1032 | } |
| 1033 | memcpy(buf, denali->buf.buf, len); |
| 1034 | } |
| 1035 | |
| 1036 | static void denali_select_chip(struct mtd_info *mtd, int chip) |
| 1037 | { |
| 1038 | struct denali_nand_info *denali = mtd_to_denali(mtd); |
| 1039 | |
| 1040 | denali->flash_bank = chip; |
| 1041 | } |
| 1042 | |
| 1043 | static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip) |
| 1044 | { |
| 1045 | struct denali_nand_info *denali = mtd_to_denali(mtd); |
| 1046 | int status = denali->status; |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 1047 | |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 1048 | denali->status = 0; |
| 1049 | |
| 1050 | return status; |
| 1051 | } |
| 1052 | |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 1053 | static int denali_erase(struct mtd_info *mtd, int page) |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 1054 | { |
| 1055 | struct denali_nand_info *denali = mtd_to_denali(mtd); |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 1056 | |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 1057 | uint32_t cmd, irq_status; |
| 1058 | |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 1059 | clear_interrupts(denali); |
| 1060 | |
| 1061 | /* setup page read request for access type */ |
| 1062 | cmd = MODE_10 | BANK(denali->flash_bank) | page; |
| 1063 | index_addr(denali, cmd, 0x1); |
| 1064 | |
| 1065 | /* wait for erase to complete or failure to occur */ |
| 1066 | irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP | |
| 1067 | INTR_STATUS__ERASE_FAIL); |
| 1068 | |
| 1069 | if (irq_status & INTR_STATUS__ERASE_FAIL || |
| 1070 | irq_status & INTR_STATUS__LOCKED_BLK) |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 1071 | return NAND_STATUS_FAIL; |
| 1072 | |
| 1073 | return 0; |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 1074 | } |
| 1075 | |
| 1076 | static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col, |
| 1077 | int page) |
| 1078 | { |
| 1079 | struct denali_nand_info *denali = mtd_to_denali(mtd); |
| 1080 | uint32_t addr; |
| 1081 | |
| 1082 | switch (cmd) { |
| 1083 | case NAND_CMD_PAGEPROG: |
| 1084 | break; |
| 1085 | case NAND_CMD_STATUS: |
| 1086 | addr = MODE_11 | BANK(denali->flash_bank); |
| 1087 | index_addr(denali, addr | 0, cmd); |
| 1088 | break; |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 1089 | case NAND_CMD_READID: |
Masahiro Yamada | 05968e7 | 2014-10-03 20:03:03 +0900 | [diff] [blame] | 1090 | case NAND_CMD_PARAM: |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 1091 | reset_buf(denali); |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 1092 | /* |
| 1093 | * sometimes ManufactureId read from register is not right |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 1094 | * e.g. some of Micron MT29F32G08QAA MLC NAND chips |
| 1095 | * So here we send READID cmd to NAND insteand |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 1096 | */ |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 1097 | addr = MODE_11 | BANK(denali->flash_bank); |
| 1098 | index_addr(denali, addr | 0, cmd); |
| 1099 | index_addr(denali, addr | 1, col & 0xFF); |
Masahiro Yamada | 05968e7 | 2014-10-03 20:03:03 +0900 | [diff] [blame] | 1100 | if (cmd == NAND_CMD_PARAM) |
| 1101 | udelay(50); |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 1102 | break; |
Masahiro Yamada | ed3c980 | 2014-10-03 20:03:04 +0900 | [diff] [blame] | 1103 | case NAND_CMD_RNDOUT: |
| 1104 | addr = MODE_11 | BANK(denali->flash_bank); |
| 1105 | index_addr(denali, addr | 0, cmd); |
| 1106 | index_addr(denali, addr | 1, col & 0xFF); |
| 1107 | index_addr(denali, addr | 1, col >> 8); |
| 1108 | index_addr(denali, addr | 0, NAND_CMD_RNDOUTSTART); |
| 1109 | break; |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 1110 | case NAND_CMD_READ0: |
| 1111 | case NAND_CMD_SEQIN: |
| 1112 | denali->page = page; |
| 1113 | break; |
| 1114 | case NAND_CMD_RESET: |
| 1115 | reset_bank(denali); |
| 1116 | break; |
| 1117 | case NAND_CMD_READOOB: |
| 1118 | /* TODO: Read OOB data */ |
| 1119 | break; |
| 1120 | case NAND_CMD_ERASE1: |
| 1121 | /* |
| 1122 | * supporting block erase only, not multiblock erase as |
| 1123 | * it will cross plane and software need complex calculation |
| 1124 | * to identify the block count for the cross plane |
| 1125 | */ |
| 1126 | denali_erase(mtd, page); |
| 1127 | break; |
| 1128 | case NAND_CMD_ERASE2: |
| 1129 | /* nothing to do here as it was done during NAND_CMD_ERASE1 */ |
| 1130 | break; |
| 1131 | case NAND_CMD_UNLOCK1: |
| 1132 | addr = MODE_10 | BANK(denali->flash_bank) | page; |
| 1133 | index_addr(denali, addr | 0, DENALI_UNLOCK_START); |
| 1134 | break; |
| 1135 | case NAND_CMD_UNLOCK2: |
| 1136 | addr = MODE_10 | BANK(denali->flash_bank) | page; |
| 1137 | index_addr(denali, addr | 0, DENALI_UNLOCK_END); |
| 1138 | break; |
| 1139 | case NAND_CMD_LOCK: |
| 1140 | addr = MODE_10 | BANK(denali->flash_bank); |
| 1141 | index_addr(denali, addr | 0, DENALI_LOCK); |
| 1142 | break; |
| 1143 | default: |
| 1144 | printf(": unsupported command received 0x%x\n", cmd); |
| 1145 | break; |
| 1146 | } |
| 1147 | } |
| 1148 | /* end NAND core entry points */ |
| 1149 | |
| 1150 | /* Initialization code to bring the device up to a known good state */ |
| 1151 | static void denali_hw_init(struct denali_nand_info *denali) |
| 1152 | { |
| 1153 | /* |
| 1154 | * tell driver how many bit controller will skip before writing |
| 1155 | * ECC code in OOB. This is normally used for bad block marker |
| 1156 | */ |
| 1157 | writel(CONFIG_NAND_DENALI_SPARE_AREA_SKIP_BYTES, |
| 1158 | denali->flash_reg + SPARE_AREA_SKIP_BYTES); |
| 1159 | detect_max_banks(denali); |
| 1160 | denali_nand_reset(denali); |
| 1161 | writel(0x0F, denali->flash_reg + RB_PIN_ENABLED); |
| 1162 | writel(CHIP_EN_DONT_CARE__FLAG, |
| 1163 | denali->flash_reg + CHIP_ENABLE_DONT_CARE); |
| 1164 | writel(0xffff, denali->flash_reg + SPARE_AREA_MARKER); |
| 1165 | |
| 1166 | /* Should set value for these registers when init */ |
| 1167 | writel(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES); |
| 1168 | writel(1, denali->flash_reg + ECC_ENABLE); |
| 1169 | denali_nand_timing_set(denali); |
| 1170 | denali_irq_init(denali); |
| 1171 | } |
| 1172 | |
| 1173 | static struct nand_ecclayout nand_oob; |
| 1174 | |
Masahiro Yamada | 65e4145 | 2014-11-13 20:31:50 +0900 | [diff] [blame] | 1175 | static int denali_init(struct denali_nand_info *denali) |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 1176 | { |
Masahiro Yamada | 65e4145 | 2014-11-13 20:31:50 +0900 | [diff] [blame] | 1177 | int ret; |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 1178 | |
Masahiro Yamada | 65e4145 | 2014-11-13 20:31:50 +0900 | [diff] [blame] | 1179 | denali_hw_init(denali); |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 1180 | |
Masahiro Yamada | 65e4145 | 2014-11-13 20:31:50 +0900 | [diff] [blame] | 1181 | denali->mtd->name = "denali-nand"; |
| 1182 | denali->mtd->owner = THIS_MODULE; |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 1183 | |
Masahiro Yamada | 65e4145 | 2014-11-13 20:31:50 +0900 | [diff] [blame] | 1184 | /* register the driver with the NAND core subsystem */ |
| 1185 | denali->nand.select_chip = denali_select_chip; |
| 1186 | denali->nand.cmdfunc = denali_cmdfunc; |
| 1187 | denali->nand.read_byte = denali_read_byte; |
| 1188 | denali->nand.read_buf = denali_read_buf; |
| 1189 | denali->nand.waitfunc = denali_waitfunc; |
| 1190 | |
| 1191 | /* |
| 1192 | * scan for NAND devices attached to the controller |
| 1193 | * this is the first stage in a two step process to register |
| 1194 | * with the nand subsystem |
| 1195 | */ |
| 1196 | if (nand_scan_ident(denali->mtd, denali->max_banks, NULL)) { |
| 1197 | ret = -ENXIO; |
| 1198 | goto fail; |
| 1199 | } |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 1200 | |
| 1201 | #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT |
| 1202 | /* check whether flash got BBT table (located at end of flash). As we |
| 1203 | * use NAND_BBT_NO_OOB, the BBT page will start with |
| 1204 | * bbt_pattern. We will have mirror pattern too */ |
Masahiro Yamada | 65e4145 | 2014-11-13 20:31:50 +0900 | [diff] [blame] | 1205 | denali->nand.bbt_options |= NAND_BBT_USE_FLASH; |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 1206 | /* |
| 1207 | * We are using main + spare with ECC support. As BBT need ECC support, |
| 1208 | * we need to ensure BBT code don't write to OOB for the BBT pattern. |
| 1209 | * All BBT info will be stored into data area with ECC support. |
| 1210 | */ |
Masahiro Yamada | 65e4145 | 2014-11-13 20:31:50 +0900 | [diff] [blame] | 1211 | denali->nand.bbt_options |= NAND_BBT_NO_OOB; |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 1212 | #endif |
| 1213 | |
Masahiro Yamada | 65e4145 | 2014-11-13 20:31:50 +0900 | [diff] [blame] | 1214 | denali->nand.ecc.mode = NAND_ECC_HW; |
| 1215 | denali->nand.ecc.size = CONFIG_NAND_DENALI_ECC_SIZE; |
| 1216 | |
Scott Wood | d396372 | 2015-06-26 19:03:26 -0500 | [diff] [blame] | 1217 | /* no subpage writes on denali */ |
| 1218 | denali->nand.options |= NAND_NO_SUBPAGE_WRITE; |
| 1219 | |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 1220 | /* |
| 1221 | * Tell driver the ecc strength. This register may be already set |
| 1222 | * correctly. So we read this value out. |
| 1223 | */ |
Masahiro Yamada | 65e4145 | 2014-11-13 20:31:50 +0900 | [diff] [blame] | 1224 | denali->nand.ecc.strength = readl(denali->flash_reg + ECC_CORRECTION); |
| 1225 | switch (denali->nand.ecc.size) { |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 1226 | case 512: |
Masahiro Yamada | 65e4145 | 2014-11-13 20:31:50 +0900 | [diff] [blame] | 1227 | denali->nand.ecc.bytes = |
| 1228 | (denali->nand.ecc.strength * 13 + 15) / 16 * 2; |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 1229 | break; |
| 1230 | case 1024: |
Masahiro Yamada | 65e4145 | 2014-11-13 20:31:50 +0900 | [diff] [blame] | 1231 | denali->nand.ecc.bytes = |
| 1232 | (denali->nand.ecc.strength * 14 + 15) / 16 * 2; |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 1233 | break; |
| 1234 | default: |
| 1235 | pr_err("Unsupported ECC size\n"); |
Masahiro Yamada | 65e4145 | 2014-11-13 20:31:50 +0900 | [diff] [blame] | 1236 | ret = -EINVAL; |
| 1237 | goto fail; |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 1238 | } |
Masahiro Yamada | 65e4145 | 2014-11-13 20:31:50 +0900 | [diff] [blame] | 1239 | nand_oob.eccbytes = denali->nand.ecc.bytes; |
| 1240 | denali->nand.ecc.layout = &nand_oob; |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 1241 | |
Masahiro Yamada | f09eb52 | 2014-11-13 20:31:51 +0900 | [diff] [blame] | 1242 | writel(denali->mtd->erasesize / denali->mtd->writesize, |
| 1243 | denali->flash_reg + PAGES_PER_BLOCK); |
| 1244 | writel(denali->nand.options & NAND_BUSWIDTH_16 ? 1 : 0, |
| 1245 | denali->flash_reg + DEVICE_WIDTH); |
| 1246 | writel(denali->mtd->writesize, |
| 1247 | denali->flash_reg + DEVICE_MAIN_AREA_SIZE); |
| 1248 | writel(denali->mtd->oobsize, |
| 1249 | denali->flash_reg + DEVICE_SPARE_AREA_SIZE); |
| 1250 | if (readl(denali->flash_reg + DEVICES_CONNECTED) == 0) |
| 1251 | writel(1, denali->flash_reg + DEVICES_CONNECTED); |
| 1252 | |
Masahiro Yamada | 65e4145 | 2014-11-13 20:31:50 +0900 | [diff] [blame] | 1253 | /* override the default operations */ |
| 1254 | denali->nand.ecc.read_page = denali_read_page; |
| 1255 | denali->nand.ecc.read_page_raw = denali_read_page_raw; |
| 1256 | denali->nand.ecc.write_page = denali_write_page; |
| 1257 | denali->nand.ecc.write_page_raw = denali_write_page_raw; |
| 1258 | denali->nand.ecc.read_oob = denali_read_oob; |
| 1259 | denali->nand.ecc.write_oob = denali_write_oob; |
| 1260 | |
| 1261 | if (nand_scan_tail(denali->mtd)) { |
| 1262 | ret = -ENXIO; |
| 1263 | goto fail; |
| 1264 | } |
| 1265 | |
Scott Wood | b616d9b | 2016-05-30 13:57:55 -0500 | [diff] [blame] | 1266 | ret = nand_register(0, denali->mtd); |
Masahiro Yamada | 65e4145 | 2014-11-13 20:31:50 +0900 | [diff] [blame] | 1267 | |
| 1268 | fail: |
| 1269 | return ret; |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 1270 | } |
| 1271 | |
Masahiro Yamada | 65e4145 | 2014-11-13 20:31:50 +0900 | [diff] [blame] | 1272 | static int __board_nand_init(void) |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 1273 | { |
Masahiro Yamada | 65e4145 | 2014-11-13 20:31:50 +0900 | [diff] [blame] | 1274 | struct denali_nand_info *denali; |
| 1275 | |
| 1276 | denali = kzalloc(sizeof(*denali), GFP_KERNEL); |
| 1277 | if (!denali) |
| 1278 | return -ENOMEM; |
| 1279 | |
| 1280 | /* |
| 1281 | * If CONFIG_SYS_NAND_SELF_INIT is defined, each driver is responsible |
| 1282 | * for instantiating struct nand_chip, while drivers/mtd/nand/nand.c |
| 1283 | * still provides a "struct mtd_info nand_info" instance. |
| 1284 | */ |
Scott Wood | b616d9b | 2016-05-30 13:57:55 -0500 | [diff] [blame] | 1285 | denali->mtd = &denali->nand.mtd; |
Masahiro Yamada | 65e4145 | 2014-11-13 20:31:50 +0900 | [diff] [blame] | 1286 | |
| 1287 | /* |
| 1288 | * In the future, these base addresses should be taken from |
| 1289 | * Device Tree or platform data. |
| 1290 | */ |
| 1291 | denali->flash_reg = (void __iomem *)CONFIG_SYS_NAND_REGS_BASE; |
| 1292 | denali->flash_mem = (void __iomem *)CONFIG_SYS_NAND_DATA_BASE; |
| 1293 | |
| 1294 | return denali_init(denali); |
| 1295 | } |
| 1296 | |
| 1297 | void board_nand_init(void) |
| 1298 | { |
| 1299 | if (__board_nand_init() < 0) |
| 1300 | pr_warn("Failed to initialize Denali NAND controller.\n"); |
Chin Liang See | 3eb3e72 | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 1301 | } |