Kyungmin Park | 961df83 | 2008-11-19 16:25:44 +0100 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) International Business Machines Corp., 2006 |
| 3 | * |
Wolfgang Denk | 1a45966 | 2013-07-08 09:37:19 +0200 | [diff] [blame^] | 4 | * SPDX-License-Identifier: GPL-2.0+ |
Kyungmin Park | 961df83 | 2008-11-19 16:25:44 +0100 | [diff] [blame] | 5 | * |
| 6 | * Author: Artem Bityutskiy (Битюцкий Артём) |
| 7 | */ |
| 8 | |
| 9 | /* |
| 10 | * The UBI Eraseblock Association (EBA) unit. |
| 11 | * |
| 12 | * This unit is responsible for I/O to/from logical eraseblock. |
| 13 | * |
| 14 | * Although in this implementation the EBA table is fully kept and managed in |
| 15 | * RAM, which assumes poor scalability, it might be (partially) maintained on |
| 16 | * flash in future implementations. |
| 17 | * |
| 18 | * The EBA unit implements per-logical eraseblock locking. Before accessing a |
| 19 | * logical eraseblock it is locked for reading or writing. The per-logical |
| 20 | * eraseblock locking is implemented by means of the lock tree. The lock tree |
| 21 | * is an RB-tree which refers all the currently locked logical eraseblocks. The |
| 22 | * lock tree elements are &struct ubi_ltree_entry objects. They are indexed by |
| 23 | * (@vol_id, @lnum) pairs. |
| 24 | * |
| 25 | * EBA also maintains the global sequence counter which is incremented each |
| 26 | * time a logical eraseblock is mapped to a physical eraseblock and it is |
| 27 | * stored in the volume identifier header. This means that each VID header has |
| 28 | * a unique sequence number. The sequence number is only increased an we assume |
| 29 | * 64 bits is enough to never overflow. |
| 30 | */ |
| 31 | |
| 32 | #ifdef UBI_LINUX |
| 33 | #include <linux/slab.h> |
| 34 | #include <linux/crc32.h> |
| 35 | #include <linux/err.h> |
| 36 | #endif |
| 37 | |
| 38 | #include <ubi_uboot.h> |
| 39 | #include "ubi.h" |
| 40 | |
| 41 | /* Number of physical eraseblocks reserved for atomic LEB change operation */ |
| 42 | #define EBA_RESERVED_PEBS 1 |
| 43 | |
| 44 | /** |
| 45 | * next_sqnum - get next sequence number. |
| 46 | * @ubi: UBI device description object |
| 47 | * |
| 48 | * This function returns next sequence number to use, which is just the current |
| 49 | * global sequence counter value. It also increases the global sequence |
| 50 | * counter. |
| 51 | */ |
| 52 | static unsigned long long next_sqnum(struct ubi_device *ubi) |
| 53 | { |
| 54 | unsigned long long sqnum; |
| 55 | |
| 56 | spin_lock(&ubi->ltree_lock); |
| 57 | sqnum = ubi->global_sqnum++; |
| 58 | spin_unlock(&ubi->ltree_lock); |
| 59 | |
| 60 | return sqnum; |
| 61 | } |
| 62 | |
| 63 | /** |
| 64 | * ubi_get_compat - get compatibility flags of a volume. |
| 65 | * @ubi: UBI device description object |
| 66 | * @vol_id: volume ID |
| 67 | * |
| 68 | * This function returns compatibility flags for an internal volume. User |
| 69 | * volumes have no compatibility flags, so %0 is returned. |
| 70 | */ |
| 71 | static int ubi_get_compat(const struct ubi_device *ubi, int vol_id) |
| 72 | { |
| 73 | if (vol_id == UBI_LAYOUT_VOLUME_ID) |
| 74 | return UBI_LAYOUT_VOLUME_COMPAT; |
| 75 | return 0; |
| 76 | } |
| 77 | |
| 78 | /** |
| 79 | * ltree_lookup - look up the lock tree. |
| 80 | * @ubi: UBI device description object |
| 81 | * @vol_id: volume ID |
| 82 | * @lnum: logical eraseblock number |
| 83 | * |
| 84 | * This function returns a pointer to the corresponding &struct ubi_ltree_entry |
| 85 | * object if the logical eraseblock is locked and %NULL if it is not. |
| 86 | * @ubi->ltree_lock has to be locked. |
| 87 | */ |
| 88 | static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id, |
| 89 | int lnum) |
| 90 | { |
| 91 | struct rb_node *p; |
| 92 | |
| 93 | p = ubi->ltree.rb_node; |
| 94 | while (p) { |
| 95 | struct ubi_ltree_entry *le; |
| 96 | |
| 97 | le = rb_entry(p, struct ubi_ltree_entry, rb); |
| 98 | |
| 99 | if (vol_id < le->vol_id) |
| 100 | p = p->rb_left; |
| 101 | else if (vol_id > le->vol_id) |
| 102 | p = p->rb_right; |
| 103 | else { |
| 104 | if (lnum < le->lnum) |
| 105 | p = p->rb_left; |
| 106 | else if (lnum > le->lnum) |
| 107 | p = p->rb_right; |
| 108 | else |
| 109 | return le; |
| 110 | } |
| 111 | } |
| 112 | |
| 113 | return NULL; |
| 114 | } |
| 115 | |
| 116 | /** |
| 117 | * ltree_add_entry - add new entry to the lock tree. |
| 118 | * @ubi: UBI device description object |
| 119 | * @vol_id: volume ID |
| 120 | * @lnum: logical eraseblock number |
| 121 | * |
| 122 | * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the |
| 123 | * lock tree. If such entry is already there, its usage counter is increased. |
| 124 | * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation |
| 125 | * failed. |
| 126 | */ |
| 127 | static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi, |
| 128 | int vol_id, int lnum) |
| 129 | { |
| 130 | struct ubi_ltree_entry *le, *le1, *le_free; |
| 131 | |
| 132 | le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS); |
| 133 | if (!le) |
| 134 | return ERR_PTR(-ENOMEM); |
| 135 | |
| 136 | le->users = 0; |
| 137 | init_rwsem(&le->mutex); |
| 138 | le->vol_id = vol_id; |
| 139 | le->lnum = lnum; |
| 140 | |
| 141 | spin_lock(&ubi->ltree_lock); |
| 142 | le1 = ltree_lookup(ubi, vol_id, lnum); |
| 143 | |
| 144 | if (le1) { |
| 145 | /* |
| 146 | * This logical eraseblock is already locked. The newly |
| 147 | * allocated lock entry is not needed. |
| 148 | */ |
| 149 | le_free = le; |
| 150 | le = le1; |
| 151 | } else { |
| 152 | struct rb_node **p, *parent = NULL; |
| 153 | |
| 154 | /* |
| 155 | * No lock entry, add the newly allocated one to the |
| 156 | * @ubi->ltree RB-tree. |
| 157 | */ |
| 158 | le_free = NULL; |
| 159 | |
| 160 | p = &ubi->ltree.rb_node; |
| 161 | while (*p) { |
| 162 | parent = *p; |
| 163 | le1 = rb_entry(parent, struct ubi_ltree_entry, rb); |
| 164 | |
| 165 | if (vol_id < le1->vol_id) |
| 166 | p = &(*p)->rb_left; |
| 167 | else if (vol_id > le1->vol_id) |
| 168 | p = &(*p)->rb_right; |
| 169 | else { |
| 170 | ubi_assert(lnum != le1->lnum); |
| 171 | if (lnum < le1->lnum) |
| 172 | p = &(*p)->rb_left; |
| 173 | else |
| 174 | p = &(*p)->rb_right; |
| 175 | } |
| 176 | } |
| 177 | |
| 178 | rb_link_node(&le->rb, parent, p); |
| 179 | rb_insert_color(&le->rb, &ubi->ltree); |
| 180 | } |
| 181 | le->users += 1; |
| 182 | spin_unlock(&ubi->ltree_lock); |
| 183 | |
| 184 | if (le_free) |
| 185 | kfree(le_free); |
| 186 | |
| 187 | return le; |
| 188 | } |
| 189 | |
| 190 | /** |
| 191 | * leb_read_lock - lock logical eraseblock for reading. |
| 192 | * @ubi: UBI device description object |
| 193 | * @vol_id: volume ID |
| 194 | * @lnum: logical eraseblock number |
| 195 | * |
| 196 | * This function locks a logical eraseblock for reading. Returns zero in case |
| 197 | * of success and a negative error code in case of failure. |
| 198 | */ |
| 199 | static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum) |
| 200 | { |
| 201 | struct ubi_ltree_entry *le; |
| 202 | |
| 203 | le = ltree_add_entry(ubi, vol_id, lnum); |
| 204 | if (IS_ERR(le)) |
| 205 | return PTR_ERR(le); |
| 206 | down_read(&le->mutex); |
| 207 | return 0; |
| 208 | } |
| 209 | |
| 210 | /** |
| 211 | * leb_read_unlock - unlock logical eraseblock. |
| 212 | * @ubi: UBI device description object |
| 213 | * @vol_id: volume ID |
| 214 | * @lnum: logical eraseblock number |
| 215 | */ |
| 216 | static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum) |
| 217 | { |
| 218 | int _free = 0; |
| 219 | struct ubi_ltree_entry *le; |
| 220 | |
| 221 | spin_lock(&ubi->ltree_lock); |
| 222 | le = ltree_lookup(ubi, vol_id, lnum); |
| 223 | le->users -= 1; |
| 224 | ubi_assert(le->users >= 0); |
| 225 | if (le->users == 0) { |
| 226 | rb_erase(&le->rb, &ubi->ltree); |
| 227 | _free = 1; |
| 228 | } |
| 229 | spin_unlock(&ubi->ltree_lock); |
| 230 | |
| 231 | up_read(&le->mutex); |
| 232 | if (_free) |
| 233 | kfree(le); |
| 234 | } |
| 235 | |
| 236 | /** |
| 237 | * leb_write_lock - lock logical eraseblock for writing. |
| 238 | * @ubi: UBI device description object |
| 239 | * @vol_id: volume ID |
| 240 | * @lnum: logical eraseblock number |
| 241 | * |
| 242 | * This function locks a logical eraseblock for writing. Returns zero in case |
| 243 | * of success and a negative error code in case of failure. |
| 244 | */ |
| 245 | static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum) |
| 246 | { |
| 247 | struct ubi_ltree_entry *le; |
| 248 | |
| 249 | le = ltree_add_entry(ubi, vol_id, lnum); |
| 250 | if (IS_ERR(le)) |
| 251 | return PTR_ERR(le); |
| 252 | down_write(&le->mutex); |
| 253 | return 0; |
| 254 | } |
| 255 | |
| 256 | /** |
| 257 | * leb_write_lock - lock logical eraseblock for writing. |
| 258 | * @ubi: UBI device description object |
| 259 | * @vol_id: volume ID |
| 260 | * @lnum: logical eraseblock number |
| 261 | * |
| 262 | * This function locks a logical eraseblock for writing if there is no |
| 263 | * contention and does nothing if there is contention. Returns %0 in case of |
| 264 | * success, %1 in case of contention, and and a negative error code in case of |
| 265 | * failure. |
| 266 | */ |
| 267 | static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum) |
| 268 | { |
| 269 | int _free; |
| 270 | struct ubi_ltree_entry *le; |
| 271 | |
| 272 | le = ltree_add_entry(ubi, vol_id, lnum); |
| 273 | if (IS_ERR(le)) |
| 274 | return PTR_ERR(le); |
| 275 | if (down_write_trylock(&le->mutex)) |
| 276 | return 0; |
| 277 | |
| 278 | /* Contention, cancel */ |
| 279 | spin_lock(&ubi->ltree_lock); |
| 280 | le->users -= 1; |
| 281 | ubi_assert(le->users >= 0); |
| 282 | if (le->users == 0) { |
| 283 | rb_erase(&le->rb, &ubi->ltree); |
| 284 | _free = 1; |
| 285 | } else |
| 286 | _free = 0; |
| 287 | spin_unlock(&ubi->ltree_lock); |
| 288 | if (_free) |
| 289 | kfree(le); |
| 290 | |
| 291 | return 1; |
| 292 | } |
| 293 | |
| 294 | /** |
| 295 | * leb_write_unlock - unlock logical eraseblock. |
| 296 | * @ubi: UBI device description object |
| 297 | * @vol_id: volume ID |
| 298 | * @lnum: logical eraseblock number |
| 299 | */ |
| 300 | static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum) |
| 301 | { |
| 302 | int _free; |
| 303 | struct ubi_ltree_entry *le; |
| 304 | |
| 305 | spin_lock(&ubi->ltree_lock); |
| 306 | le = ltree_lookup(ubi, vol_id, lnum); |
| 307 | le->users -= 1; |
| 308 | ubi_assert(le->users >= 0); |
| 309 | if (le->users == 0) { |
| 310 | rb_erase(&le->rb, &ubi->ltree); |
| 311 | _free = 1; |
| 312 | } else |
| 313 | _free = 0; |
| 314 | spin_unlock(&ubi->ltree_lock); |
| 315 | |
| 316 | up_write(&le->mutex); |
| 317 | if (_free) |
| 318 | kfree(le); |
| 319 | } |
| 320 | |
| 321 | /** |
| 322 | * ubi_eba_unmap_leb - un-map logical eraseblock. |
| 323 | * @ubi: UBI device description object |
| 324 | * @vol: volume description object |
| 325 | * @lnum: logical eraseblock number |
| 326 | * |
| 327 | * This function un-maps logical eraseblock @lnum and schedules corresponding |
| 328 | * physical eraseblock for erasure. Returns zero in case of success and a |
| 329 | * negative error code in case of failure. |
| 330 | */ |
| 331 | int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol, |
| 332 | int lnum) |
| 333 | { |
| 334 | int err, pnum, vol_id = vol->vol_id; |
| 335 | |
| 336 | if (ubi->ro_mode) |
| 337 | return -EROFS; |
| 338 | |
| 339 | err = leb_write_lock(ubi, vol_id, lnum); |
| 340 | if (err) |
| 341 | return err; |
| 342 | |
| 343 | pnum = vol->eba_tbl[lnum]; |
| 344 | if (pnum < 0) |
| 345 | /* This logical eraseblock is already unmapped */ |
| 346 | goto out_unlock; |
| 347 | |
| 348 | dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum); |
| 349 | |
| 350 | vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED; |
| 351 | err = ubi_wl_put_peb(ubi, pnum, 0); |
| 352 | |
| 353 | out_unlock: |
| 354 | leb_write_unlock(ubi, vol_id, lnum); |
| 355 | return err; |
| 356 | } |
| 357 | |
| 358 | /** |
| 359 | * ubi_eba_read_leb - read data. |
| 360 | * @ubi: UBI device description object |
| 361 | * @vol: volume description object |
| 362 | * @lnum: logical eraseblock number |
| 363 | * @buf: buffer to store the read data |
| 364 | * @offset: offset from where to read |
| 365 | * @len: how many bytes to read |
| 366 | * @check: data CRC check flag |
| 367 | * |
| 368 | * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF |
| 369 | * bytes. The @check flag only makes sense for static volumes and forces |
| 370 | * eraseblock data CRC checking. |
| 371 | * |
| 372 | * In case of success this function returns zero. In case of a static volume, |
| 373 | * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be |
| 374 | * returned for any volume type if an ECC error was detected by the MTD device |
| 375 | * driver. Other negative error cored may be returned in case of other errors. |
| 376 | */ |
| 377 | int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, |
| 378 | void *buf, int offset, int len, int check) |
| 379 | { |
| 380 | int err, pnum, scrub = 0, vol_id = vol->vol_id; |
| 381 | struct ubi_vid_hdr *vid_hdr; |
| 382 | uint32_t uninitialized_var(crc); |
| 383 | |
| 384 | err = leb_read_lock(ubi, vol_id, lnum); |
| 385 | if (err) |
| 386 | return err; |
| 387 | |
| 388 | pnum = vol->eba_tbl[lnum]; |
| 389 | if (pnum < 0) { |
| 390 | /* |
| 391 | * The logical eraseblock is not mapped, fill the whole buffer |
| 392 | * with 0xFF bytes. The exception is static volumes for which |
| 393 | * it is an error to read unmapped logical eraseblocks. |
| 394 | */ |
| 395 | dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)", |
| 396 | len, offset, vol_id, lnum); |
| 397 | leb_read_unlock(ubi, vol_id, lnum); |
| 398 | ubi_assert(vol->vol_type != UBI_STATIC_VOLUME); |
| 399 | memset(buf, 0xFF, len); |
| 400 | return 0; |
| 401 | } |
| 402 | |
| 403 | dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d", |
| 404 | len, offset, vol_id, lnum, pnum); |
| 405 | |
| 406 | if (vol->vol_type == UBI_DYNAMIC_VOLUME) |
| 407 | check = 0; |
| 408 | |
| 409 | retry: |
| 410 | if (check) { |
| 411 | vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); |
| 412 | if (!vid_hdr) { |
| 413 | err = -ENOMEM; |
| 414 | goto out_unlock; |
| 415 | } |
| 416 | |
| 417 | err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1); |
| 418 | if (err && err != UBI_IO_BITFLIPS) { |
| 419 | if (err > 0) { |
| 420 | /* |
| 421 | * The header is either absent or corrupted. |
| 422 | * The former case means there is a bug - |
| 423 | * switch to read-only mode just in case. |
| 424 | * The latter case means a real corruption - we |
| 425 | * may try to recover data. FIXME: but this is |
| 426 | * not implemented. |
| 427 | */ |
| 428 | if (err == UBI_IO_BAD_VID_HDR) { |
| 429 | ubi_warn("bad VID header at PEB %d, LEB" |
| 430 | "%d:%d", pnum, vol_id, lnum); |
| 431 | err = -EBADMSG; |
| 432 | } else |
| 433 | ubi_ro_mode(ubi); |
| 434 | } |
| 435 | goto out_free; |
| 436 | } else if (err == UBI_IO_BITFLIPS) |
| 437 | scrub = 1; |
| 438 | |
| 439 | ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs)); |
| 440 | ubi_assert(len == be32_to_cpu(vid_hdr->data_size)); |
| 441 | |
| 442 | crc = be32_to_cpu(vid_hdr->data_crc); |
| 443 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 444 | } |
| 445 | |
| 446 | err = ubi_io_read_data(ubi, buf, pnum, offset, len); |
| 447 | if (err) { |
| 448 | if (err == UBI_IO_BITFLIPS) { |
| 449 | scrub = 1; |
| 450 | err = 0; |
Sergey Lapin | dfe64e2 | 2013-01-14 03:46:50 +0000 | [diff] [blame] | 451 | } else if (mtd_is_eccerr(err)) { |
Kyungmin Park | 961df83 | 2008-11-19 16:25:44 +0100 | [diff] [blame] | 452 | if (vol->vol_type == UBI_DYNAMIC_VOLUME) |
| 453 | goto out_unlock; |
| 454 | scrub = 1; |
| 455 | if (!check) { |
| 456 | ubi_msg("force data checking"); |
| 457 | check = 1; |
| 458 | goto retry; |
| 459 | } |
| 460 | } else |
| 461 | goto out_unlock; |
| 462 | } |
| 463 | |
| 464 | if (check) { |
| 465 | uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len); |
| 466 | if (crc1 != crc) { |
| 467 | ubi_warn("CRC error: calculated %#08x, must be %#08x", |
| 468 | crc1, crc); |
| 469 | err = -EBADMSG; |
| 470 | goto out_unlock; |
| 471 | } |
| 472 | } |
| 473 | |
| 474 | if (scrub) |
| 475 | err = ubi_wl_scrub_peb(ubi, pnum); |
| 476 | |
| 477 | leb_read_unlock(ubi, vol_id, lnum); |
| 478 | return err; |
| 479 | |
| 480 | out_free: |
| 481 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 482 | out_unlock: |
| 483 | leb_read_unlock(ubi, vol_id, lnum); |
| 484 | return err; |
| 485 | } |
| 486 | |
| 487 | /** |
| 488 | * recover_peb - recover from write failure. |
| 489 | * @ubi: UBI device description object |
| 490 | * @pnum: the physical eraseblock to recover |
| 491 | * @vol_id: volume ID |
| 492 | * @lnum: logical eraseblock number |
| 493 | * @buf: data which was not written because of the write failure |
| 494 | * @offset: offset of the failed write |
| 495 | * @len: how many bytes should have been written |
| 496 | * |
| 497 | * This function is called in case of a write failure and moves all good data |
| 498 | * from the potentially bad physical eraseblock to a good physical eraseblock. |
| 499 | * This function also writes the data which was not written due to the failure. |
| 500 | * Returns new physical eraseblock number in case of success, and a negative |
| 501 | * error code in case of failure. |
| 502 | */ |
| 503 | static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum, |
| 504 | const void *buf, int offset, int len) |
| 505 | { |
| 506 | int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0; |
| 507 | struct ubi_volume *vol = ubi->volumes[idx]; |
| 508 | struct ubi_vid_hdr *vid_hdr; |
| 509 | |
| 510 | vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); |
| 511 | if (!vid_hdr) { |
| 512 | return -ENOMEM; |
| 513 | } |
| 514 | |
| 515 | mutex_lock(&ubi->buf_mutex); |
| 516 | |
| 517 | retry: |
| 518 | new_pnum = ubi_wl_get_peb(ubi, UBI_UNKNOWN); |
| 519 | if (new_pnum < 0) { |
| 520 | mutex_unlock(&ubi->buf_mutex); |
| 521 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 522 | return new_pnum; |
| 523 | } |
| 524 | |
| 525 | ubi_msg("recover PEB %d, move data to PEB %d", pnum, new_pnum); |
| 526 | |
| 527 | err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1); |
| 528 | if (err && err != UBI_IO_BITFLIPS) { |
| 529 | if (err > 0) |
| 530 | err = -EIO; |
| 531 | goto out_put; |
| 532 | } |
| 533 | |
| 534 | vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); |
| 535 | err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr); |
| 536 | if (err) |
| 537 | goto write_error; |
| 538 | |
| 539 | data_size = offset + len; |
| 540 | memset(ubi->peb_buf1 + offset, 0xFF, len); |
| 541 | |
| 542 | /* Read everything before the area where the write failure happened */ |
| 543 | if (offset > 0) { |
| 544 | err = ubi_io_read_data(ubi, ubi->peb_buf1, pnum, 0, offset); |
| 545 | if (err && err != UBI_IO_BITFLIPS) |
| 546 | goto out_put; |
| 547 | } |
| 548 | |
| 549 | memcpy(ubi->peb_buf1 + offset, buf, len); |
| 550 | |
| 551 | err = ubi_io_write_data(ubi, ubi->peb_buf1, new_pnum, 0, data_size); |
| 552 | if (err) |
| 553 | goto write_error; |
| 554 | |
| 555 | mutex_unlock(&ubi->buf_mutex); |
| 556 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 557 | |
| 558 | vol->eba_tbl[lnum] = new_pnum; |
| 559 | ubi_wl_put_peb(ubi, pnum, 1); |
| 560 | |
| 561 | ubi_msg("data was successfully recovered"); |
| 562 | return 0; |
| 563 | |
| 564 | out_put: |
| 565 | mutex_unlock(&ubi->buf_mutex); |
| 566 | ubi_wl_put_peb(ubi, new_pnum, 1); |
| 567 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 568 | return err; |
| 569 | |
| 570 | write_error: |
| 571 | /* |
| 572 | * Bad luck? This physical eraseblock is bad too? Crud. Let's try to |
| 573 | * get another one. |
| 574 | */ |
| 575 | ubi_warn("failed to write to PEB %d", new_pnum); |
| 576 | ubi_wl_put_peb(ubi, new_pnum, 1); |
| 577 | if (++tries > UBI_IO_RETRIES) { |
| 578 | mutex_unlock(&ubi->buf_mutex); |
| 579 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 580 | return err; |
| 581 | } |
| 582 | ubi_msg("try again"); |
| 583 | goto retry; |
| 584 | } |
| 585 | |
| 586 | /** |
| 587 | * ubi_eba_write_leb - write data to dynamic volume. |
| 588 | * @ubi: UBI device description object |
| 589 | * @vol: volume description object |
| 590 | * @lnum: logical eraseblock number |
| 591 | * @buf: the data to write |
| 592 | * @offset: offset within the logical eraseblock where to write |
| 593 | * @len: how many bytes to write |
| 594 | * @dtype: data type |
| 595 | * |
| 596 | * This function writes data to logical eraseblock @lnum of a dynamic volume |
| 597 | * @vol. Returns zero in case of success and a negative error code in case |
| 598 | * of failure. In case of error, it is possible that something was still |
| 599 | * written to the flash media, but may be some garbage. |
| 600 | */ |
| 601 | int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, |
| 602 | const void *buf, int offset, int len, int dtype) |
| 603 | { |
| 604 | int err, pnum, tries = 0, vol_id = vol->vol_id; |
| 605 | struct ubi_vid_hdr *vid_hdr; |
| 606 | |
| 607 | if (ubi->ro_mode) |
| 608 | return -EROFS; |
| 609 | |
| 610 | err = leb_write_lock(ubi, vol_id, lnum); |
| 611 | if (err) |
| 612 | return err; |
| 613 | |
| 614 | pnum = vol->eba_tbl[lnum]; |
| 615 | if (pnum >= 0) { |
| 616 | dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d", |
| 617 | len, offset, vol_id, lnum, pnum); |
| 618 | |
| 619 | err = ubi_io_write_data(ubi, buf, pnum, offset, len); |
| 620 | if (err) { |
| 621 | ubi_warn("failed to write data to PEB %d", pnum); |
| 622 | if (err == -EIO && ubi->bad_allowed) |
| 623 | err = recover_peb(ubi, pnum, vol_id, lnum, buf, |
| 624 | offset, len); |
| 625 | if (err) |
| 626 | ubi_ro_mode(ubi); |
| 627 | } |
| 628 | leb_write_unlock(ubi, vol_id, lnum); |
| 629 | return err; |
| 630 | } |
| 631 | |
| 632 | /* |
| 633 | * The logical eraseblock is not mapped. We have to get a free physical |
| 634 | * eraseblock and write the volume identifier header there first. |
| 635 | */ |
| 636 | vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); |
| 637 | if (!vid_hdr) { |
| 638 | leb_write_unlock(ubi, vol_id, lnum); |
| 639 | return -ENOMEM; |
| 640 | } |
| 641 | |
| 642 | vid_hdr->vol_type = UBI_VID_DYNAMIC; |
| 643 | vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); |
| 644 | vid_hdr->vol_id = cpu_to_be32(vol_id); |
| 645 | vid_hdr->lnum = cpu_to_be32(lnum); |
| 646 | vid_hdr->compat = ubi_get_compat(ubi, vol_id); |
| 647 | vid_hdr->data_pad = cpu_to_be32(vol->data_pad); |
| 648 | |
| 649 | retry: |
| 650 | pnum = ubi_wl_get_peb(ubi, dtype); |
| 651 | if (pnum < 0) { |
| 652 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 653 | leb_write_unlock(ubi, vol_id, lnum); |
| 654 | return pnum; |
| 655 | } |
| 656 | |
| 657 | dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d", |
| 658 | len, offset, vol_id, lnum, pnum); |
| 659 | |
| 660 | err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr); |
| 661 | if (err) { |
| 662 | ubi_warn("failed to write VID header to LEB %d:%d, PEB %d", |
| 663 | vol_id, lnum, pnum); |
| 664 | goto write_error; |
| 665 | } |
| 666 | |
| 667 | if (len) { |
| 668 | err = ubi_io_write_data(ubi, buf, pnum, offset, len); |
| 669 | if (err) { |
| 670 | ubi_warn("failed to write %d bytes at offset %d of " |
| 671 | "LEB %d:%d, PEB %d", len, offset, vol_id, |
| 672 | lnum, pnum); |
| 673 | goto write_error; |
| 674 | } |
| 675 | } |
| 676 | |
| 677 | vol->eba_tbl[lnum] = pnum; |
| 678 | |
| 679 | leb_write_unlock(ubi, vol_id, lnum); |
| 680 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 681 | return 0; |
| 682 | |
| 683 | write_error: |
| 684 | if (err != -EIO || !ubi->bad_allowed) { |
| 685 | ubi_ro_mode(ubi); |
| 686 | leb_write_unlock(ubi, vol_id, lnum); |
| 687 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 688 | return err; |
| 689 | } |
| 690 | |
| 691 | /* |
| 692 | * Fortunately, this is the first write operation to this physical |
| 693 | * eraseblock, so just put it and request a new one. We assume that if |
| 694 | * this physical eraseblock went bad, the erase code will handle that. |
| 695 | */ |
| 696 | err = ubi_wl_put_peb(ubi, pnum, 1); |
| 697 | if (err || ++tries > UBI_IO_RETRIES) { |
| 698 | ubi_ro_mode(ubi); |
| 699 | leb_write_unlock(ubi, vol_id, lnum); |
| 700 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 701 | return err; |
| 702 | } |
| 703 | |
| 704 | vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); |
| 705 | ubi_msg("try another PEB"); |
| 706 | goto retry; |
| 707 | } |
| 708 | |
| 709 | /** |
| 710 | * ubi_eba_write_leb_st - write data to static volume. |
| 711 | * @ubi: UBI device description object |
| 712 | * @vol: volume description object |
| 713 | * @lnum: logical eraseblock number |
| 714 | * @buf: data to write |
| 715 | * @len: how many bytes to write |
| 716 | * @dtype: data type |
| 717 | * @used_ebs: how many logical eraseblocks will this volume contain |
| 718 | * |
| 719 | * This function writes data to logical eraseblock @lnum of static volume |
| 720 | * @vol. The @used_ebs argument should contain total number of logical |
| 721 | * eraseblock in this static volume. |
| 722 | * |
| 723 | * When writing to the last logical eraseblock, the @len argument doesn't have |
| 724 | * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent |
| 725 | * to the real data size, although the @buf buffer has to contain the |
| 726 | * alignment. In all other cases, @len has to be aligned. |
| 727 | * |
| 728 | * It is prohibited to write more then once to logical eraseblocks of static |
| 729 | * volumes. This function returns zero in case of success and a negative error |
| 730 | * code in case of failure. |
| 731 | */ |
| 732 | int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol, |
| 733 | int lnum, const void *buf, int len, int dtype, |
| 734 | int used_ebs) |
| 735 | { |
| 736 | int err, pnum, tries = 0, data_size = len, vol_id = vol->vol_id; |
| 737 | struct ubi_vid_hdr *vid_hdr; |
| 738 | uint32_t crc; |
| 739 | |
| 740 | if (ubi->ro_mode) |
| 741 | return -EROFS; |
| 742 | |
| 743 | if (lnum == used_ebs - 1) |
| 744 | /* If this is the last LEB @len may be unaligned */ |
| 745 | len = ALIGN(data_size, ubi->min_io_size); |
| 746 | else |
| 747 | ubi_assert(!(len & (ubi->min_io_size - 1))); |
| 748 | |
| 749 | vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); |
| 750 | if (!vid_hdr) |
| 751 | return -ENOMEM; |
| 752 | |
| 753 | err = leb_write_lock(ubi, vol_id, lnum); |
| 754 | if (err) { |
| 755 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 756 | return err; |
| 757 | } |
| 758 | |
| 759 | vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); |
| 760 | vid_hdr->vol_id = cpu_to_be32(vol_id); |
| 761 | vid_hdr->lnum = cpu_to_be32(lnum); |
| 762 | vid_hdr->compat = ubi_get_compat(ubi, vol_id); |
| 763 | vid_hdr->data_pad = cpu_to_be32(vol->data_pad); |
| 764 | |
| 765 | crc = crc32(UBI_CRC32_INIT, buf, data_size); |
| 766 | vid_hdr->vol_type = UBI_VID_STATIC; |
| 767 | vid_hdr->data_size = cpu_to_be32(data_size); |
| 768 | vid_hdr->used_ebs = cpu_to_be32(used_ebs); |
| 769 | vid_hdr->data_crc = cpu_to_be32(crc); |
| 770 | |
| 771 | retry: |
| 772 | pnum = ubi_wl_get_peb(ubi, dtype); |
| 773 | if (pnum < 0) { |
| 774 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 775 | leb_write_unlock(ubi, vol_id, lnum); |
| 776 | return pnum; |
| 777 | } |
| 778 | |
| 779 | dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d", |
| 780 | len, vol_id, lnum, pnum, used_ebs); |
| 781 | |
| 782 | err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr); |
| 783 | if (err) { |
| 784 | ubi_warn("failed to write VID header to LEB %d:%d, PEB %d", |
| 785 | vol_id, lnum, pnum); |
| 786 | goto write_error; |
| 787 | } |
| 788 | |
| 789 | err = ubi_io_write_data(ubi, buf, pnum, 0, len); |
| 790 | if (err) { |
| 791 | ubi_warn("failed to write %d bytes of data to PEB %d", |
| 792 | len, pnum); |
| 793 | goto write_error; |
| 794 | } |
| 795 | |
| 796 | ubi_assert(vol->eba_tbl[lnum] < 0); |
| 797 | vol->eba_tbl[lnum] = pnum; |
| 798 | |
| 799 | leb_write_unlock(ubi, vol_id, lnum); |
| 800 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 801 | return 0; |
| 802 | |
| 803 | write_error: |
| 804 | if (err != -EIO || !ubi->bad_allowed) { |
| 805 | /* |
| 806 | * This flash device does not admit of bad eraseblocks or |
| 807 | * something nasty and unexpected happened. Switch to read-only |
| 808 | * mode just in case. |
| 809 | */ |
| 810 | ubi_ro_mode(ubi); |
| 811 | leb_write_unlock(ubi, vol_id, lnum); |
| 812 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 813 | return err; |
| 814 | } |
| 815 | |
| 816 | err = ubi_wl_put_peb(ubi, pnum, 1); |
| 817 | if (err || ++tries > UBI_IO_RETRIES) { |
| 818 | ubi_ro_mode(ubi); |
| 819 | leb_write_unlock(ubi, vol_id, lnum); |
| 820 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 821 | return err; |
| 822 | } |
| 823 | |
| 824 | vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); |
| 825 | ubi_msg("try another PEB"); |
| 826 | goto retry; |
| 827 | } |
| 828 | |
| 829 | /* |
| 830 | * ubi_eba_atomic_leb_change - change logical eraseblock atomically. |
| 831 | * @ubi: UBI device description object |
| 832 | * @vol: volume description object |
| 833 | * @lnum: logical eraseblock number |
| 834 | * @buf: data to write |
| 835 | * @len: how many bytes to write |
| 836 | * @dtype: data type |
| 837 | * |
| 838 | * This function changes the contents of a logical eraseblock atomically. @buf |
| 839 | * has to contain new logical eraseblock data, and @len - the length of the |
| 840 | * data, which has to be aligned. This function guarantees that in case of an |
| 841 | * unclean reboot the old contents is preserved. Returns zero in case of |
| 842 | * success and a negative error code in case of failure. |
| 843 | * |
| 844 | * UBI reserves one LEB for the "atomic LEB change" operation, so only one |
| 845 | * LEB change may be done at a time. This is ensured by @ubi->alc_mutex. |
| 846 | */ |
| 847 | int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol, |
| 848 | int lnum, const void *buf, int len, int dtype) |
| 849 | { |
| 850 | int err, pnum, tries = 0, vol_id = vol->vol_id; |
| 851 | struct ubi_vid_hdr *vid_hdr; |
| 852 | uint32_t crc; |
| 853 | |
| 854 | if (ubi->ro_mode) |
| 855 | return -EROFS; |
| 856 | |
| 857 | if (len == 0) { |
| 858 | /* |
| 859 | * Special case when data length is zero. In this case the LEB |
| 860 | * has to be unmapped and mapped somewhere else. |
| 861 | */ |
| 862 | err = ubi_eba_unmap_leb(ubi, vol, lnum); |
| 863 | if (err) |
| 864 | return err; |
| 865 | return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0, dtype); |
| 866 | } |
| 867 | |
| 868 | vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); |
| 869 | if (!vid_hdr) |
| 870 | return -ENOMEM; |
| 871 | |
| 872 | mutex_lock(&ubi->alc_mutex); |
| 873 | err = leb_write_lock(ubi, vol_id, lnum); |
| 874 | if (err) |
| 875 | goto out_mutex; |
| 876 | |
| 877 | vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); |
| 878 | vid_hdr->vol_id = cpu_to_be32(vol_id); |
| 879 | vid_hdr->lnum = cpu_to_be32(lnum); |
| 880 | vid_hdr->compat = ubi_get_compat(ubi, vol_id); |
| 881 | vid_hdr->data_pad = cpu_to_be32(vol->data_pad); |
| 882 | |
| 883 | crc = crc32(UBI_CRC32_INIT, buf, len); |
| 884 | vid_hdr->vol_type = UBI_VID_DYNAMIC; |
| 885 | vid_hdr->data_size = cpu_to_be32(len); |
| 886 | vid_hdr->copy_flag = 1; |
| 887 | vid_hdr->data_crc = cpu_to_be32(crc); |
| 888 | |
| 889 | retry: |
| 890 | pnum = ubi_wl_get_peb(ubi, dtype); |
| 891 | if (pnum < 0) { |
| 892 | err = pnum; |
| 893 | goto out_leb_unlock; |
| 894 | } |
| 895 | |
| 896 | dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d", |
| 897 | vol_id, lnum, vol->eba_tbl[lnum], pnum); |
| 898 | |
| 899 | err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr); |
| 900 | if (err) { |
| 901 | ubi_warn("failed to write VID header to LEB %d:%d, PEB %d", |
| 902 | vol_id, lnum, pnum); |
| 903 | goto write_error; |
| 904 | } |
| 905 | |
| 906 | err = ubi_io_write_data(ubi, buf, pnum, 0, len); |
| 907 | if (err) { |
| 908 | ubi_warn("failed to write %d bytes of data to PEB %d", |
| 909 | len, pnum); |
| 910 | goto write_error; |
| 911 | } |
| 912 | |
| 913 | if (vol->eba_tbl[lnum] >= 0) { |
| 914 | err = ubi_wl_put_peb(ubi, vol->eba_tbl[lnum], 1); |
| 915 | if (err) |
| 916 | goto out_leb_unlock; |
| 917 | } |
| 918 | |
| 919 | vol->eba_tbl[lnum] = pnum; |
| 920 | |
| 921 | out_leb_unlock: |
| 922 | leb_write_unlock(ubi, vol_id, lnum); |
| 923 | out_mutex: |
| 924 | mutex_unlock(&ubi->alc_mutex); |
| 925 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 926 | return err; |
| 927 | |
| 928 | write_error: |
| 929 | if (err != -EIO || !ubi->bad_allowed) { |
| 930 | /* |
| 931 | * This flash device does not admit of bad eraseblocks or |
| 932 | * something nasty and unexpected happened. Switch to read-only |
| 933 | * mode just in case. |
| 934 | */ |
| 935 | ubi_ro_mode(ubi); |
| 936 | goto out_leb_unlock; |
| 937 | } |
| 938 | |
| 939 | err = ubi_wl_put_peb(ubi, pnum, 1); |
| 940 | if (err || ++tries > UBI_IO_RETRIES) { |
| 941 | ubi_ro_mode(ubi); |
| 942 | goto out_leb_unlock; |
| 943 | } |
| 944 | |
| 945 | vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); |
| 946 | ubi_msg("try another PEB"); |
| 947 | goto retry; |
| 948 | } |
| 949 | |
| 950 | /** |
| 951 | * ubi_eba_copy_leb - copy logical eraseblock. |
| 952 | * @ubi: UBI device description object |
| 953 | * @from: physical eraseblock number from where to copy |
| 954 | * @to: physical eraseblock number where to copy |
| 955 | * @vid_hdr: VID header of the @from physical eraseblock |
| 956 | * |
| 957 | * This function copies logical eraseblock from physical eraseblock @from to |
| 958 | * physical eraseblock @to. The @vid_hdr buffer may be changed by this |
| 959 | * function. Returns: |
| 960 | * o %0 in case of success; |
| 961 | * o %1 if the operation was canceled and should be tried later (e.g., |
| 962 | * because a bit-flip was detected at the target PEB); |
| 963 | * o %2 if the volume is being deleted and this LEB should not be moved. |
| 964 | */ |
| 965 | int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to, |
| 966 | struct ubi_vid_hdr *vid_hdr) |
| 967 | { |
| 968 | int err, vol_id, lnum, data_size, aldata_size, idx; |
| 969 | struct ubi_volume *vol; |
| 970 | uint32_t crc; |
| 971 | |
| 972 | vol_id = be32_to_cpu(vid_hdr->vol_id); |
| 973 | lnum = be32_to_cpu(vid_hdr->lnum); |
| 974 | |
| 975 | dbg_eba("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to); |
| 976 | |
| 977 | if (vid_hdr->vol_type == UBI_VID_STATIC) { |
| 978 | data_size = be32_to_cpu(vid_hdr->data_size); |
| 979 | aldata_size = ALIGN(data_size, ubi->min_io_size); |
| 980 | } else |
| 981 | data_size = aldata_size = |
| 982 | ubi->leb_size - be32_to_cpu(vid_hdr->data_pad); |
| 983 | |
| 984 | idx = vol_id2idx(ubi, vol_id); |
| 985 | spin_lock(&ubi->volumes_lock); |
| 986 | /* |
| 987 | * Note, we may race with volume deletion, which means that the volume |
| 988 | * this logical eraseblock belongs to might be being deleted. Since the |
| 989 | * volume deletion unmaps all the volume's logical eraseblocks, it will |
| 990 | * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish. |
| 991 | */ |
| 992 | vol = ubi->volumes[idx]; |
| 993 | if (!vol) { |
| 994 | /* No need to do further work, cancel */ |
| 995 | dbg_eba("volume %d is being removed, cancel", vol_id); |
| 996 | spin_unlock(&ubi->volumes_lock); |
| 997 | return 2; |
| 998 | } |
| 999 | spin_unlock(&ubi->volumes_lock); |
| 1000 | |
| 1001 | /* |
| 1002 | * We do not want anybody to write to this logical eraseblock while we |
| 1003 | * are moving it, so lock it. |
| 1004 | * |
| 1005 | * Note, we are using non-waiting locking here, because we cannot sleep |
| 1006 | * on the LEB, since it may cause deadlocks. Indeed, imagine a task is |
| 1007 | * unmapping the LEB which is mapped to the PEB we are going to move |
| 1008 | * (@from). This task locks the LEB and goes sleep in the |
| 1009 | * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are |
| 1010 | * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the |
| 1011 | * LEB is already locked, we just do not move it and return %1. |
| 1012 | */ |
| 1013 | err = leb_write_trylock(ubi, vol_id, lnum); |
| 1014 | if (err) { |
| 1015 | dbg_eba("contention on LEB %d:%d, cancel", vol_id, lnum); |
| 1016 | return err; |
| 1017 | } |
| 1018 | |
| 1019 | /* |
| 1020 | * The LEB might have been put meanwhile, and the task which put it is |
| 1021 | * probably waiting on @ubi->move_mutex. No need to continue the work, |
| 1022 | * cancel it. |
| 1023 | */ |
| 1024 | if (vol->eba_tbl[lnum] != from) { |
| 1025 | dbg_eba("LEB %d:%d is no longer mapped to PEB %d, mapped to " |
| 1026 | "PEB %d, cancel", vol_id, lnum, from, |
| 1027 | vol->eba_tbl[lnum]); |
| 1028 | err = 1; |
| 1029 | goto out_unlock_leb; |
| 1030 | } |
| 1031 | |
| 1032 | /* |
| 1033 | * OK, now the LEB is locked and we can safely start moving iy. Since |
| 1034 | * this function utilizes thie @ubi->peb1_buf buffer which is shared |
| 1035 | * with some other functions, so lock the buffer by taking the |
| 1036 | * @ubi->buf_mutex. |
| 1037 | */ |
| 1038 | mutex_lock(&ubi->buf_mutex); |
| 1039 | dbg_eba("read %d bytes of data", aldata_size); |
| 1040 | err = ubi_io_read_data(ubi, ubi->peb_buf1, from, 0, aldata_size); |
| 1041 | if (err && err != UBI_IO_BITFLIPS) { |
| 1042 | ubi_warn("error %d while reading data from PEB %d", |
| 1043 | err, from); |
| 1044 | goto out_unlock_buf; |
| 1045 | } |
| 1046 | |
| 1047 | /* |
| 1048 | * Now we have got to calculate how much data we have to to copy. In |
| 1049 | * case of a static volume it is fairly easy - the VID header contains |
| 1050 | * the data size. In case of a dynamic volume it is more difficult - we |
| 1051 | * have to read the contents, cut 0xFF bytes from the end and copy only |
| 1052 | * the first part. We must do this to avoid writing 0xFF bytes as it |
| 1053 | * may have some side-effects. And not only this. It is important not |
| 1054 | * to include those 0xFFs to CRC because later the they may be filled |
| 1055 | * by data. |
| 1056 | */ |
| 1057 | if (vid_hdr->vol_type == UBI_VID_DYNAMIC) |
| 1058 | aldata_size = data_size = |
| 1059 | ubi_calc_data_len(ubi, ubi->peb_buf1, data_size); |
| 1060 | |
| 1061 | cond_resched(); |
| 1062 | crc = crc32(UBI_CRC32_INIT, ubi->peb_buf1, data_size); |
| 1063 | cond_resched(); |
| 1064 | |
| 1065 | /* |
| 1066 | * It may turn out to me that the whole @from physical eraseblock |
| 1067 | * contains only 0xFF bytes. Then we have to only write the VID header |
| 1068 | * and do not write any data. This also means we should not set |
| 1069 | * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc. |
| 1070 | */ |
| 1071 | if (data_size > 0) { |
| 1072 | vid_hdr->copy_flag = 1; |
| 1073 | vid_hdr->data_size = cpu_to_be32(data_size); |
| 1074 | vid_hdr->data_crc = cpu_to_be32(crc); |
| 1075 | } |
| 1076 | vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); |
| 1077 | |
| 1078 | err = ubi_io_write_vid_hdr(ubi, to, vid_hdr); |
| 1079 | if (err) |
| 1080 | goto out_unlock_buf; |
| 1081 | |
| 1082 | cond_resched(); |
| 1083 | |
| 1084 | /* Read the VID header back and check if it was written correctly */ |
| 1085 | err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1); |
| 1086 | if (err) { |
| 1087 | if (err != UBI_IO_BITFLIPS) |
| 1088 | ubi_warn("cannot read VID header back from PEB %d", to); |
| 1089 | else |
| 1090 | err = 1; |
| 1091 | goto out_unlock_buf; |
| 1092 | } |
| 1093 | |
| 1094 | if (data_size > 0) { |
| 1095 | err = ubi_io_write_data(ubi, ubi->peb_buf1, to, 0, aldata_size); |
| 1096 | if (err) |
| 1097 | goto out_unlock_buf; |
| 1098 | |
| 1099 | cond_resched(); |
| 1100 | |
| 1101 | /* |
| 1102 | * We've written the data and are going to read it back to make |
| 1103 | * sure it was written correctly. |
| 1104 | */ |
| 1105 | |
| 1106 | err = ubi_io_read_data(ubi, ubi->peb_buf2, to, 0, aldata_size); |
| 1107 | if (err) { |
| 1108 | if (err != UBI_IO_BITFLIPS) |
| 1109 | ubi_warn("cannot read data back from PEB %d", |
| 1110 | to); |
| 1111 | else |
| 1112 | err = 1; |
| 1113 | goto out_unlock_buf; |
| 1114 | } |
| 1115 | |
| 1116 | cond_resched(); |
| 1117 | |
| 1118 | if (memcmp(ubi->peb_buf1, ubi->peb_buf2, aldata_size)) { |
| 1119 | ubi_warn("read data back from PEB %d - it is different", |
| 1120 | to); |
| 1121 | goto out_unlock_buf; |
| 1122 | } |
| 1123 | } |
| 1124 | |
| 1125 | ubi_assert(vol->eba_tbl[lnum] == from); |
| 1126 | vol->eba_tbl[lnum] = to; |
| 1127 | |
| 1128 | out_unlock_buf: |
| 1129 | mutex_unlock(&ubi->buf_mutex); |
| 1130 | out_unlock_leb: |
| 1131 | leb_write_unlock(ubi, vol_id, lnum); |
| 1132 | return err; |
| 1133 | } |
| 1134 | |
| 1135 | /** |
| 1136 | * ubi_eba_init_scan - initialize the EBA unit using scanning information. |
| 1137 | * @ubi: UBI device description object |
| 1138 | * @si: scanning information |
| 1139 | * |
| 1140 | * This function returns zero in case of success and a negative error code in |
| 1141 | * case of failure. |
| 1142 | */ |
| 1143 | int ubi_eba_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si) |
| 1144 | { |
| 1145 | int i, j, err, num_volumes; |
| 1146 | struct ubi_scan_volume *sv; |
| 1147 | struct ubi_volume *vol; |
| 1148 | struct ubi_scan_leb *seb; |
| 1149 | struct rb_node *rb; |
| 1150 | |
| 1151 | dbg_eba("initialize EBA unit"); |
| 1152 | |
| 1153 | spin_lock_init(&ubi->ltree_lock); |
| 1154 | mutex_init(&ubi->alc_mutex); |
| 1155 | ubi->ltree = RB_ROOT; |
| 1156 | |
| 1157 | ubi->global_sqnum = si->max_sqnum + 1; |
| 1158 | num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT; |
| 1159 | |
| 1160 | for (i = 0; i < num_volumes; i++) { |
| 1161 | vol = ubi->volumes[i]; |
| 1162 | if (!vol) |
| 1163 | continue; |
| 1164 | |
| 1165 | cond_resched(); |
| 1166 | |
| 1167 | vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int), |
| 1168 | GFP_KERNEL); |
| 1169 | if (!vol->eba_tbl) { |
| 1170 | err = -ENOMEM; |
| 1171 | goto out_free; |
| 1172 | } |
| 1173 | |
| 1174 | for (j = 0; j < vol->reserved_pebs; j++) |
| 1175 | vol->eba_tbl[j] = UBI_LEB_UNMAPPED; |
| 1176 | |
| 1177 | sv = ubi_scan_find_sv(si, idx2vol_id(ubi, i)); |
| 1178 | if (!sv) |
| 1179 | continue; |
| 1180 | |
| 1181 | ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) { |
| 1182 | if (seb->lnum >= vol->reserved_pebs) |
| 1183 | /* |
| 1184 | * This may happen in case of an unclean reboot |
| 1185 | * during re-size. |
| 1186 | */ |
| 1187 | ubi_scan_move_to_list(sv, seb, &si->erase); |
| 1188 | vol->eba_tbl[seb->lnum] = seb->pnum; |
| 1189 | } |
| 1190 | } |
| 1191 | |
| 1192 | if (ubi->avail_pebs < EBA_RESERVED_PEBS) { |
| 1193 | ubi_err("no enough physical eraseblocks (%d, need %d)", |
| 1194 | ubi->avail_pebs, EBA_RESERVED_PEBS); |
| 1195 | err = -ENOSPC; |
| 1196 | goto out_free; |
| 1197 | } |
| 1198 | ubi->avail_pebs -= EBA_RESERVED_PEBS; |
| 1199 | ubi->rsvd_pebs += EBA_RESERVED_PEBS; |
| 1200 | |
| 1201 | if (ubi->bad_allowed) { |
| 1202 | ubi_calculate_reserved(ubi); |
| 1203 | |
| 1204 | if (ubi->avail_pebs < ubi->beb_rsvd_level) { |
| 1205 | /* No enough free physical eraseblocks */ |
| 1206 | ubi->beb_rsvd_pebs = ubi->avail_pebs; |
| 1207 | ubi_warn("cannot reserve enough PEBs for bad PEB " |
| 1208 | "handling, reserved %d, need %d", |
| 1209 | ubi->beb_rsvd_pebs, ubi->beb_rsvd_level); |
| 1210 | } else |
| 1211 | ubi->beb_rsvd_pebs = ubi->beb_rsvd_level; |
| 1212 | |
| 1213 | ubi->avail_pebs -= ubi->beb_rsvd_pebs; |
| 1214 | ubi->rsvd_pebs += ubi->beb_rsvd_pebs; |
| 1215 | } |
| 1216 | |
| 1217 | dbg_eba("EBA unit is initialized"); |
| 1218 | return 0; |
| 1219 | |
| 1220 | out_free: |
| 1221 | for (i = 0; i < num_volumes; i++) { |
| 1222 | if (!ubi->volumes[i]) |
| 1223 | continue; |
| 1224 | kfree(ubi->volumes[i]->eba_tbl); |
| 1225 | } |
| 1226 | return err; |
| 1227 | } |
| 1228 | |
| 1229 | /** |
| 1230 | * ubi_eba_close - close EBA unit. |
| 1231 | * @ubi: UBI device description object |
| 1232 | */ |
| 1233 | void ubi_eba_close(const struct ubi_device *ubi) |
| 1234 | { |
| 1235 | int i, num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT; |
| 1236 | |
| 1237 | dbg_eba("close EBA unit"); |
| 1238 | |
| 1239 | for (i = 0; i < num_volumes; i++) { |
| 1240 | if (!ubi->volumes[i]) |
| 1241 | continue; |
| 1242 | kfree(ubi->volumes[i]->eba_tbl); |
| 1243 | } |
| 1244 | } |