blob: 7d27edaee2a4adc084e0648bed406bd2852064fc [file] [log] [blame]
Kyungmin Park961df832008-11-19 16:25:44 +01001/*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
Wolfgang Denk1a459662013-07-08 09:37:19 +02004 * SPDX-License-Identifier: GPL-2.0+
Kyungmin Park961df832008-11-19 16:25:44 +01005 *
6 * Author: Artem Bityutskiy (Битюцкий Артём)
7 */
8
9/*
10 * The UBI Eraseblock Association (EBA) unit.
11 *
12 * This unit is responsible for I/O to/from logical eraseblock.
13 *
14 * Although in this implementation the EBA table is fully kept and managed in
15 * RAM, which assumes poor scalability, it might be (partially) maintained on
16 * flash in future implementations.
17 *
18 * The EBA unit implements per-logical eraseblock locking. Before accessing a
19 * logical eraseblock it is locked for reading or writing. The per-logical
20 * eraseblock locking is implemented by means of the lock tree. The lock tree
21 * is an RB-tree which refers all the currently locked logical eraseblocks. The
22 * lock tree elements are &struct ubi_ltree_entry objects. They are indexed by
23 * (@vol_id, @lnum) pairs.
24 *
25 * EBA also maintains the global sequence counter which is incremented each
26 * time a logical eraseblock is mapped to a physical eraseblock and it is
27 * stored in the volume identifier header. This means that each VID header has
28 * a unique sequence number. The sequence number is only increased an we assume
29 * 64 bits is enough to never overflow.
30 */
31
32#ifdef UBI_LINUX
33#include <linux/slab.h>
34#include <linux/crc32.h>
35#include <linux/err.h>
36#endif
37
38#include <ubi_uboot.h>
39#include "ubi.h"
40
41/* Number of physical eraseblocks reserved for atomic LEB change operation */
42#define EBA_RESERVED_PEBS 1
43
44/**
45 * next_sqnum - get next sequence number.
46 * @ubi: UBI device description object
47 *
48 * This function returns next sequence number to use, which is just the current
49 * global sequence counter value. It also increases the global sequence
50 * counter.
51 */
52static unsigned long long next_sqnum(struct ubi_device *ubi)
53{
54 unsigned long long sqnum;
55
56 spin_lock(&ubi->ltree_lock);
57 sqnum = ubi->global_sqnum++;
58 spin_unlock(&ubi->ltree_lock);
59
60 return sqnum;
61}
62
63/**
64 * ubi_get_compat - get compatibility flags of a volume.
65 * @ubi: UBI device description object
66 * @vol_id: volume ID
67 *
68 * This function returns compatibility flags for an internal volume. User
69 * volumes have no compatibility flags, so %0 is returned.
70 */
71static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
72{
73 if (vol_id == UBI_LAYOUT_VOLUME_ID)
74 return UBI_LAYOUT_VOLUME_COMPAT;
75 return 0;
76}
77
78/**
79 * ltree_lookup - look up the lock tree.
80 * @ubi: UBI device description object
81 * @vol_id: volume ID
82 * @lnum: logical eraseblock number
83 *
84 * This function returns a pointer to the corresponding &struct ubi_ltree_entry
85 * object if the logical eraseblock is locked and %NULL if it is not.
86 * @ubi->ltree_lock has to be locked.
87 */
88static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
89 int lnum)
90{
91 struct rb_node *p;
92
93 p = ubi->ltree.rb_node;
94 while (p) {
95 struct ubi_ltree_entry *le;
96
97 le = rb_entry(p, struct ubi_ltree_entry, rb);
98
99 if (vol_id < le->vol_id)
100 p = p->rb_left;
101 else if (vol_id > le->vol_id)
102 p = p->rb_right;
103 else {
104 if (lnum < le->lnum)
105 p = p->rb_left;
106 else if (lnum > le->lnum)
107 p = p->rb_right;
108 else
109 return le;
110 }
111 }
112
113 return NULL;
114}
115
116/**
117 * ltree_add_entry - add new entry to the lock tree.
118 * @ubi: UBI device description object
119 * @vol_id: volume ID
120 * @lnum: logical eraseblock number
121 *
122 * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
123 * lock tree. If such entry is already there, its usage counter is increased.
124 * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
125 * failed.
126 */
127static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
128 int vol_id, int lnum)
129{
130 struct ubi_ltree_entry *le, *le1, *le_free;
131
132 le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
133 if (!le)
134 return ERR_PTR(-ENOMEM);
135
136 le->users = 0;
137 init_rwsem(&le->mutex);
138 le->vol_id = vol_id;
139 le->lnum = lnum;
140
141 spin_lock(&ubi->ltree_lock);
142 le1 = ltree_lookup(ubi, vol_id, lnum);
143
144 if (le1) {
145 /*
146 * This logical eraseblock is already locked. The newly
147 * allocated lock entry is not needed.
148 */
149 le_free = le;
150 le = le1;
151 } else {
152 struct rb_node **p, *parent = NULL;
153
154 /*
155 * No lock entry, add the newly allocated one to the
156 * @ubi->ltree RB-tree.
157 */
158 le_free = NULL;
159
160 p = &ubi->ltree.rb_node;
161 while (*p) {
162 parent = *p;
163 le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
164
165 if (vol_id < le1->vol_id)
166 p = &(*p)->rb_left;
167 else if (vol_id > le1->vol_id)
168 p = &(*p)->rb_right;
169 else {
170 ubi_assert(lnum != le1->lnum);
171 if (lnum < le1->lnum)
172 p = &(*p)->rb_left;
173 else
174 p = &(*p)->rb_right;
175 }
176 }
177
178 rb_link_node(&le->rb, parent, p);
179 rb_insert_color(&le->rb, &ubi->ltree);
180 }
181 le->users += 1;
182 spin_unlock(&ubi->ltree_lock);
183
184 if (le_free)
185 kfree(le_free);
186
187 return le;
188}
189
190/**
191 * leb_read_lock - lock logical eraseblock for reading.
192 * @ubi: UBI device description object
193 * @vol_id: volume ID
194 * @lnum: logical eraseblock number
195 *
196 * This function locks a logical eraseblock for reading. Returns zero in case
197 * of success and a negative error code in case of failure.
198 */
199static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
200{
201 struct ubi_ltree_entry *le;
202
203 le = ltree_add_entry(ubi, vol_id, lnum);
204 if (IS_ERR(le))
205 return PTR_ERR(le);
206 down_read(&le->mutex);
207 return 0;
208}
209
210/**
211 * leb_read_unlock - unlock logical eraseblock.
212 * @ubi: UBI device description object
213 * @vol_id: volume ID
214 * @lnum: logical eraseblock number
215 */
216static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
217{
218 int _free = 0;
219 struct ubi_ltree_entry *le;
220
221 spin_lock(&ubi->ltree_lock);
222 le = ltree_lookup(ubi, vol_id, lnum);
223 le->users -= 1;
224 ubi_assert(le->users >= 0);
225 if (le->users == 0) {
226 rb_erase(&le->rb, &ubi->ltree);
227 _free = 1;
228 }
229 spin_unlock(&ubi->ltree_lock);
230
231 up_read(&le->mutex);
232 if (_free)
233 kfree(le);
234}
235
236/**
237 * leb_write_lock - lock logical eraseblock for writing.
238 * @ubi: UBI device description object
239 * @vol_id: volume ID
240 * @lnum: logical eraseblock number
241 *
242 * This function locks a logical eraseblock for writing. Returns zero in case
243 * of success and a negative error code in case of failure.
244 */
245static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
246{
247 struct ubi_ltree_entry *le;
248
249 le = ltree_add_entry(ubi, vol_id, lnum);
250 if (IS_ERR(le))
251 return PTR_ERR(le);
252 down_write(&le->mutex);
253 return 0;
254}
255
256/**
257 * leb_write_lock - lock logical eraseblock for writing.
258 * @ubi: UBI device description object
259 * @vol_id: volume ID
260 * @lnum: logical eraseblock number
261 *
262 * This function locks a logical eraseblock for writing if there is no
263 * contention and does nothing if there is contention. Returns %0 in case of
264 * success, %1 in case of contention, and and a negative error code in case of
265 * failure.
266 */
267static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
268{
269 int _free;
270 struct ubi_ltree_entry *le;
271
272 le = ltree_add_entry(ubi, vol_id, lnum);
273 if (IS_ERR(le))
274 return PTR_ERR(le);
275 if (down_write_trylock(&le->mutex))
276 return 0;
277
278 /* Contention, cancel */
279 spin_lock(&ubi->ltree_lock);
280 le->users -= 1;
281 ubi_assert(le->users >= 0);
282 if (le->users == 0) {
283 rb_erase(&le->rb, &ubi->ltree);
284 _free = 1;
285 } else
286 _free = 0;
287 spin_unlock(&ubi->ltree_lock);
288 if (_free)
289 kfree(le);
290
291 return 1;
292}
293
294/**
295 * leb_write_unlock - unlock logical eraseblock.
296 * @ubi: UBI device description object
297 * @vol_id: volume ID
298 * @lnum: logical eraseblock number
299 */
300static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
301{
302 int _free;
303 struct ubi_ltree_entry *le;
304
305 spin_lock(&ubi->ltree_lock);
306 le = ltree_lookup(ubi, vol_id, lnum);
307 le->users -= 1;
308 ubi_assert(le->users >= 0);
309 if (le->users == 0) {
310 rb_erase(&le->rb, &ubi->ltree);
311 _free = 1;
312 } else
313 _free = 0;
314 spin_unlock(&ubi->ltree_lock);
315
316 up_write(&le->mutex);
317 if (_free)
318 kfree(le);
319}
320
321/**
322 * ubi_eba_unmap_leb - un-map logical eraseblock.
323 * @ubi: UBI device description object
324 * @vol: volume description object
325 * @lnum: logical eraseblock number
326 *
327 * This function un-maps logical eraseblock @lnum and schedules corresponding
328 * physical eraseblock for erasure. Returns zero in case of success and a
329 * negative error code in case of failure.
330 */
331int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
332 int lnum)
333{
334 int err, pnum, vol_id = vol->vol_id;
335
336 if (ubi->ro_mode)
337 return -EROFS;
338
339 err = leb_write_lock(ubi, vol_id, lnum);
340 if (err)
341 return err;
342
343 pnum = vol->eba_tbl[lnum];
344 if (pnum < 0)
345 /* This logical eraseblock is already unmapped */
346 goto out_unlock;
347
348 dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
349
350 vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED;
351 err = ubi_wl_put_peb(ubi, pnum, 0);
352
353out_unlock:
354 leb_write_unlock(ubi, vol_id, lnum);
355 return err;
356}
357
358/**
359 * ubi_eba_read_leb - read data.
360 * @ubi: UBI device description object
361 * @vol: volume description object
362 * @lnum: logical eraseblock number
363 * @buf: buffer to store the read data
364 * @offset: offset from where to read
365 * @len: how many bytes to read
366 * @check: data CRC check flag
367 *
368 * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
369 * bytes. The @check flag only makes sense for static volumes and forces
370 * eraseblock data CRC checking.
371 *
372 * In case of success this function returns zero. In case of a static volume,
373 * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
374 * returned for any volume type if an ECC error was detected by the MTD device
375 * driver. Other negative error cored may be returned in case of other errors.
376 */
377int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
378 void *buf, int offset, int len, int check)
379{
380 int err, pnum, scrub = 0, vol_id = vol->vol_id;
381 struct ubi_vid_hdr *vid_hdr;
382 uint32_t uninitialized_var(crc);
383
384 err = leb_read_lock(ubi, vol_id, lnum);
385 if (err)
386 return err;
387
388 pnum = vol->eba_tbl[lnum];
389 if (pnum < 0) {
390 /*
391 * The logical eraseblock is not mapped, fill the whole buffer
392 * with 0xFF bytes. The exception is static volumes for which
393 * it is an error to read unmapped logical eraseblocks.
394 */
395 dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
396 len, offset, vol_id, lnum);
397 leb_read_unlock(ubi, vol_id, lnum);
398 ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
399 memset(buf, 0xFF, len);
400 return 0;
401 }
402
403 dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
404 len, offset, vol_id, lnum, pnum);
405
406 if (vol->vol_type == UBI_DYNAMIC_VOLUME)
407 check = 0;
408
409retry:
410 if (check) {
411 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
412 if (!vid_hdr) {
413 err = -ENOMEM;
414 goto out_unlock;
415 }
416
417 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
418 if (err && err != UBI_IO_BITFLIPS) {
419 if (err > 0) {
420 /*
421 * The header is either absent or corrupted.
422 * The former case means there is a bug -
423 * switch to read-only mode just in case.
424 * The latter case means a real corruption - we
425 * may try to recover data. FIXME: but this is
426 * not implemented.
427 */
428 if (err == UBI_IO_BAD_VID_HDR) {
429 ubi_warn("bad VID header at PEB %d, LEB"
430 "%d:%d", pnum, vol_id, lnum);
431 err = -EBADMSG;
432 } else
433 ubi_ro_mode(ubi);
434 }
435 goto out_free;
436 } else if (err == UBI_IO_BITFLIPS)
437 scrub = 1;
438
439 ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
440 ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
441
442 crc = be32_to_cpu(vid_hdr->data_crc);
443 ubi_free_vid_hdr(ubi, vid_hdr);
444 }
445
446 err = ubi_io_read_data(ubi, buf, pnum, offset, len);
447 if (err) {
448 if (err == UBI_IO_BITFLIPS) {
449 scrub = 1;
450 err = 0;
Sergey Lapindfe64e22013-01-14 03:46:50 +0000451 } else if (mtd_is_eccerr(err)) {
Kyungmin Park961df832008-11-19 16:25:44 +0100452 if (vol->vol_type == UBI_DYNAMIC_VOLUME)
453 goto out_unlock;
454 scrub = 1;
455 if (!check) {
456 ubi_msg("force data checking");
457 check = 1;
458 goto retry;
459 }
460 } else
461 goto out_unlock;
462 }
463
464 if (check) {
465 uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
466 if (crc1 != crc) {
467 ubi_warn("CRC error: calculated %#08x, must be %#08x",
468 crc1, crc);
469 err = -EBADMSG;
470 goto out_unlock;
471 }
472 }
473
474 if (scrub)
475 err = ubi_wl_scrub_peb(ubi, pnum);
476
477 leb_read_unlock(ubi, vol_id, lnum);
478 return err;
479
480out_free:
481 ubi_free_vid_hdr(ubi, vid_hdr);
482out_unlock:
483 leb_read_unlock(ubi, vol_id, lnum);
484 return err;
485}
486
487/**
488 * recover_peb - recover from write failure.
489 * @ubi: UBI device description object
490 * @pnum: the physical eraseblock to recover
491 * @vol_id: volume ID
492 * @lnum: logical eraseblock number
493 * @buf: data which was not written because of the write failure
494 * @offset: offset of the failed write
495 * @len: how many bytes should have been written
496 *
497 * This function is called in case of a write failure and moves all good data
498 * from the potentially bad physical eraseblock to a good physical eraseblock.
499 * This function also writes the data which was not written due to the failure.
500 * Returns new physical eraseblock number in case of success, and a negative
501 * error code in case of failure.
502 */
503static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
504 const void *buf, int offset, int len)
505{
506 int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0;
507 struct ubi_volume *vol = ubi->volumes[idx];
508 struct ubi_vid_hdr *vid_hdr;
509
510 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
511 if (!vid_hdr) {
512 return -ENOMEM;
513 }
514
515 mutex_lock(&ubi->buf_mutex);
516
517retry:
518 new_pnum = ubi_wl_get_peb(ubi, UBI_UNKNOWN);
519 if (new_pnum < 0) {
520 mutex_unlock(&ubi->buf_mutex);
521 ubi_free_vid_hdr(ubi, vid_hdr);
522 return new_pnum;
523 }
524
525 ubi_msg("recover PEB %d, move data to PEB %d", pnum, new_pnum);
526
527 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
528 if (err && err != UBI_IO_BITFLIPS) {
529 if (err > 0)
530 err = -EIO;
531 goto out_put;
532 }
533
534 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
535 err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr);
536 if (err)
537 goto write_error;
538
539 data_size = offset + len;
540 memset(ubi->peb_buf1 + offset, 0xFF, len);
541
542 /* Read everything before the area where the write failure happened */
543 if (offset > 0) {
544 err = ubi_io_read_data(ubi, ubi->peb_buf1, pnum, 0, offset);
545 if (err && err != UBI_IO_BITFLIPS)
546 goto out_put;
547 }
548
549 memcpy(ubi->peb_buf1 + offset, buf, len);
550
551 err = ubi_io_write_data(ubi, ubi->peb_buf1, new_pnum, 0, data_size);
552 if (err)
553 goto write_error;
554
555 mutex_unlock(&ubi->buf_mutex);
556 ubi_free_vid_hdr(ubi, vid_hdr);
557
558 vol->eba_tbl[lnum] = new_pnum;
559 ubi_wl_put_peb(ubi, pnum, 1);
560
561 ubi_msg("data was successfully recovered");
562 return 0;
563
564out_put:
565 mutex_unlock(&ubi->buf_mutex);
566 ubi_wl_put_peb(ubi, new_pnum, 1);
567 ubi_free_vid_hdr(ubi, vid_hdr);
568 return err;
569
570write_error:
571 /*
572 * Bad luck? This physical eraseblock is bad too? Crud. Let's try to
573 * get another one.
574 */
575 ubi_warn("failed to write to PEB %d", new_pnum);
576 ubi_wl_put_peb(ubi, new_pnum, 1);
577 if (++tries > UBI_IO_RETRIES) {
578 mutex_unlock(&ubi->buf_mutex);
579 ubi_free_vid_hdr(ubi, vid_hdr);
580 return err;
581 }
582 ubi_msg("try again");
583 goto retry;
584}
585
586/**
587 * ubi_eba_write_leb - write data to dynamic volume.
588 * @ubi: UBI device description object
589 * @vol: volume description object
590 * @lnum: logical eraseblock number
591 * @buf: the data to write
592 * @offset: offset within the logical eraseblock where to write
593 * @len: how many bytes to write
594 * @dtype: data type
595 *
596 * This function writes data to logical eraseblock @lnum of a dynamic volume
597 * @vol. Returns zero in case of success and a negative error code in case
598 * of failure. In case of error, it is possible that something was still
599 * written to the flash media, but may be some garbage.
600 */
601int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
602 const void *buf, int offset, int len, int dtype)
603{
604 int err, pnum, tries = 0, vol_id = vol->vol_id;
605 struct ubi_vid_hdr *vid_hdr;
606
607 if (ubi->ro_mode)
608 return -EROFS;
609
610 err = leb_write_lock(ubi, vol_id, lnum);
611 if (err)
612 return err;
613
614 pnum = vol->eba_tbl[lnum];
615 if (pnum >= 0) {
616 dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
617 len, offset, vol_id, lnum, pnum);
618
619 err = ubi_io_write_data(ubi, buf, pnum, offset, len);
620 if (err) {
621 ubi_warn("failed to write data to PEB %d", pnum);
622 if (err == -EIO && ubi->bad_allowed)
623 err = recover_peb(ubi, pnum, vol_id, lnum, buf,
624 offset, len);
625 if (err)
626 ubi_ro_mode(ubi);
627 }
628 leb_write_unlock(ubi, vol_id, lnum);
629 return err;
630 }
631
632 /*
633 * The logical eraseblock is not mapped. We have to get a free physical
634 * eraseblock and write the volume identifier header there first.
635 */
636 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
637 if (!vid_hdr) {
638 leb_write_unlock(ubi, vol_id, lnum);
639 return -ENOMEM;
640 }
641
642 vid_hdr->vol_type = UBI_VID_DYNAMIC;
643 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
644 vid_hdr->vol_id = cpu_to_be32(vol_id);
645 vid_hdr->lnum = cpu_to_be32(lnum);
646 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
647 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
648
649retry:
650 pnum = ubi_wl_get_peb(ubi, dtype);
651 if (pnum < 0) {
652 ubi_free_vid_hdr(ubi, vid_hdr);
653 leb_write_unlock(ubi, vol_id, lnum);
654 return pnum;
655 }
656
657 dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
658 len, offset, vol_id, lnum, pnum);
659
660 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
661 if (err) {
662 ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
663 vol_id, lnum, pnum);
664 goto write_error;
665 }
666
667 if (len) {
668 err = ubi_io_write_data(ubi, buf, pnum, offset, len);
669 if (err) {
670 ubi_warn("failed to write %d bytes at offset %d of "
671 "LEB %d:%d, PEB %d", len, offset, vol_id,
672 lnum, pnum);
673 goto write_error;
674 }
675 }
676
677 vol->eba_tbl[lnum] = pnum;
678
679 leb_write_unlock(ubi, vol_id, lnum);
680 ubi_free_vid_hdr(ubi, vid_hdr);
681 return 0;
682
683write_error:
684 if (err != -EIO || !ubi->bad_allowed) {
685 ubi_ro_mode(ubi);
686 leb_write_unlock(ubi, vol_id, lnum);
687 ubi_free_vid_hdr(ubi, vid_hdr);
688 return err;
689 }
690
691 /*
692 * Fortunately, this is the first write operation to this physical
693 * eraseblock, so just put it and request a new one. We assume that if
694 * this physical eraseblock went bad, the erase code will handle that.
695 */
696 err = ubi_wl_put_peb(ubi, pnum, 1);
697 if (err || ++tries > UBI_IO_RETRIES) {
698 ubi_ro_mode(ubi);
699 leb_write_unlock(ubi, vol_id, lnum);
700 ubi_free_vid_hdr(ubi, vid_hdr);
701 return err;
702 }
703
704 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
705 ubi_msg("try another PEB");
706 goto retry;
707}
708
709/**
710 * ubi_eba_write_leb_st - write data to static volume.
711 * @ubi: UBI device description object
712 * @vol: volume description object
713 * @lnum: logical eraseblock number
714 * @buf: data to write
715 * @len: how many bytes to write
716 * @dtype: data type
717 * @used_ebs: how many logical eraseblocks will this volume contain
718 *
719 * This function writes data to logical eraseblock @lnum of static volume
720 * @vol. The @used_ebs argument should contain total number of logical
721 * eraseblock in this static volume.
722 *
723 * When writing to the last logical eraseblock, the @len argument doesn't have
724 * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
725 * to the real data size, although the @buf buffer has to contain the
726 * alignment. In all other cases, @len has to be aligned.
727 *
728 * It is prohibited to write more then once to logical eraseblocks of static
729 * volumes. This function returns zero in case of success and a negative error
730 * code in case of failure.
731 */
732int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
733 int lnum, const void *buf, int len, int dtype,
734 int used_ebs)
735{
736 int err, pnum, tries = 0, data_size = len, vol_id = vol->vol_id;
737 struct ubi_vid_hdr *vid_hdr;
738 uint32_t crc;
739
740 if (ubi->ro_mode)
741 return -EROFS;
742
743 if (lnum == used_ebs - 1)
744 /* If this is the last LEB @len may be unaligned */
745 len = ALIGN(data_size, ubi->min_io_size);
746 else
747 ubi_assert(!(len & (ubi->min_io_size - 1)));
748
749 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
750 if (!vid_hdr)
751 return -ENOMEM;
752
753 err = leb_write_lock(ubi, vol_id, lnum);
754 if (err) {
755 ubi_free_vid_hdr(ubi, vid_hdr);
756 return err;
757 }
758
759 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
760 vid_hdr->vol_id = cpu_to_be32(vol_id);
761 vid_hdr->lnum = cpu_to_be32(lnum);
762 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
763 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
764
765 crc = crc32(UBI_CRC32_INIT, buf, data_size);
766 vid_hdr->vol_type = UBI_VID_STATIC;
767 vid_hdr->data_size = cpu_to_be32(data_size);
768 vid_hdr->used_ebs = cpu_to_be32(used_ebs);
769 vid_hdr->data_crc = cpu_to_be32(crc);
770
771retry:
772 pnum = ubi_wl_get_peb(ubi, dtype);
773 if (pnum < 0) {
774 ubi_free_vid_hdr(ubi, vid_hdr);
775 leb_write_unlock(ubi, vol_id, lnum);
776 return pnum;
777 }
778
779 dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d",
780 len, vol_id, lnum, pnum, used_ebs);
781
782 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
783 if (err) {
784 ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
785 vol_id, lnum, pnum);
786 goto write_error;
787 }
788
789 err = ubi_io_write_data(ubi, buf, pnum, 0, len);
790 if (err) {
791 ubi_warn("failed to write %d bytes of data to PEB %d",
792 len, pnum);
793 goto write_error;
794 }
795
796 ubi_assert(vol->eba_tbl[lnum] < 0);
797 vol->eba_tbl[lnum] = pnum;
798
799 leb_write_unlock(ubi, vol_id, lnum);
800 ubi_free_vid_hdr(ubi, vid_hdr);
801 return 0;
802
803write_error:
804 if (err != -EIO || !ubi->bad_allowed) {
805 /*
806 * This flash device does not admit of bad eraseblocks or
807 * something nasty and unexpected happened. Switch to read-only
808 * mode just in case.
809 */
810 ubi_ro_mode(ubi);
811 leb_write_unlock(ubi, vol_id, lnum);
812 ubi_free_vid_hdr(ubi, vid_hdr);
813 return err;
814 }
815
816 err = ubi_wl_put_peb(ubi, pnum, 1);
817 if (err || ++tries > UBI_IO_RETRIES) {
818 ubi_ro_mode(ubi);
819 leb_write_unlock(ubi, vol_id, lnum);
820 ubi_free_vid_hdr(ubi, vid_hdr);
821 return err;
822 }
823
824 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
825 ubi_msg("try another PEB");
826 goto retry;
827}
828
829/*
830 * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
831 * @ubi: UBI device description object
832 * @vol: volume description object
833 * @lnum: logical eraseblock number
834 * @buf: data to write
835 * @len: how many bytes to write
836 * @dtype: data type
837 *
838 * This function changes the contents of a logical eraseblock atomically. @buf
839 * has to contain new logical eraseblock data, and @len - the length of the
840 * data, which has to be aligned. This function guarantees that in case of an
841 * unclean reboot the old contents is preserved. Returns zero in case of
842 * success and a negative error code in case of failure.
843 *
844 * UBI reserves one LEB for the "atomic LEB change" operation, so only one
845 * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
846 */
847int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
848 int lnum, const void *buf, int len, int dtype)
849{
850 int err, pnum, tries = 0, vol_id = vol->vol_id;
851 struct ubi_vid_hdr *vid_hdr;
852 uint32_t crc;
853
854 if (ubi->ro_mode)
855 return -EROFS;
856
857 if (len == 0) {
858 /*
859 * Special case when data length is zero. In this case the LEB
860 * has to be unmapped and mapped somewhere else.
861 */
862 err = ubi_eba_unmap_leb(ubi, vol, lnum);
863 if (err)
864 return err;
865 return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0, dtype);
866 }
867
868 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
869 if (!vid_hdr)
870 return -ENOMEM;
871
872 mutex_lock(&ubi->alc_mutex);
873 err = leb_write_lock(ubi, vol_id, lnum);
874 if (err)
875 goto out_mutex;
876
877 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
878 vid_hdr->vol_id = cpu_to_be32(vol_id);
879 vid_hdr->lnum = cpu_to_be32(lnum);
880 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
881 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
882
883 crc = crc32(UBI_CRC32_INIT, buf, len);
884 vid_hdr->vol_type = UBI_VID_DYNAMIC;
885 vid_hdr->data_size = cpu_to_be32(len);
886 vid_hdr->copy_flag = 1;
887 vid_hdr->data_crc = cpu_to_be32(crc);
888
889retry:
890 pnum = ubi_wl_get_peb(ubi, dtype);
891 if (pnum < 0) {
892 err = pnum;
893 goto out_leb_unlock;
894 }
895
896 dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d",
897 vol_id, lnum, vol->eba_tbl[lnum], pnum);
898
899 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
900 if (err) {
901 ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
902 vol_id, lnum, pnum);
903 goto write_error;
904 }
905
906 err = ubi_io_write_data(ubi, buf, pnum, 0, len);
907 if (err) {
908 ubi_warn("failed to write %d bytes of data to PEB %d",
909 len, pnum);
910 goto write_error;
911 }
912
913 if (vol->eba_tbl[lnum] >= 0) {
914 err = ubi_wl_put_peb(ubi, vol->eba_tbl[lnum], 1);
915 if (err)
916 goto out_leb_unlock;
917 }
918
919 vol->eba_tbl[lnum] = pnum;
920
921out_leb_unlock:
922 leb_write_unlock(ubi, vol_id, lnum);
923out_mutex:
924 mutex_unlock(&ubi->alc_mutex);
925 ubi_free_vid_hdr(ubi, vid_hdr);
926 return err;
927
928write_error:
929 if (err != -EIO || !ubi->bad_allowed) {
930 /*
931 * This flash device does not admit of bad eraseblocks or
932 * something nasty and unexpected happened. Switch to read-only
933 * mode just in case.
934 */
935 ubi_ro_mode(ubi);
936 goto out_leb_unlock;
937 }
938
939 err = ubi_wl_put_peb(ubi, pnum, 1);
940 if (err || ++tries > UBI_IO_RETRIES) {
941 ubi_ro_mode(ubi);
942 goto out_leb_unlock;
943 }
944
945 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
946 ubi_msg("try another PEB");
947 goto retry;
948}
949
950/**
951 * ubi_eba_copy_leb - copy logical eraseblock.
952 * @ubi: UBI device description object
953 * @from: physical eraseblock number from where to copy
954 * @to: physical eraseblock number where to copy
955 * @vid_hdr: VID header of the @from physical eraseblock
956 *
957 * This function copies logical eraseblock from physical eraseblock @from to
958 * physical eraseblock @to. The @vid_hdr buffer may be changed by this
959 * function. Returns:
960 * o %0 in case of success;
961 * o %1 if the operation was canceled and should be tried later (e.g.,
962 * because a bit-flip was detected at the target PEB);
963 * o %2 if the volume is being deleted and this LEB should not be moved.
964 */
965int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
966 struct ubi_vid_hdr *vid_hdr)
967{
968 int err, vol_id, lnum, data_size, aldata_size, idx;
969 struct ubi_volume *vol;
970 uint32_t crc;
971
972 vol_id = be32_to_cpu(vid_hdr->vol_id);
973 lnum = be32_to_cpu(vid_hdr->lnum);
974
975 dbg_eba("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
976
977 if (vid_hdr->vol_type == UBI_VID_STATIC) {
978 data_size = be32_to_cpu(vid_hdr->data_size);
979 aldata_size = ALIGN(data_size, ubi->min_io_size);
980 } else
981 data_size = aldata_size =
982 ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
983
984 idx = vol_id2idx(ubi, vol_id);
985 spin_lock(&ubi->volumes_lock);
986 /*
987 * Note, we may race with volume deletion, which means that the volume
988 * this logical eraseblock belongs to might be being deleted. Since the
989 * volume deletion unmaps all the volume's logical eraseblocks, it will
990 * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
991 */
992 vol = ubi->volumes[idx];
993 if (!vol) {
994 /* No need to do further work, cancel */
995 dbg_eba("volume %d is being removed, cancel", vol_id);
996 spin_unlock(&ubi->volumes_lock);
997 return 2;
998 }
999 spin_unlock(&ubi->volumes_lock);
1000
1001 /*
1002 * We do not want anybody to write to this logical eraseblock while we
1003 * are moving it, so lock it.
1004 *
1005 * Note, we are using non-waiting locking here, because we cannot sleep
1006 * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
1007 * unmapping the LEB which is mapped to the PEB we are going to move
1008 * (@from). This task locks the LEB and goes sleep in the
1009 * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
1010 * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
1011 * LEB is already locked, we just do not move it and return %1.
1012 */
1013 err = leb_write_trylock(ubi, vol_id, lnum);
1014 if (err) {
1015 dbg_eba("contention on LEB %d:%d, cancel", vol_id, lnum);
1016 return err;
1017 }
1018
1019 /*
1020 * The LEB might have been put meanwhile, and the task which put it is
1021 * probably waiting on @ubi->move_mutex. No need to continue the work,
1022 * cancel it.
1023 */
1024 if (vol->eba_tbl[lnum] != from) {
1025 dbg_eba("LEB %d:%d is no longer mapped to PEB %d, mapped to "
1026 "PEB %d, cancel", vol_id, lnum, from,
1027 vol->eba_tbl[lnum]);
1028 err = 1;
1029 goto out_unlock_leb;
1030 }
1031
1032 /*
1033 * OK, now the LEB is locked and we can safely start moving iy. Since
1034 * this function utilizes thie @ubi->peb1_buf buffer which is shared
1035 * with some other functions, so lock the buffer by taking the
1036 * @ubi->buf_mutex.
1037 */
1038 mutex_lock(&ubi->buf_mutex);
1039 dbg_eba("read %d bytes of data", aldata_size);
1040 err = ubi_io_read_data(ubi, ubi->peb_buf1, from, 0, aldata_size);
1041 if (err && err != UBI_IO_BITFLIPS) {
1042 ubi_warn("error %d while reading data from PEB %d",
1043 err, from);
1044 goto out_unlock_buf;
1045 }
1046
1047 /*
1048 * Now we have got to calculate how much data we have to to copy. In
1049 * case of a static volume it is fairly easy - the VID header contains
1050 * the data size. In case of a dynamic volume it is more difficult - we
1051 * have to read the contents, cut 0xFF bytes from the end and copy only
1052 * the first part. We must do this to avoid writing 0xFF bytes as it
1053 * may have some side-effects. And not only this. It is important not
1054 * to include those 0xFFs to CRC because later the they may be filled
1055 * by data.
1056 */
1057 if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
1058 aldata_size = data_size =
1059 ubi_calc_data_len(ubi, ubi->peb_buf1, data_size);
1060
1061 cond_resched();
1062 crc = crc32(UBI_CRC32_INIT, ubi->peb_buf1, data_size);
1063 cond_resched();
1064
1065 /*
1066 * It may turn out to me that the whole @from physical eraseblock
1067 * contains only 0xFF bytes. Then we have to only write the VID header
1068 * and do not write any data. This also means we should not set
1069 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1070 */
1071 if (data_size > 0) {
1072 vid_hdr->copy_flag = 1;
1073 vid_hdr->data_size = cpu_to_be32(data_size);
1074 vid_hdr->data_crc = cpu_to_be32(crc);
1075 }
1076 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
1077
1078 err = ubi_io_write_vid_hdr(ubi, to, vid_hdr);
1079 if (err)
1080 goto out_unlock_buf;
1081
1082 cond_resched();
1083
1084 /* Read the VID header back and check if it was written correctly */
1085 err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1);
1086 if (err) {
1087 if (err != UBI_IO_BITFLIPS)
1088 ubi_warn("cannot read VID header back from PEB %d", to);
1089 else
1090 err = 1;
1091 goto out_unlock_buf;
1092 }
1093
1094 if (data_size > 0) {
1095 err = ubi_io_write_data(ubi, ubi->peb_buf1, to, 0, aldata_size);
1096 if (err)
1097 goto out_unlock_buf;
1098
1099 cond_resched();
1100
1101 /*
1102 * We've written the data and are going to read it back to make
1103 * sure it was written correctly.
1104 */
1105
1106 err = ubi_io_read_data(ubi, ubi->peb_buf2, to, 0, aldata_size);
1107 if (err) {
1108 if (err != UBI_IO_BITFLIPS)
1109 ubi_warn("cannot read data back from PEB %d",
1110 to);
1111 else
1112 err = 1;
1113 goto out_unlock_buf;
1114 }
1115
1116 cond_resched();
1117
1118 if (memcmp(ubi->peb_buf1, ubi->peb_buf2, aldata_size)) {
1119 ubi_warn("read data back from PEB %d - it is different",
1120 to);
1121 goto out_unlock_buf;
1122 }
1123 }
1124
1125 ubi_assert(vol->eba_tbl[lnum] == from);
1126 vol->eba_tbl[lnum] = to;
1127
1128out_unlock_buf:
1129 mutex_unlock(&ubi->buf_mutex);
1130out_unlock_leb:
1131 leb_write_unlock(ubi, vol_id, lnum);
1132 return err;
1133}
1134
1135/**
1136 * ubi_eba_init_scan - initialize the EBA unit using scanning information.
1137 * @ubi: UBI device description object
1138 * @si: scanning information
1139 *
1140 * This function returns zero in case of success and a negative error code in
1141 * case of failure.
1142 */
1143int ubi_eba_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
1144{
1145 int i, j, err, num_volumes;
1146 struct ubi_scan_volume *sv;
1147 struct ubi_volume *vol;
1148 struct ubi_scan_leb *seb;
1149 struct rb_node *rb;
1150
1151 dbg_eba("initialize EBA unit");
1152
1153 spin_lock_init(&ubi->ltree_lock);
1154 mutex_init(&ubi->alc_mutex);
1155 ubi->ltree = RB_ROOT;
1156
1157 ubi->global_sqnum = si->max_sqnum + 1;
1158 num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1159
1160 for (i = 0; i < num_volumes; i++) {
1161 vol = ubi->volumes[i];
1162 if (!vol)
1163 continue;
1164
1165 cond_resched();
1166
1167 vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int),
1168 GFP_KERNEL);
1169 if (!vol->eba_tbl) {
1170 err = -ENOMEM;
1171 goto out_free;
1172 }
1173
1174 for (j = 0; j < vol->reserved_pebs; j++)
1175 vol->eba_tbl[j] = UBI_LEB_UNMAPPED;
1176
1177 sv = ubi_scan_find_sv(si, idx2vol_id(ubi, i));
1178 if (!sv)
1179 continue;
1180
1181 ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) {
1182 if (seb->lnum >= vol->reserved_pebs)
1183 /*
1184 * This may happen in case of an unclean reboot
1185 * during re-size.
1186 */
1187 ubi_scan_move_to_list(sv, seb, &si->erase);
1188 vol->eba_tbl[seb->lnum] = seb->pnum;
1189 }
1190 }
1191
1192 if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
1193 ubi_err("no enough physical eraseblocks (%d, need %d)",
1194 ubi->avail_pebs, EBA_RESERVED_PEBS);
1195 err = -ENOSPC;
1196 goto out_free;
1197 }
1198 ubi->avail_pebs -= EBA_RESERVED_PEBS;
1199 ubi->rsvd_pebs += EBA_RESERVED_PEBS;
1200
1201 if (ubi->bad_allowed) {
1202 ubi_calculate_reserved(ubi);
1203
1204 if (ubi->avail_pebs < ubi->beb_rsvd_level) {
1205 /* No enough free physical eraseblocks */
1206 ubi->beb_rsvd_pebs = ubi->avail_pebs;
1207 ubi_warn("cannot reserve enough PEBs for bad PEB "
1208 "handling, reserved %d, need %d",
1209 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
1210 } else
1211 ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
1212
1213 ubi->avail_pebs -= ubi->beb_rsvd_pebs;
1214 ubi->rsvd_pebs += ubi->beb_rsvd_pebs;
1215 }
1216
1217 dbg_eba("EBA unit is initialized");
1218 return 0;
1219
1220out_free:
1221 for (i = 0; i < num_volumes; i++) {
1222 if (!ubi->volumes[i])
1223 continue;
1224 kfree(ubi->volumes[i]->eba_tbl);
1225 }
1226 return err;
1227}
1228
1229/**
1230 * ubi_eba_close - close EBA unit.
1231 * @ubi: UBI device description object
1232 */
1233void ubi_eba_close(const struct ubi_device *ubi)
1234{
1235 int i, num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1236
1237 dbg_eba("close EBA unit");
1238
1239 for (i = 0; i < num_volumes; i++) {
1240 if (!ubi->volumes[i])
1241 continue;
1242 kfree(ubi->volumes[i]->eba_tbl);
1243 }
1244}