wdenk | 62219a2 | 2002-10-02 20:40:41 +0000 | [diff] [blame] | 1 | /* |
| 2 | * (C) Copyright 2000 |
| 3 | * Paolo Scaffardi, AIRVENT SAM s.p.a - RIMINI(ITALY), arsenio@tin.it |
| 4 | * |
| 5 | * (C) Copyright 2000 Sysgo Real-Time Solutions, GmbH <www.elinos.com> |
| 6 | * Marius Groeger <mgroeger@sysgo.de> |
| 7 | * |
| 8 | * See file CREDITS for list of people who contributed to this |
| 9 | * project. |
| 10 | * |
| 11 | * This program is free software; you can redistribute it and/or |
| 12 | * modify it under the terms of the GNU General Public License as |
| 13 | * published by the Free Software Foundation; either version 2 of |
| 14 | * the License, or (at your option) any later version. |
| 15 | * |
| 16 | * This program is distributed in the hope that it will be useful, |
| 17 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 18 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 19 | * GNU General Public License for more details. |
| 20 | * |
| 21 | * You should have received a copy of the GNU General Public License |
| 22 | * along with this program; if not, write to the Free Software |
| 23 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| 24 | * MA 02111-1307 USA |
| 25 | * |
| 26 | * Back ported to the 8xx platform (from the 8260 platform) by |
| 27 | * Murray.Jensen@cmst.csiro.au, 27-Jan-01. |
| 28 | */ |
| 29 | |
| 30 | #include <common.h> |
| 31 | |
| 32 | #ifdef CONFIG_HARD_I2C |
| 33 | |
| 34 | #include <commproc.h> |
| 35 | #include <i2c.h> |
| 36 | #ifdef CONFIG_LWMON |
| 37 | #include <watchdog.h> |
| 38 | #endif |
| 39 | |
| 40 | /* define to enable debug messages */ |
| 41 | #undef DEBUG_I2C |
| 42 | |
| 43 | /*----------------------------------------------------------------------- |
| 44 | * Set default values |
| 45 | */ |
| 46 | #ifndef CFG_I2C_SPEED |
| 47 | #define CFG_I2C_SPEED 50000 |
| 48 | #endif |
| 49 | |
| 50 | #ifndef CFG_I2C_SLAVE |
| 51 | #define CFG_I2C_SLAVE 0xFE |
| 52 | #endif |
| 53 | /*----------------------------------------------------------------------- |
| 54 | */ |
| 55 | |
| 56 | /* tx/rx timeout (we need the i2c early, so we don't use get_timer()) */ |
| 57 | #define TOUT_LOOP 1000000 |
| 58 | |
| 59 | #define NUM_RX_BDS 4 |
| 60 | #define NUM_TX_BDS 4 |
| 61 | #define MAX_TX_SPACE 256 |
| 62 | #define I2C_RXTX_LEN 128 /* maximum tx/rx buffer length */ |
| 63 | |
| 64 | typedef struct I2C_BD |
| 65 | { |
| 66 | unsigned short status; |
| 67 | unsigned short length; |
| 68 | unsigned char *addr; |
| 69 | } I2C_BD; |
| 70 | #define BD_I2C_TX_START 0x0400 /* special status for i2c: Start condition */ |
| 71 | |
| 72 | #define BD_I2C_TX_CL 0x0001 /* collision error */ |
| 73 | #define BD_I2C_TX_UN 0x0002 /* underflow error */ |
| 74 | #define BD_I2C_TX_NAK 0x0004 /* no acknowledge error */ |
| 75 | #define BD_I2C_TX_ERR (BD_I2C_TX_NAK|BD_I2C_TX_UN|BD_I2C_TX_CL) |
| 76 | |
| 77 | #define BD_I2C_RX_ERR BD_SC_OV |
| 78 | |
| 79 | typedef void (*i2c_ecb_t)(int, int); /* error callback function */ |
| 80 | |
| 81 | /* This structure keeps track of the bd and buffer space usage. */ |
| 82 | typedef struct i2c_state { |
| 83 | int rx_idx; /* index to next free Rx BD */ |
| 84 | int tx_idx; /* index to next free Tx BD */ |
| 85 | void *rxbd; /* pointer to next free Rx BD */ |
| 86 | void *txbd; /* pointer to next free Tx BD */ |
| 87 | int tx_space; /* number of Tx bytes left */ |
| 88 | unsigned char *tx_buf; /* pointer to free Tx area */ |
| 89 | i2c_ecb_t err_cb; /* error callback function */ |
| 90 | } i2c_state_t; |
| 91 | |
| 92 | |
| 93 | /* flags for i2c_send() and i2c_receive() */ |
| 94 | #define I2CF_ENABLE_SECONDARY 0x01 /* secondary_address is valid */ |
| 95 | #define I2CF_START_COND 0x02 /* tx: generate start condition */ |
| 96 | #define I2CF_STOP_COND 0x04 /* tx: generate stop condition */ |
| 97 | |
| 98 | /* return codes */ |
| 99 | #define I2CERR_NO_BUFFERS 0x01 /* no more BDs or buffer space */ |
| 100 | #define I2CERR_MSG_TOO_LONG 0x02 /* tried to send/receive to much data */ |
| 101 | #define I2CERR_TIMEOUT 0x03 /* timeout in i2c_doio() */ |
| 102 | #define I2CERR_QUEUE_EMPTY 0x04 /* i2c_doio called without send/receive */ |
| 103 | |
| 104 | /* error callback flags */ |
| 105 | #define I2CECB_RX_ERR 0x10 /* this is a receive error */ |
| 106 | #define I2CECB_RX_ERR_OV 0x02 /* receive overrun error */ |
| 107 | #define I2CECB_RX_MASK 0x0f /* mask for error bits */ |
| 108 | #define I2CECB_TX_ERR 0x20 /* this is a transmit error */ |
| 109 | #define I2CECB_TX_CL 0x01 /* transmit collision error */ |
| 110 | #define I2CECB_TX_UN 0x02 /* transmit underflow error */ |
| 111 | #define I2CECB_TX_NAK 0x04 /* transmit no ack error */ |
| 112 | #define I2CECB_TX_MASK 0x0f /* mask for error bits */ |
| 113 | #define I2CECB_TIMEOUT 0x40 /* this is a timeout error */ |
| 114 | |
| 115 | #ifdef DEBUG_I2C |
| 116 | #define PRINTD(x) printf x |
| 117 | #else |
| 118 | #define PRINTD(x) |
| 119 | #endif |
| 120 | |
| 121 | /* |
| 122 | * Returns the best value of I2BRG to meet desired clock speed of I2C with |
| 123 | * input parameters (clock speed, filter, and predivider value). |
| 124 | * It returns computer speed value and the difference between it and desired |
| 125 | * speed. |
| 126 | */ |
| 127 | static inline int |
| 128 | i2c_roundrate(int hz, int speed, int filter, int modval, |
| 129 | int *brgval, int *totspeed) |
| 130 | { |
| 131 | int moddiv = 1 << (5-(modval & 3)), brgdiv, div; |
| 132 | |
| 133 | PRINTD(("\t[I2C] trying hz=%d, speed=%d, filter=%d, modval=%d\n", |
| 134 | hz, speed, filter, modval)); |
| 135 | |
| 136 | div = moddiv * speed; |
| 137 | brgdiv = (hz + div - 1) / div; |
| 138 | |
| 139 | PRINTD(("\t\tmoddiv=%d, brgdiv=%d\n", moddiv, brgdiv)); |
| 140 | |
| 141 | *brgval = ((brgdiv + 1) / 2) - 3 - (2*filter); |
| 142 | |
| 143 | if ((*brgval < 0) || (*brgval > 255)) { |
| 144 | PRINTD(("\t\trejected brgval=%d\n", *brgval)); |
| 145 | return -1; |
| 146 | } |
| 147 | |
| 148 | brgdiv = 2 * (*brgval + 3 + (2 * filter)); |
| 149 | div = moddiv * brgdiv ; |
| 150 | *totspeed = hz / div; |
| 151 | |
| 152 | PRINTD(("\t\taccepted brgval=%d, totspeed=%d\n", *brgval, *totspeed)); |
| 153 | |
| 154 | return 0; |
| 155 | } |
| 156 | |
| 157 | /* |
| 158 | * Sets the I2C clock predivider and divider to meet required clock speed. |
| 159 | */ |
| 160 | static int |
| 161 | i2c_setrate (int hz, int speed) |
| 162 | { |
| 163 | immap_t *immap = (immap_t *) CFG_IMMR; |
| 164 | volatile i2c8xx_t *i2c = (i2c8xx_t *) & immap->im_i2c; |
| 165 | int brgval, |
| 166 | modval, /* 0-3 */ |
| 167 | bestspeed_diff = speed, |
| 168 | bestspeed_brgval = 0, |
| 169 | bestspeed_modval = 0, |
| 170 | bestspeed_filter = 0, |
| 171 | totspeed, |
| 172 | filter = 0; /* Use this fixed value */ |
| 173 | |
| 174 | for (modval = 0; modval < 4; modval++) { |
| 175 | if (i2c_roundrate(hz,speed,filter,modval,&brgval,&totspeed) == 0) { |
| 176 | int diff = speed - totspeed; |
| 177 | |
| 178 | if ((diff >= 0) && (diff < bestspeed_diff)) { |
| 179 | bestspeed_diff = diff; |
| 180 | bestspeed_modval = modval; |
| 181 | bestspeed_brgval = brgval; |
| 182 | bestspeed_filter = filter; |
| 183 | } |
| 184 | } |
| 185 | } |
| 186 | |
| 187 | PRINTD (("[I2C] Best is:\n")); |
| 188 | PRINTD (("[I2C] CPU=%dhz RATE=%d F=%d I2MOD=%08x I2BRG=%08x DIFF=%dhz\n", |
| 189 | hz, |
| 190 | speed, |
| 191 | bestspeed_filter, |
| 192 | bestspeed_modval, |
| 193 | bestspeed_brgval, |
| 194 | bestspeed_diff)); |
| 195 | |
| 196 | i2c->i2c_i2mod |= ((bestspeed_modval & 3) << 1) | (bestspeed_filter << 3); |
| 197 | i2c->i2c_i2brg = bestspeed_brgval & 0xff; |
| 198 | |
| 199 | PRINTD (("[I2C] i2mod=%08x i2brg=%08x\n", i2c->i2c_i2mod, |
| 200 | i2c->i2c_i2brg)); |
| 201 | |
| 202 | return 1; |
| 203 | } |
| 204 | |
| 205 | void |
| 206 | i2c_init(int speed, int slaveaddr) |
| 207 | { |
| 208 | DECLARE_GLOBAL_DATA_PTR; |
| 209 | |
| 210 | volatile immap_t *immap = (immap_t *)CFG_IMMR ; |
| 211 | volatile cpm8xx_t *cp = (cpm8xx_t *)&immap->im_cpm; |
| 212 | volatile i2c8xx_t *i2c = (i2c8xx_t *)&immap->im_i2c; |
| 213 | volatile iic_t *iip = (iic_t *)&cp->cp_dparam[PROFF_IIC]; |
| 214 | ulong rbase, tbase; |
| 215 | volatile I2C_BD *rxbd, *txbd; |
| 216 | uint dpaddr; |
| 217 | |
wdenk | 47cd00f | 2003-03-06 13:39:27 +0000 | [diff] [blame] | 218 | #ifdef CFG_I2C_INIT_BOARD |
| 219 | /* call board specific i2c bus reset routine before accessing the */ |
| 220 | /* environment, which might be in a chip on that bus. For details */ |
| 221 | /* about this problem see doc/I2C_Edge_Conditions. */ |
| 222 | i2c_init_board(); |
| 223 | #endif |
| 224 | |
wdenk | 62219a2 | 2002-10-02 20:40:41 +0000 | [diff] [blame] | 225 | #ifdef CFG_I2C_UCODE_PATCH |
| 226 | iip = (iic_t *)&cp->cp_dpmem[iip->iic_rpbase]; |
| 227 | #else |
| 228 | /* Disable relocation */ |
| 229 | iip->iic_rpbase = 0; |
| 230 | #endif |
| 231 | |
| 232 | #ifdef CFG_ALLOC_DPRAM |
| 233 | dpaddr = iip->iic_rbase; |
| 234 | if (dpaddr == 0) { |
| 235 | /* need to allocate dual port ram */ |
| 236 | dpaddr = dpram_alloc_align( |
| 237 | (NUM_RX_BDS * sizeof(I2C_BD)) + (NUM_TX_BDS * sizeof(I2C_BD)) + |
| 238 | MAX_TX_SPACE, 8); |
| 239 | } |
| 240 | #else |
| 241 | dpaddr = CPM_I2C_BASE; |
| 242 | #endif |
| 243 | |
| 244 | /* |
| 245 | * initialise data in dual port ram: |
| 246 | * |
| 247 | * dpaddr->rbase -> rx BD (NUM_RX_BDS * sizeof(I2C_BD) bytes) |
| 248 | * tbase -> tx BD (NUM_TX_BDS * sizeof(I2C_BD) bytes) |
| 249 | * tx buffer (MAX_TX_SPACE bytes) |
| 250 | */ |
| 251 | |
| 252 | rbase = dpaddr; |
| 253 | tbase = rbase + NUM_RX_BDS * sizeof(I2C_BD); |
| 254 | |
| 255 | /* Initialize Port B I2C pins. */ |
| 256 | cp->cp_pbpar |= 0x00000030; |
| 257 | cp->cp_pbdir |= 0x00000030; |
| 258 | cp->cp_pbodr |= 0x00000030; |
| 259 | |
| 260 | /* Disable interrupts */ |
| 261 | i2c->i2c_i2mod = 0x00; |
| 262 | i2c->i2c_i2cmr = 0x00; |
| 263 | i2c->i2c_i2cer = 0xff; |
| 264 | i2c->i2c_i2add = slaveaddr; |
| 265 | |
| 266 | /* |
| 267 | * Set the I2C BRG Clock division factor from desired i2c rate |
| 268 | * and current CPU rate (we assume sccr dfbgr field is 0; |
| 269 | * divide BRGCLK by 1) |
| 270 | */ |
| 271 | PRINTD(("[I2C] Setting rate...\n")); |
| 272 | i2c_setrate (gd->cpu_clk, CFG_I2C_SPEED) ; |
| 273 | |
| 274 | /* Set I2C controller in master mode */ |
| 275 | i2c->i2c_i2com = 0x01; |
| 276 | |
| 277 | /* Set SDMA bus arbitration level to 5 (SDCR) */ |
| 278 | immap->im_siu_conf.sc_sdcr = 0x0001 ; |
| 279 | |
| 280 | /* Initialize Tx/Rx parameters */ |
| 281 | iip->iic_rbase = rbase; |
| 282 | iip->iic_tbase = tbase; |
| 283 | rxbd = (I2C_BD *)((unsigned char *)&cp->cp_dpmem[iip->iic_rbase]); |
| 284 | txbd = (I2C_BD *)((unsigned char *)&cp->cp_dpmem[iip->iic_tbase]); |
| 285 | |
| 286 | PRINTD(("[I2C] rbase = %04x\n", iip->iic_rbase)); |
| 287 | PRINTD(("[I2C] tbase = %04x\n", iip->iic_tbase)); |
| 288 | PRINTD(("[I2C] rxbd = %08x\n", (int)rxbd)); |
| 289 | PRINTD(("[I2C] txbd = %08x\n", (int)txbd)); |
| 290 | |
| 291 | /* Set big endian byte order */ |
| 292 | iip->iic_tfcr = 0x10; |
| 293 | iip->iic_rfcr = 0x10; |
| 294 | |
| 295 | /* Set maximum receive size. */ |
| 296 | iip->iic_mrblr = I2C_RXTX_LEN; |
| 297 | |
| 298 | #ifdef CFG_I2C_UCODE_PATCH |
| 299 | /* |
| 300 | * Initialize required parameters if using microcode patch. |
| 301 | */ |
| 302 | iip->iic_rbptr = iip->iic_rbase; |
| 303 | iip->iic_tbptr = iip->iic_tbase; |
| 304 | iip->iic_rstate = 0; |
| 305 | iip->iic_tstate = 0; |
| 306 | #else |
| 307 | cp->cp_cpcr = mk_cr_cmd(CPM_CR_CH_I2C, CPM_CR_INIT_TRX) | CPM_CR_FLG; |
| 308 | do { |
| 309 | __asm__ __volatile__ ("eieio"); |
| 310 | } while (cp->cp_cpcr & CPM_CR_FLG); |
| 311 | #endif |
| 312 | |
| 313 | /* Clear events and interrupts */ |
| 314 | i2c->i2c_i2cer = 0xff; |
| 315 | i2c->i2c_i2cmr = 0x00; |
| 316 | } |
| 317 | |
| 318 | static void |
| 319 | i2c_newio(i2c_state_t *state) |
| 320 | { |
| 321 | volatile immap_t *immap = (immap_t *)CFG_IMMR ; |
| 322 | volatile cpm8xx_t *cp = (cpm8xx_t *)&immap->im_cpm; |
| 323 | volatile iic_t *iip = (iic_t *)&cp->cp_dparam[PROFF_IIC]; |
| 324 | |
| 325 | PRINTD(("[I2C] i2c_newio\n")); |
| 326 | |
| 327 | #ifdef CFG_I2C_UCODE_PATCH |
| 328 | iip = (iic_t *)&cp->cp_dpmem[iip->iic_rpbase]; |
| 329 | #endif |
| 330 | state->rx_idx = 0; |
| 331 | state->tx_idx = 0; |
| 332 | state->rxbd = (void*)&cp->cp_dpmem[iip->iic_rbase]; |
| 333 | state->txbd = (void*)&cp->cp_dpmem[iip->iic_tbase]; |
| 334 | state->tx_space = MAX_TX_SPACE; |
| 335 | state->tx_buf = (uchar*)state->txbd + NUM_TX_BDS * sizeof(I2C_BD); |
| 336 | state->err_cb = NULL; |
| 337 | |
| 338 | PRINTD(("[I2C] rxbd = %08x\n", (int)state->rxbd)); |
| 339 | PRINTD(("[I2C] txbd = %08x\n", (int)state->txbd)); |
| 340 | PRINTD(("[I2C] tx_buf = %08x\n", (int)state->tx_buf)); |
| 341 | |
| 342 | /* clear the buffer memory */ |
| 343 | memset((char *)state->tx_buf, 0, MAX_TX_SPACE); |
| 344 | } |
| 345 | |
| 346 | static int |
| 347 | i2c_send(i2c_state_t *state, |
| 348 | unsigned char address, |
| 349 | unsigned char secondary_address, |
| 350 | unsigned int flags, |
| 351 | unsigned short size, |
| 352 | unsigned char *dataout) |
| 353 | { |
| 354 | volatile I2C_BD *txbd; |
| 355 | int i,j; |
| 356 | |
| 357 | PRINTD(("[I2C] i2c_send add=%02d sec=%02d flag=%02d size=%d\n", |
| 358 | address, secondary_address, flags, size)); |
| 359 | |
| 360 | /* trying to send message larger than BD */ |
| 361 | if (size > I2C_RXTX_LEN) |
| 362 | return I2CERR_MSG_TOO_LONG; |
| 363 | |
| 364 | /* no more free bds */ |
| 365 | if (state->tx_idx >= NUM_TX_BDS || state->tx_space < (2 + size)) |
| 366 | return I2CERR_NO_BUFFERS; |
| 367 | |
| 368 | txbd = (I2C_BD *)state->txbd; |
| 369 | txbd->addr = state->tx_buf; |
| 370 | |
| 371 | PRINTD(("[I2C] txbd = %08x\n", (int)txbd)); |
| 372 | |
| 373 | if (flags & I2CF_START_COND) { |
| 374 | PRINTD(("[I2C] Formatting addresses...\n")); |
| 375 | if (flags & I2CF_ENABLE_SECONDARY) { |
| 376 | txbd->length = size + 2; /* Length of msg + dest addr */ |
| 377 | txbd->addr[0] = address << 1; |
| 378 | txbd->addr[1] = secondary_address; |
| 379 | i = 2; |
| 380 | } else { |
| 381 | txbd->length = size + 1; /* Length of msg + dest addr */ |
| 382 | txbd->addr[0] = address << 1; /* Write dest addr to BD */ |
| 383 | i = 1; |
| 384 | } |
| 385 | } else { |
| 386 | txbd->length = size; /* Length of message */ |
| 387 | i = 0; |
| 388 | } |
| 389 | |
| 390 | /* set up txbd */ |
| 391 | txbd->status = BD_SC_READY; |
| 392 | if (flags & I2CF_START_COND) |
| 393 | txbd->status |= BD_I2C_TX_START; |
| 394 | if (flags & I2CF_STOP_COND) |
| 395 | txbd->status |= BD_SC_LAST | BD_SC_WRAP; |
| 396 | |
| 397 | /* Copy data to send into buffer */ |
| 398 | PRINTD(("[I2C] copy data...\n")); |
| 399 | for(j = 0; j < size; i++, j++) |
| 400 | txbd->addr[i] = dataout[j]; |
| 401 | |
| 402 | PRINTD(("[I2C] txbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n", |
| 403 | txbd->length, |
| 404 | txbd->status, |
| 405 | txbd->addr[0], |
| 406 | txbd->addr[1])); |
| 407 | |
| 408 | /* advance state */ |
| 409 | state->tx_buf += txbd->length; |
| 410 | state->tx_space -= txbd->length; |
| 411 | state->tx_idx++; |
| 412 | state->txbd = (void*)(txbd + 1); |
| 413 | |
| 414 | return 0; |
| 415 | } |
| 416 | |
| 417 | static int |
| 418 | i2c_receive(i2c_state_t *state, |
| 419 | unsigned char address, |
| 420 | unsigned char secondary_address, |
| 421 | unsigned int flags, |
| 422 | unsigned short size_to_expect, |
| 423 | unsigned char *datain) |
| 424 | { |
| 425 | volatile I2C_BD *rxbd, *txbd; |
| 426 | |
| 427 | PRINTD(("[I2C] i2c_receive %02d %02d %02d\n", address, secondary_address, flags)); |
| 428 | |
| 429 | /* Expected to receive too much */ |
| 430 | if (size_to_expect > I2C_RXTX_LEN) |
| 431 | return I2CERR_MSG_TOO_LONG; |
| 432 | |
| 433 | /* no more free bds */ |
| 434 | if (state->tx_idx >= NUM_TX_BDS || state->rx_idx >= NUM_RX_BDS |
| 435 | || state->tx_space < 2) |
| 436 | return I2CERR_NO_BUFFERS; |
| 437 | |
| 438 | rxbd = (I2C_BD *)state->rxbd; |
| 439 | txbd = (I2C_BD *)state->txbd; |
| 440 | |
| 441 | PRINTD(("[I2C] rxbd = %08x\n", (int)rxbd)); |
| 442 | PRINTD(("[I2C] txbd = %08x\n", (int)txbd)); |
| 443 | |
| 444 | txbd->addr = state->tx_buf; |
| 445 | |
| 446 | /* set up TXBD for destination address */ |
| 447 | if (flags & I2CF_ENABLE_SECONDARY) { |
| 448 | txbd->length = 2; |
| 449 | txbd->addr[0] = address << 1; /* Write data */ |
| 450 | txbd->addr[1] = secondary_address; /* Internal address */ |
| 451 | txbd->status = BD_SC_READY; |
| 452 | } else { |
| 453 | txbd->length = 1 + size_to_expect; |
| 454 | txbd->addr[0] = (address << 1) | 0x01; |
| 455 | txbd->status = BD_SC_READY; |
| 456 | memset(&txbd->addr[1], 0, txbd->length); |
| 457 | } |
| 458 | |
| 459 | /* set up rxbd for reception */ |
| 460 | rxbd->status = BD_SC_EMPTY; |
| 461 | rxbd->length = size_to_expect; |
| 462 | rxbd->addr = datain; |
| 463 | |
| 464 | txbd->status |= BD_I2C_TX_START; |
| 465 | if (flags & I2CF_STOP_COND) { |
| 466 | txbd->status |= BD_SC_LAST | BD_SC_WRAP; |
| 467 | rxbd->status |= BD_SC_WRAP; |
| 468 | } |
| 469 | |
| 470 | PRINTD(("[I2C] txbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n", |
| 471 | txbd->length, |
| 472 | txbd->status, |
| 473 | txbd->addr[0], |
| 474 | txbd->addr[1])); |
| 475 | PRINTD(("[I2C] rxbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n", |
| 476 | rxbd->length, |
| 477 | rxbd->status, |
| 478 | rxbd->addr[0], |
| 479 | rxbd->addr[1])); |
| 480 | |
| 481 | /* advance state */ |
| 482 | state->tx_buf += txbd->length; |
| 483 | state->tx_space -= txbd->length; |
| 484 | state->tx_idx++; |
| 485 | state->txbd = (void*)(txbd + 1); |
| 486 | state->rx_idx++; |
| 487 | state->rxbd = (void*)(rxbd + 1); |
| 488 | |
| 489 | return 0; |
| 490 | } |
| 491 | |
| 492 | |
| 493 | static int i2c_doio(i2c_state_t *state) |
| 494 | { |
| 495 | volatile immap_t *immap = (immap_t *)CFG_IMMR ; |
| 496 | volatile cpm8xx_t *cp = (cpm8xx_t *)&immap->im_cpm; |
| 497 | volatile i2c8xx_t *i2c = (i2c8xx_t *)&immap->im_i2c; |
| 498 | volatile iic_t *iip = (iic_t *)&cp->cp_dparam[PROFF_IIC]; |
| 499 | volatile I2C_BD *txbd, *rxbd; |
| 500 | volatile int j = 0; |
| 501 | |
| 502 | PRINTD(("[I2C] i2c_doio\n")); |
| 503 | |
| 504 | #ifdef CFG_I2C_UCODE_PATCH |
| 505 | iip = (iic_t *)&cp->cp_dpmem[iip->iic_rpbase]; |
| 506 | #endif |
| 507 | |
| 508 | if (state->tx_idx <= 0 && state->rx_idx <= 0) { |
| 509 | PRINTD(("[I2C] No I/O is queued\n")); |
| 510 | return I2CERR_QUEUE_EMPTY; |
| 511 | } |
| 512 | |
| 513 | iip->iic_rbptr = iip->iic_rbase; |
| 514 | iip->iic_tbptr = iip->iic_tbase; |
| 515 | |
| 516 | /* Enable I2C */ |
| 517 | PRINTD(("[I2C] Enabling I2C...\n")); |
| 518 | i2c->i2c_i2mod |= 0x01; |
| 519 | |
| 520 | /* Begin transmission */ |
| 521 | i2c->i2c_i2com |= 0x80; |
| 522 | |
| 523 | /* Loop until transmit & receive completed */ |
| 524 | |
| 525 | if (state->tx_idx > 0) { |
| 526 | txbd = ((I2C_BD*)state->txbd) - 1; |
| 527 | PRINTD(("[I2C] Transmitting...(txbd=0x%08lx)\n", (ulong)txbd)); |
| 528 | while((txbd->status & BD_SC_READY) && (j++ < TOUT_LOOP)) { |
| 529 | if (ctrlc()) { |
| 530 | return (-1); |
| 531 | } |
| 532 | __asm__ __volatile__ ("eieio"); |
| 533 | } |
| 534 | } |
| 535 | |
| 536 | if ((state->rx_idx > 0) && (j < TOUT_LOOP)) { |
| 537 | rxbd = ((I2C_BD*)state->rxbd) - 1; |
| 538 | PRINTD(("[I2C] Receiving...(rxbd=0x%08lx)\n", (ulong)rxbd)); |
| 539 | while((rxbd->status & BD_SC_EMPTY) && (j++ < TOUT_LOOP)) { |
| 540 | if (ctrlc()) { |
| 541 | return (-1); |
| 542 | } |
| 543 | __asm__ __volatile__ ("eieio"); |
| 544 | } |
| 545 | } |
| 546 | |
| 547 | /* Turn off I2C */ |
| 548 | i2c->i2c_i2mod &= ~0x01; |
| 549 | |
| 550 | if (state->err_cb != NULL) { |
| 551 | int n, i, b; |
| 552 | |
| 553 | /* |
| 554 | * if we have an error callback function, look at the |
| 555 | * error bits in the bd status and pass them back |
| 556 | */ |
| 557 | |
| 558 | if ((n = state->tx_idx) > 0) { |
| 559 | for (i = 0; i < n; i++) { |
| 560 | txbd = ((I2C_BD*)state->txbd) - (n - i); |
| 561 | if ((b = txbd->status & BD_I2C_TX_ERR) != 0) |
| 562 | (*state->err_cb)(I2CECB_TX_ERR|b, i); |
| 563 | } |
| 564 | } |
| 565 | |
| 566 | if ((n = state->rx_idx) > 0) { |
| 567 | for (i = 0; i < n; i++) { |
| 568 | rxbd = ((I2C_BD*)state->rxbd) - (n - i); |
| 569 | if ((b = rxbd->status & BD_I2C_RX_ERR) != 0) |
| 570 | (*state->err_cb)(I2CECB_RX_ERR|b, i); |
| 571 | } |
| 572 | } |
| 573 | |
| 574 | if (j >= TOUT_LOOP) |
| 575 | (*state->err_cb)(I2CECB_TIMEOUT, 0); |
| 576 | } |
| 577 | |
| 578 | return (j >= TOUT_LOOP) ? I2CERR_TIMEOUT : 0; |
| 579 | } |
| 580 | |
| 581 | static int had_tx_nak; |
| 582 | |
| 583 | static void |
| 584 | i2c_test_callback(int flags, int xnum) |
| 585 | { |
| 586 | if ((flags & I2CECB_TX_ERR) && (flags & I2CECB_TX_NAK)) |
| 587 | had_tx_nak = 1; |
| 588 | } |
| 589 | |
| 590 | int i2c_probe(uchar chip) |
| 591 | { |
| 592 | i2c_state_t state; |
| 593 | int rc; |
| 594 | uchar buf[1]; |
| 595 | |
| 596 | i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE); |
| 597 | |
| 598 | i2c_newio(&state); |
| 599 | |
| 600 | state.err_cb = i2c_test_callback; |
| 601 | had_tx_nak = 0; |
| 602 | |
| 603 | rc = i2c_receive(&state, chip, 0, I2CF_START_COND|I2CF_STOP_COND, 1, buf); |
| 604 | |
| 605 | if (rc != 0) |
| 606 | return (rc); |
| 607 | |
| 608 | rc = i2c_doio(&state); |
| 609 | |
| 610 | if ((rc != 0) && (rc != I2CERR_TIMEOUT)) |
| 611 | return (rc); |
| 612 | |
| 613 | return (had_tx_nak); |
| 614 | } |
| 615 | |
| 616 | int i2c_read(uchar chip, uint addr, int alen, uchar *buffer, int len) |
| 617 | { |
| 618 | DECLARE_GLOBAL_DATA_PTR; |
| 619 | |
| 620 | i2c_state_t state; |
| 621 | uchar xaddr[4]; |
| 622 | int rc; |
| 623 | |
| 624 | #ifdef CONFIG_LWMON |
| 625 | WATCHDOG_RESET(); |
| 626 | #endif |
| 627 | |
| 628 | xaddr[0] = (addr >> 24) & 0xFF; |
| 629 | xaddr[1] = (addr >> 16) & 0xFF; |
| 630 | xaddr[2] = (addr >> 8) & 0xFF; |
| 631 | xaddr[3] = addr & 0xFF; |
| 632 | |
| 633 | #ifdef CFG_I2C_EEPROM_ADDR_OVERFLOW |
| 634 | /* |
| 635 | * EEPROM chips that implement "address overflow" are ones like |
| 636 | * Catalyst 24WC04/08/16 which has 9/10/11 bits of address and the |
| 637 | * extra bits end up in the "chip address" bit slots. This makes |
| 638 | * a 24WC08 (1Kbyte) chip look like four 256 byte chips. |
| 639 | * |
| 640 | * Note that we consider the length of the address field to still |
| 641 | * be one byte because the extra address bits are hidden in the |
| 642 | * chip address. |
| 643 | */ |
| 644 | chip |= ((addr >> (alen * 8)) & CFG_I2C_EEPROM_ADDR_OVERFLOW); |
| 645 | #endif |
| 646 | |
| 647 | i2c_newio(&state); |
| 648 | |
| 649 | rc = i2c_send(&state, chip, 0, I2CF_START_COND, alen, &xaddr[4-alen]); |
| 650 | if (rc != 0) { |
| 651 | if (gd->have_console) |
| 652 | printf("i2c_read: i2c_send failed (%d)\n", rc); |
| 653 | return 1; |
| 654 | } |
| 655 | |
| 656 | rc = i2c_receive(&state, chip, 0, I2CF_STOP_COND, len, buffer); |
| 657 | if (rc != 0) { |
| 658 | if (gd->have_console) |
| 659 | printf("i2c_read: i2c_receive failed (%d)\n", rc); |
| 660 | return 1; |
| 661 | } |
| 662 | |
| 663 | rc = i2c_doio(&state); |
| 664 | if (rc != 0) { |
| 665 | if (gd->have_console) |
| 666 | printf("i2c_read: i2c_doio failed (%d)\n", rc); |
| 667 | return 1; |
| 668 | } |
| 669 | return 0; |
| 670 | } |
| 671 | |
| 672 | int i2c_write(uchar chip, uint addr, int alen, uchar *buffer, int len) |
| 673 | { |
| 674 | DECLARE_GLOBAL_DATA_PTR; |
| 675 | |
| 676 | i2c_state_t state; |
| 677 | uchar xaddr[4]; |
| 678 | int rc; |
| 679 | |
| 680 | xaddr[0] = (addr >> 24) & 0xFF; |
| 681 | xaddr[1] = (addr >> 16) & 0xFF; |
| 682 | xaddr[2] = (addr >> 8) & 0xFF; |
| 683 | xaddr[3] = addr & 0xFF; |
| 684 | |
| 685 | #ifdef CFG_I2C_EEPROM_ADDR_OVERFLOW |
| 686 | /* |
| 687 | * EEPROM chips that implement "address overflow" are ones like |
| 688 | * Catalyst 24WC04/08/16 which has 9/10/11 bits of address and the |
| 689 | * extra bits end up in the "chip address" bit slots. This makes |
| 690 | * a 24WC08 (1Kbyte) chip look like four 256 byte chips. |
| 691 | * |
| 692 | * Note that we consider the length of the address field to still |
| 693 | * be one byte because the extra address bits are hidden in the |
| 694 | * chip address. |
| 695 | */ |
| 696 | chip |= ((addr >> (alen * 8)) & CFG_I2C_EEPROM_ADDR_OVERFLOW); |
| 697 | #endif |
| 698 | |
| 699 | i2c_newio(&state); |
| 700 | |
| 701 | rc = i2c_send(&state, chip, 0, I2CF_START_COND, alen, &xaddr[4-alen]); |
| 702 | if (rc != 0) { |
| 703 | if (gd->have_console) |
| 704 | printf("i2c_write: first i2c_send failed (%d)\n", rc); |
| 705 | return 1; |
| 706 | } |
| 707 | |
| 708 | rc = i2c_send(&state, 0, 0, I2CF_STOP_COND, len, buffer); |
| 709 | if (rc != 0) { |
| 710 | if (gd->have_console) |
| 711 | printf("i2c_write: second i2c_send failed (%d)\n", rc); |
| 712 | return 1; |
| 713 | } |
| 714 | |
| 715 | rc = i2c_doio(&state); |
| 716 | if (rc != 0) { |
| 717 | if (gd->have_console) |
| 718 | printf("i2c_write: i2c_doio failed (%d)\n", rc); |
| 719 | return 1; |
| 720 | } |
| 721 | return 0; |
| 722 | } |
| 723 | |
| 724 | uchar |
| 725 | i2c_reg_read(uchar i2c_addr, uchar reg) |
| 726 | { |
| 727 | char buf; |
| 728 | |
| 729 | i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE); |
| 730 | |
| 731 | i2c_read(i2c_addr, reg, 1, &buf, 1); |
| 732 | |
| 733 | return (buf); |
| 734 | } |
| 735 | |
| 736 | void |
| 737 | i2c_reg_write(uchar i2c_addr, uchar reg, uchar val) |
| 738 | { |
| 739 | i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE); |
| 740 | |
| 741 | i2c_write(i2c_addr, reg, 1, &val, 1); |
| 742 | } |
| 743 | |
| 744 | #endif /* CONFIG_HARD_I2C */ |