Mike Frysinger | 9ce7e53 | 2008-02-19 00:58:13 -0500 | [diff] [blame] | 1 | /* |
| 2 | * SPI flash driver |
| 3 | * |
| 4 | * Enter bugs at http://blackfin.uclinux.org/ |
| 5 | * |
| 6 | * Copyright (c) 2005-2007 Analog Devices Inc. |
| 7 | * |
| 8 | * Licensed under the GPL-2 or later. |
| 9 | */ |
| 10 | |
| 11 | /* Configuration options: |
| 12 | * CONFIG_SPI_BAUD - value to load into SPI_BAUD (divisor of SCLK to get SPI CLK) |
| 13 | * CONFIG_SPI_FLASH_SLOW_READ - force usage of the slower read |
| 14 | * WARNING: make sure your SCLK + SPI_BAUD is slow enough |
| 15 | */ |
| 16 | |
| 17 | #include <common.h> |
| 18 | #include <malloc.h> |
| 19 | #include <asm/io.h> |
| 20 | #include <asm/mach-common/bits/spi.h> |
| 21 | |
| 22 | /* Forcibly phase out these */ |
| 23 | #ifdef CONFIG_SPI_FLASH_NUM_SECTORS |
| 24 | # error do not set CONFIG_SPI_FLASH_NUM_SECTORS |
| 25 | #endif |
| 26 | #ifdef CONFIG_SPI_FLASH_SECTOR_SIZE |
| 27 | # error do not set CONFIG_SPI_FLASH_SECTOR_SIZE |
| 28 | #endif |
| 29 | |
| 30 | #if defined(CONFIG_SPI) |
| 31 | |
| 32 | struct flash_info { |
| 33 | char *name; |
| 34 | uint16_t id; |
| 35 | unsigned sector_size; |
| 36 | unsigned num_sectors; |
| 37 | }; |
| 38 | |
| 39 | /* SPI Speeds: 50 MHz / 33 MHz */ |
| 40 | static struct flash_info flash_spansion_serial_flash[] = { |
| 41 | { "S25FL016", 0x0215, 64 * 1024, 32 }, |
| 42 | { "S25FL032", 0x0216, 64 * 1024, 64 }, |
| 43 | { "S25FL064", 0x0217, 64 * 1024, 128 }, |
| 44 | { "S25FL0128", 0x0218, 256 * 1024, 64 }, |
| 45 | { NULL, 0, 0, 0 } |
| 46 | }; |
| 47 | |
| 48 | /* SPI Speeds: 50 MHz / 20 MHz */ |
| 49 | static struct flash_info flash_st_serial_flash[] = { |
| 50 | { "m25p05", 0x2010, 32 * 1024, 2 }, |
| 51 | { "m25p10", 0x2011, 32 * 1024, 4 }, |
| 52 | { "m25p20", 0x2012, 64 * 1024, 4 }, |
| 53 | { "m25p40", 0x2013, 64 * 1024, 8 }, |
| 54 | { "m25p16", 0x2015, 64 * 1024, 32 }, |
| 55 | { "m25p32", 0x2016, 64 * 1024, 64 }, |
| 56 | { "m25p64", 0x2017, 64 * 1024, 128 }, |
| 57 | { "m25p128", 0x2018, 256 * 1024, 64 }, |
| 58 | { NULL, 0, 0, 0 } |
| 59 | }; |
| 60 | |
| 61 | /* SPI Speeds: 66 MHz / 33 MHz */ |
| 62 | static struct flash_info flash_atmel_dataflash[] = { |
| 63 | { "AT45DB011x", 0x0c, 264, 512 }, |
| 64 | { "AT45DB021x", 0x14, 264, 1025 }, |
| 65 | { "AT45DB041x", 0x1c, 264, 2048 }, |
| 66 | { "AT45DB081x", 0x24, 264, 4096 }, |
| 67 | { "AT45DB161x", 0x2c, 528, 4096 }, |
| 68 | { "AT45DB321x", 0x34, 528, 8192 }, |
| 69 | { "AT45DB642x", 0x3c, 1056, 8192 }, |
| 70 | { NULL, 0, 0, 0 } |
| 71 | }; |
| 72 | |
| 73 | /* SPI Speed: 50 MHz / 25 MHz or 40 MHz / 20 MHz */ |
| 74 | static struct flash_info flash_winbond_serial_flash[] = { |
| 75 | { "W25X10", 0x3011, 16 * 256, 32 }, |
| 76 | { "W25X20", 0x3012, 16 * 256, 64 }, |
| 77 | { "W25X40", 0x3013, 16 * 256, 128 }, |
| 78 | { "W25X80", 0x3014, 16 * 256, 256 }, |
| 79 | { "W25P80", 0x2014, 256 * 256, 16 }, |
| 80 | { "W25P16", 0x2015, 256 * 256, 32 }, |
| 81 | { NULL, 0, 0, 0 } |
| 82 | }; |
| 83 | |
| 84 | struct flash_ops { |
| 85 | uint8_t read, write, erase, status; |
| 86 | }; |
| 87 | |
| 88 | #ifdef CONFIG_SPI_FLASH_SLOW_READ |
| 89 | # define OP_READ 0x03 |
| 90 | #else |
| 91 | # define OP_READ 0x0B |
| 92 | #endif |
| 93 | static struct flash_ops flash_st_ops = { |
| 94 | .read = OP_READ, |
| 95 | .write = 0x02, |
| 96 | .erase = 0xD8, |
| 97 | .status = 0x05, |
| 98 | }; |
| 99 | |
| 100 | static struct flash_ops flash_atmel_ops = { |
| 101 | .read = OP_READ, |
| 102 | .write = 0x82, |
| 103 | .erase = 0x81, |
| 104 | .status = 0xD7, |
| 105 | }; |
| 106 | |
| 107 | static struct flash_ops flash_winbond_ops = { |
| 108 | .read = OP_READ, |
| 109 | .write = 0x02, |
| 110 | .erase = 0x20, |
| 111 | .status = 0x05, |
| 112 | }; |
| 113 | |
| 114 | struct manufacturer_info { |
| 115 | const char *name; |
| 116 | uint8_t id; |
| 117 | struct flash_info *flashes; |
| 118 | struct flash_ops *ops; |
| 119 | }; |
| 120 | |
| 121 | static struct { |
| 122 | struct manufacturer_info *manufacturer; |
| 123 | struct flash_info *flash; |
| 124 | struct flash_ops *ops; |
| 125 | uint8_t manufacturer_id, device_id1, device_id2; |
| 126 | unsigned int write_length; |
| 127 | unsigned long sector_size, num_sectors; |
| 128 | } flash; |
| 129 | |
| 130 | enum { |
| 131 | JED_MANU_SPANSION = 0x01, |
| 132 | JED_MANU_ST = 0x20, |
| 133 | JED_MANU_ATMEL = 0x1F, |
| 134 | JED_MANU_WINBOND = 0xEF, |
| 135 | }; |
| 136 | |
| 137 | static struct manufacturer_info flash_manufacturers[] = { |
| 138 | { |
| 139 | .name = "Spansion", |
| 140 | .id = JED_MANU_SPANSION, |
| 141 | .flashes = flash_spansion_serial_flash, |
| 142 | .ops = &flash_st_ops, |
| 143 | }, |
| 144 | { |
| 145 | .name = "ST", |
| 146 | .id = JED_MANU_ST, |
| 147 | .flashes = flash_st_serial_flash, |
| 148 | .ops = &flash_st_ops, |
| 149 | }, |
| 150 | { |
| 151 | .name = "Atmel", |
| 152 | .id = JED_MANU_ATMEL, |
| 153 | .flashes = flash_atmel_dataflash, |
| 154 | .ops = &flash_atmel_ops, |
| 155 | }, |
| 156 | { |
| 157 | .name = "Winbond", |
| 158 | .id = JED_MANU_WINBOND, |
| 159 | .flashes = flash_winbond_serial_flash, |
| 160 | .ops = &flash_winbond_ops, |
| 161 | }, |
| 162 | }; |
| 163 | |
| 164 | #define TIMEOUT 5000 /* timeout of 5 seconds */ |
| 165 | |
| 166 | /* BF54x support */ |
| 167 | #ifndef pSPI_CTL |
| 168 | # define pSPI_CTL pSPI0_CTL |
| 169 | # define pSPI_BAUD pSPI0_BAUD |
| 170 | # define pSPI_FLG pSPI0_FLG |
| 171 | # define pSPI_RDBR pSPI0_RDBR |
| 172 | # define pSPI_STAT pSPI0_STAT |
| 173 | # define pSPI_TDBR pSPI0_TDBR |
| 174 | # define SPI0_SCK 0x0001 |
| 175 | # define SPI0_MOSI 0x0004 |
| 176 | # define SPI0_MISO 0x0002 |
| 177 | # define SPI0_SEL1 0x0010 |
| 178 | #endif |
| 179 | |
| 180 | /* Default to the SPI SSEL that we boot off of: |
| 181 | * BF54x, BF537, (everything new?): SSEL1 |
| 182 | * BF533, BF561: SSEL2 |
| 183 | */ |
| 184 | #ifndef CONFIG_SPI_FLASH_SSEL |
| 185 | # if defined(__ADSPBF531__) || defined(__ADSPBF532__) || \ |
| 186 | defined(__ADSPBF533__) || defined(__ADSPBF561__) |
| 187 | # define CONFIG_SPI_FLASH_SSEL 2 |
| 188 | # else |
| 189 | # define CONFIG_SPI_FLASH_SSEL 1 |
| 190 | # endif |
| 191 | #endif |
| 192 | #define SSEL_MASK (1 << CONFIG_SPI_FLASH_SSEL) |
| 193 | |
| 194 | static void SPI_INIT(void) |
| 195 | { |
| 196 | /* [#3541] This delay appears to be necessary, but not sure |
| 197 | * exactly why as the history behind it is non-existant. |
| 198 | */ |
| 199 | udelay(CONFIG_CCLK_HZ / 25000000); |
| 200 | |
| 201 | /* enable SPI pins: SSEL, MOSI, MISO, SCK */ |
| 202 | #ifdef __ADSPBF54x__ |
| 203 | *pPORTE_FER |= (SPI0_SCK | SPI0_MOSI | SPI0_MISO | SPI0_SEL1); |
| 204 | #elif defined(__ADSPBF534__) || defined(__ADSPBF536__) || defined(__ADSPBF537__) |
| 205 | *pPORTF_FER |= (PF10 | PF11 | PF12 | PF13); |
| 206 | #elif defined(__ADSPBF52x__) |
| 207 | bfin_write_PORTG_MUX((bfin_read_PORTG_MUX() & ~PORT_x_MUX_0_MASK) | PORT_x_MUX_0_FUNC_3); |
| 208 | bfin_write_PORTG_FER(bfin_read_PORTG_FER() | PG1 | PG2 | PG3 | PG4); |
| 209 | #endif |
| 210 | |
| 211 | /* initate communication upon write of TDBR */ |
| 212 | *pSPI_CTL = (SPE|MSTR|CPHA|CPOL|0x01); |
| 213 | *pSPI_BAUD = CONFIG_SPI_BAUD; |
| 214 | } |
| 215 | |
| 216 | static void SPI_DEINIT(void) |
| 217 | { |
| 218 | /* put SPI settings back to reset state */ |
| 219 | *pSPI_CTL = 0x0400; |
| 220 | *pSPI_BAUD = 0; |
| 221 | SSYNC(); |
| 222 | } |
| 223 | |
| 224 | static void SPI_ON(void) |
| 225 | { |
| 226 | /* toggle SSEL to reset the device so it'll take a new command */ |
| 227 | *pSPI_FLG = 0xFF00 | SSEL_MASK; |
| 228 | SSYNC(); |
| 229 | |
| 230 | *pSPI_FLG = ((0xFF & ~SSEL_MASK) << 8) | SSEL_MASK; |
| 231 | SSYNC(); |
| 232 | } |
| 233 | |
| 234 | static void SPI_OFF(void) |
| 235 | { |
| 236 | /* put SPI settings back to reset state */ |
| 237 | *pSPI_FLG = 0xFF00; |
| 238 | SSYNC(); |
| 239 | } |
| 240 | |
| 241 | static uint8_t spi_write_read_byte(uint8_t transmit) |
| 242 | { |
| 243 | *pSPI_TDBR = transmit; |
| 244 | SSYNC(); |
| 245 | |
| 246 | while ((*pSPI_STAT & TXS)) |
| 247 | if (ctrlc()) |
| 248 | break; |
| 249 | while (!(*pSPI_STAT & SPIF)) |
| 250 | if (ctrlc()) |
| 251 | break; |
| 252 | while (!(*pSPI_STAT & RXS)) |
| 253 | if (ctrlc()) |
| 254 | break; |
| 255 | |
| 256 | /* Read dummy to empty the receive register */ |
| 257 | return *pSPI_RDBR; |
| 258 | } |
| 259 | |
| 260 | static uint8_t read_status_register(void) |
| 261 | { |
| 262 | uint8_t status_register; |
| 263 | |
| 264 | /* send instruction to read status register */ |
| 265 | SPI_ON(); |
| 266 | spi_write_read_byte(flash.ops->status); |
| 267 | /* send dummy to receive the status register */ |
| 268 | status_register = spi_write_read_byte(0); |
| 269 | SPI_OFF(); |
| 270 | |
| 271 | return status_register; |
| 272 | } |
| 273 | |
| 274 | static int wait_for_ready_status(void) |
| 275 | { |
| 276 | ulong start = get_timer(0); |
| 277 | |
| 278 | while (get_timer(0) - start < TIMEOUT) { |
| 279 | switch (flash.manufacturer_id) { |
| 280 | case JED_MANU_SPANSION: |
| 281 | case JED_MANU_ST: |
| 282 | case JED_MANU_WINBOND: |
| 283 | if (!(read_status_register() & 0x01)) |
| 284 | return 0; |
| 285 | break; |
| 286 | |
| 287 | case JED_MANU_ATMEL: |
| 288 | if (read_status_register() & 0x80) |
| 289 | return 0; |
| 290 | break; |
| 291 | } |
| 292 | |
| 293 | if (ctrlc()) { |
| 294 | puts("\nAbort\n"); |
| 295 | return -1; |
| 296 | } |
| 297 | } |
| 298 | |
| 299 | puts("Timeout\n"); |
| 300 | return -1; |
| 301 | } |
| 302 | |
| 303 | /* Request and read the manufacturer and device id of parts which |
| 304 | * are compatible with the JEDEC standard (JEP106) and use that to |
| 305 | * setup other operating conditions. |
| 306 | */ |
| 307 | static int spi_detect_part(void) |
| 308 | { |
| 309 | uint16_t dev_id; |
| 310 | size_t i; |
| 311 | |
| 312 | static char called_init; |
| 313 | if (called_init) |
| 314 | return 0; |
| 315 | |
| 316 | SPI_ON(); |
| 317 | |
| 318 | /* Send the request for the part identification */ |
| 319 | spi_write_read_byte(0x9F); |
| 320 | |
| 321 | /* Now read in the manufacturer id bytes */ |
| 322 | do { |
| 323 | flash.manufacturer_id = spi_write_read_byte(0); |
| 324 | if (flash.manufacturer_id == 0x7F) |
| 325 | puts("Warning: unhandled manufacturer continuation byte!\n"); |
| 326 | } while (flash.manufacturer_id == 0x7F); |
| 327 | |
| 328 | /* Now read in the first device id byte */ |
| 329 | flash.device_id1 = spi_write_read_byte(0); |
| 330 | |
| 331 | /* Now read in the second device id byte */ |
| 332 | flash.device_id2 = spi_write_read_byte(0); |
| 333 | |
| 334 | SPI_OFF(); |
| 335 | |
| 336 | dev_id = (flash.device_id1 << 8) | flash.device_id2; |
| 337 | |
| 338 | for (i = 0; i < ARRAY_SIZE(flash_manufacturers); ++i) { |
| 339 | if (flash.manufacturer_id == flash_manufacturers[i].id) |
| 340 | break; |
| 341 | } |
| 342 | if (i == ARRAY_SIZE(flash_manufacturers)) |
| 343 | goto unknown; |
| 344 | |
| 345 | flash.manufacturer = &flash_manufacturers[i]; |
| 346 | flash.ops = flash_manufacturers[i].ops; |
| 347 | |
| 348 | switch (flash.manufacturer_id) { |
| 349 | case JED_MANU_SPANSION: |
| 350 | case JED_MANU_ST: |
| 351 | case JED_MANU_WINBOND: |
| 352 | for (i = 0; flash.manufacturer->flashes[i].name; ++i) { |
| 353 | if (dev_id == flash.manufacturer->flashes[i].id) |
| 354 | break; |
| 355 | } |
| 356 | if (!flash.manufacturer->flashes[i].name) |
| 357 | goto unknown; |
| 358 | |
| 359 | flash.flash = &flash.manufacturer->flashes[i]; |
| 360 | flash.sector_size = flash.flash->sector_size; |
| 361 | flash.num_sectors = flash.flash->num_sectors; |
| 362 | flash.write_length = 256; |
| 363 | break; |
| 364 | |
| 365 | case JED_MANU_ATMEL: { |
| 366 | uint8_t status = read_status_register(); |
| 367 | |
| 368 | for (i = 0; flash.manufacturer->flashes[i].name; ++i) { |
| 369 | if ((status & 0x3c) == flash.manufacturer->flashes[i].id) |
| 370 | break; |
| 371 | } |
| 372 | if (!flash.manufacturer->flashes[i].name) |
| 373 | goto unknown; |
| 374 | |
| 375 | flash.flash = &flash.manufacturer->flashes[i]; |
| 376 | flash.sector_size = flash.flash->sector_size; |
| 377 | flash.num_sectors = flash.flash->num_sectors; |
| 378 | |
| 379 | /* see if flash is in "power of 2" mode */ |
| 380 | if (status & 0x1) |
| 381 | flash.sector_size &= ~(1 << (ffs(flash.sector_size) - 1)); |
| 382 | |
| 383 | flash.write_length = flash.sector_size; |
| 384 | break; |
| 385 | } |
| 386 | } |
| 387 | |
| 388 | called_init = 1; |
| 389 | return 0; |
| 390 | |
| 391 | unknown: |
| 392 | printf("Unknown SPI device: 0x%02X 0x%02X 0x%02X\n", |
| 393 | flash.manufacturer_id, flash.device_id1, flash.device_id2); |
| 394 | return 1; |
| 395 | } |
| 396 | |
| 397 | /* |
| 398 | * Function: spi_init_f |
| 399 | * Description: Init SPI-Controller (ROM part) |
| 400 | * return: --- |
| 401 | */ |
| 402 | void spi_init_f(void) |
| 403 | { |
| 404 | } |
| 405 | |
| 406 | /* |
| 407 | * Function: spi_init_r |
| 408 | * Description: Init SPI-Controller (RAM part) - |
| 409 | * The malloc engine is ready and we can move our buffers to |
| 410 | * normal RAM |
| 411 | * return: --- |
| 412 | */ |
| 413 | void spi_init_r(void) |
| 414 | { |
| 415 | #if defined(CONFIG_POST) && (CONFIG_POST & CFG_POST_SPI) |
| 416 | /* Our testing strategy here is pretty basic: |
| 417 | * - fill src memory with an 8-bit pattern |
| 418 | * - write the src memory to the SPI flash |
| 419 | * - read the SPI flash into the dst memory |
| 420 | * - compare src and dst memory regions |
| 421 | * - repeat a few times |
| 422 | * The variations we test for: |
| 423 | * - change the 8-bit pattern a bit |
| 424 | * - change the read/write block size so we know: |
| 425 | * - writes smaller/equal/larger than the buffer work |
| 426 | * - writes smaller/equal/larger than the sector work |
| 427 | * - change the SPI offsets so we know: |
| 428 | * - writing partial sectors works |
| 429 | */ |
| 430 | uint8_t *mem_src, *mem_dst; |
| 431 | size_t i, c, l, o; |
| 432 | size_t test_count, errors; |
| 433 | uint8_t pattern; |
| 434 | |
| 435 | SPI_INIT(); |
| 436 | |
| 437 | if (spi_detect_part()) |
| 438 | goto out; |
| 439 | eeprom_info(); |
| 440 | |
| 441 | ulong lengths[] = { |
| 442 | flash.write_length, |
| 443 | flash.write_length * 2, |
| 444 | flash.write_length / 2, |
| 445 | flash.sector_size, |
| 446 | flash.sector_size * 2, |
| 447 | flash.sector_size / 2 |
| 448 | }; |
| 449 | ulong offsets[] = { |
| 450 | 0, |
| 451 | flash.write_length, |
| 452 | flash.write_length * 2, |
| 453 | flash.write_length / 2, |
| 454 | flash.write_length / 4, |
| 455 | flash.sector_size, |
| 456 | flash.sector_size * 2, |
| 457 | flash.sector_size / 2, |
| 458 | flash.sector_size / 4, |
| 459 | }; |
| 460 | |
| 461 | /* the exact addresses are arbitrary ... they just need to not overlap */ |
| 462 | mem_src = (void *)(0); |
| 463 | mem_dst = (void *)(max(flash.write_length, flash.sector_size) * 2); |
| 464 | |
| 465 | test_count = 0; |
| 466 | errors = 0; |
| 467 | pattern = 0x00; |
| 468 | |
| 469 | for (i = 0; i < 16; ++i) { /* 16 = 8 bits * 2 iterations */ |
| 470 | for (l = 0; l < ARRAY_SIZE(lengths); ++l) { |
| 471 | for (o = 0; o < ARRAY_SIZE(offsets); ++o) { |
| 472 | ulong len = lengths[l]; |
| 473 | ulong off = offsets[o]; |
| 474 | |
| 475 | printf("Testing pattern 0x%02X of length %5lu and offset %5lu: ", pattern, len, off); |
| 476 | |
| 477 | /* setup the source memory region */ |
| 478 | memset(mem_src, pattern, len); |
| 479 | |
| 480 | test_count += 4; |
| 481 | for (c = 0; c < 4; ++c) { /* 4 is just a random repeat count */ |
| 482 | if (ctrlc()) { |
| 483 | puts("\nAbort\n"); |
| 484 | goto out; |
| 485 | } |
| 486 | |
| 487 | /* make sure background fill pattern != pattern */ |
| 488 | memset(mem_dst, pattern ^ 0xFF, len); |
| 489 | |
| 490 | /* write out the source memory and then read it back and compare */ |
| 491 | eeprom_write(0, off, mem_src, len); |
| 492 | eeprom_read(0, off, mem_dst, len); |
| 493 | |
| 494 | if (memcmp(mem_src, mem_dst, len)) { |
| 495 | for (c = 0; c < len; ++c) |
| 496 | if (mem_src[c] != mem_dst[c]) |
| 497 | break; |
| 498 | printf(" FAIL @ offset %u, skipping repeats ", c); |
| 499 | ++errors; |
| 500 | break; |
| 501 | } |
| 502 | |
| 503 | /* XXX: should shrink write region here to test with |
| 504 | * leading/trailing canaries so we know surrounding |
| 505 | * bytes don't get screwed. |
| 506 | */ |
| 507 | } |
| 508 | puts("\n"); |
| 509 | } |
| 510 | } |
| 511 | |
| 512 | /* invert the pattern every other run and shift out bits slowly */ |
| 513 | pattern ^= 0xFF; |
| 514 | if (i % 2) |
| 515 | pattern = (pattern | 0x01) << 1; |
| 516 | } |
| 517 | |
| 518 | if (errors) |
| 519 | printf("SPI FAIL: Out of %i tests, there were %i errors ;(\n", test_count, errors); |
| 520 | else |
| 521 | printf("SPI PASS: %i tests worked!\n", test_count); |
| 522 | |
| 523 | out: |
| 524 | SPI_DEINIT(); |
| 525 | |
| 526 | #endif |
| 527 | } |
| 528 | |
| 529 | static void transmit_address(uint32_t addr) |
| 530 | { |
| 531 | /* Send the highest byte of the 24 bit address at first */ |
| 532 | spi_write_read_byte(addr >> 16); |
| 533 | /* Send the middle byte of the 24 bit address at second */ |
| 534 | spi_write_read_byte(addr >> 8); |
| 535 | /* Send the lowest byte of the 24 bit address finally */ |
| 536 | spi_write_read_byte(addr); |
| 537 | } |
| 538 | |
| 539 | /* |
| 540 | * Read a value from flash for verify purpose |
| 541 | * Inputs: unsigned long ulStart - holds the SPI start address |
| 542 | * int pnData - pointer to store value read from flash |
| 543 | * long lCount - number of elements to read |
| 544 | */ |
| 545 | static int read_flash(unsigned long address, long count, uchar *buffer) |
| 546 | { |
| 547 | size_t i; |
| 548 | |
| 549 | /* Send the read command to SPI device */ |
| 550 | SPI_ON(); |
| 551 | spi_write_read_byte(flash.ops->read); |
| 552 | transmit_address(address); |
| 553 | |
| 554 | #ifndef CONFIG_SPI_FLASH_SLOW_READ |
| 555 | /* Send dummy byte when doing SPI fast reads */ |
| 556 | spi_write_read_byte(0); |
| 557 | #endif |
| 558 | |
| 559 | /* After the SPI device address has been placed on the MOSI pin the data can be */ |
| 560 | /* received on the MISO pin. */ |
| 561 | for (i = 1; i <= count; ++i) { |
| 562 | *buffer++ = spi_write_read_byte(0); |
| 563 | if (i % flash.sector_size == 0) |
| 564 | puts("."); |
| 565 | } |
| 566 | |
| 567 | SPI_OFF(); |
| 568 | |
| 569 | return 0; |
| 570 | } |
| 571 | |
| 572 | static int enable_writing(void) |
| 573 | { |
| 574 | ulong start; |
| 575 | |
| 576 | if (flash.manufacturer_id == JED_MANU_ATMEL) |
| 577 | return 0; |
| 578 | |
| 579 | /* A write enable instruction must previously have been executed */ |
| 580 | SPI_ON(); |
| 581 | spi_write_read_byte(0x06); |
| 582 | SPI_OFF(); |
| 583 | |
| 584 | /* The status register will be polled to check the write enable latch "WREN" */ |
| 585 | start = get_timer(0); |
| 586 | while (get_timer(0) - start < TIMEOUT) { |
| 587 | if (read_status_register() & 0x02) |
| 588 | return 0; |
| 589 | |
| 590 | if (ctrlc()) { |
| 591 | puts("\nAbort\n"); |
| 592 | return -1; |
| 593 | } |
| 594 | } |
| 595 | |
| 596 | puts("Timeout\n"); |
| 597 | return -1; |
| 598 | } |
| 599 | |
| 600 | static long address_to_sector(unsigned long address) |
| 601 | { |
| 602 | if (address > (flash.num_sectors * flash.sector_size) - 1) |
| 603 | return -1; |
| 604 | return address / flash.sector_size; |
| 605 | } |
| 606 | |
| 607 | static int erase_sector(int address) |
| 608 | { |
| 609 | /* sector gets checked in higher function, so assume it's valid |
| 610 | * here and figure out the offset of the sector in flash |
| 611 | */ |
| 612 | if (enable_writing()) |
| 613 | return -1; |
| 614 | |
| 615 | /* |
| 616 | * Send the erase block command to the flash followed by the 24 address |
| 617 | * to point to the start of a sector |
| 618 | */ |
| 619 | SPI_ON(); |
| 620 | spi_write_read_byte(flash.ops->erase); |
| 621 | transmit_address(address); |
| 622 | SPI_OFF(); |
| 623 | |
| 624 | return wait_for_ready_status(); |
| 625 | } |
| 626 | |
| 627 | /* Write [count] bytes out of [buffer] into the given SPI [address] */ |
| 628 | static long write_flash(unsigned long address, long count, uchar *buffer) |
| 629 | { |
| 630 | long i, write_buffer_size; |
| 631 | |
| 632 | if (enable_writing()) |
| 633 | return -1; |
| 634 | |
| 635 | /* Send write command followed by the 24 bit address */ |
| 636 | SPI_ON(); |
| 637 | spi_write_read_byte(flash.ops->write); |
| 638 | transmit_address(address); |
| 639 | |
| 640 | /* Shoot out a single write buffer */ |
| 641 | write_buffer_size = min(count, flash.write_length); |
| 642 | for (i = 0; i < write_buffer_size; ++i) |
| 643 | spi_write_read_byte(buffer[i]); |
| 644 | |
| 645 | SPI_OFF(); |
| 646 | |
| 647 | /* Wait for the flash to do its thing */ |
| 648 | if (wait_for_ready_status()) { |
| 649 | puts("SPI Program Time out! "); |
| 650 | return -1; |
| 651 | } |
| 652 | |
| 653 | return i; |
| 654 | } |
| 655 | |
| 656 | /* Write [count] bytes out of [buffer] into the given SPI [address] */ |
| 657 | static int write_sector(unsigned long address, long count, uchar *buffer) |
| 658 | { |
| 659 | long write_cnt; |
| 660 | |
| 661 | while (count != 0) { |
| 662 | write_cnt = write_flash(address, count, buffer); |
| 663 | if (write_cnt == -1) |
| 664 | return -1; |
| 665 | |
| 666 | /* Now that we've sent some bytes out to the flash, update |
| 667 | * our counters a bit |
| 668 | */ |
| 669 | count -= write_cnt; |
| 670 | address += write_cnt; |
| 671 | buffer += write_cnt; |
| 672 | } |
| 673 | |
| 674 | /* return the appropriate error code */ |
| 675 | return 0; |
| 676 | } |
| 677 | |
| 678 | /* |
| 679 | * Function: spi_write |
| 680 | */ |
| 681 | ssize_t spi_write(uchar *addr, int alen, uchar *buffer, int len) |
| 682 | { |
| 683 | unsigned long offset; |
| 684 | int start_sector, end_sector; |
| 685 | int start_byte, end_byte; |
| 686 | uchar *temp = NULL; |
| 687 | int num, ret = 0; |
| 688 | |
| 689 | SPI_INIT(); |
| 690 | |
| 691 | if (spi_detect_part()) |
| 692 | goto out; |
| 693 | |
| 694 | offset = addr[0] << 16 | addr[1] << 8 | addr[2]; |
| 695 | |
| 696 | /* Get the start block number */ |
| 697 | start_sector = address_to_sector(offset); |
| 698 | if (start_sector == -1) { |
| 699 | puts("Invalid sector! "); |
| 700 | goto out; |
| 701 | } |
| 702 | end_sector = address_to_sector(offset + len - 1); |
| 703 | if (end_sector == -1) { |
| 704 | puts("Invalid sector! "); |
| 705 | goto out; |
| 706 | } |
| 707 | |
| 708 | /* Since flashes operate in sector units but the eeprom command |
| 709 | * operates as a continuous stream of bytes, we need to emulate |
| 710 | * the eeprom behavior. So here we read in the sector, overlay |
| 711 | * any bytes we're actually modifying, erase the sector, and |
| 712 | * then write back out the new sector. |
| 713 | */ |
| 714 | temp = malloc(flash.sector_size); |
| 715 | if (!temp) { |
| 716 | puts("Malloc for sector failed! "); |
| 717 | goto out; |
| 718 | } |
| 719 | |
| 720 | for (num = start_sector; num <= end_sector; num++) { |
| 721 | unsigned long address = num * flash.sector_size; |
| 722 | |
| 723 | /* XXX: should add an optimization when spanning sectors: |
| 724 | * No point in reading in a sector if we're going to be |
| 725 | * clobbering the whole thing. Need to also add a test |
| 726 | * case to make sure the optimization is correct. |
| 727 | */ |
| 728 | if (read_flash(address, flash.sector_size, temp)) { |
| 729 | puts("Read sector failed! "); |
| 730 | len = 0; |
| 731 | break; |
| 732 | } |
| 733 | |
| 734 | start_byte = max(address, offset); |
| 735 | end_byte = address + flash.sector_size - 1; |
| 736 | if (end_byte > (offset + len)) |
| 737 | end_byte = (offset + len - 1); |
| 738 | |
| 739 | memcpy(temp + start_byte - address, |
| 740 | buffer + start_byte - offset, |
| 741 | end_byte - start_byte + 1); |
| 742 | |
| 743 | if (erase_sector(address)) { |
| 744 | puts("Erase sector failed! "); |
| 745 | goto out; |
| 746 | } |
| 747 | |
| 748 | if (write_sector(address, flash.sector_size, temp)) { |
| 749 | puts("Write sector failed! "); |
| 750 | goto out; |
| 751 | } |
| 752 | |
| 753 | puts("."); |
| 754 | } |
| 755 | |
| 756 | ret = len; |
| 757 | |
| 758 | out: |
| 759 | free(temp); |
| 760 | |
| 761 | SPI_DEINIT(); |
| 762 | |
| 763 | return ret; |
| 764 | } |
| 765 | |
| 766 | /* |
| 767 | * Function: spi_read |
| 768 | */ |
| 769 | ssize_t spi_read(uchar *addr, int alen, uchar *buffer, int len) |
| 770 | { |
| 771 | unsigned long offset; |
| 772 | |
| 773 | SPI_INIT(); |
| 774 | |
| 775 | if (spi_detect_part()) |
| 776 | len = 0; |
| 777 | else { |
| 778 | offset = addr[0] << 16 | addr[1] << 8 | addr[2]; |
| 779 | read_flash(offset, len, buffer); |
| 780 | } |
| 781 | |
| 782 | SPI_DEINIT(); |
| 783 | |
| 784 | return len; |
| 785 | } |
| 786 | |
| 787 | /* |
| 788 | * Spit out some useful information about the SPI eeprom |
| 789 | */ |
| 790 | int eeprom_info(void) |
| 791 | { |
| 792 | int ret = 0; |
| 793 | |
| 794 | SPI_INIT(); |
| 795 | |
| 796 | if (spi_detect_part()) |
| 797 | ret = 1; |
| 798 | else |
| 799 | printf("SPI Device: %s 0x%02X (%s) 0x%02X 0x%02X\n" |
| 800 | "Parameters: num sectors = %i, sector size = %i, write size = %i\n" |
| 801 | "Flash Size: %i mbit (%i mbyte)\n" |
| 802 | "Status: 0x%02X\n", |
| 803 | flash.flash->name, flash.manufacturer_id, flash.manufacturer->name, |
| 804 | flash.device_id1, flash.device_id2, flash.num_sectors, |
| 805 | flash.sector_size, flash.write_length, |
| 806 | (flash.num_sectors * flash.sector_size) >> 17, |
| 807 | (flash.num_sectors * flash.sector_size) >> 20, |
| 808 | read_status_register()); |
| 809 | |
| 810 | SPI_DEINIT(); |
| 811 | |
| 812 | return ret; |
| 813 | } |
| 814 | |
| 815 | #endif |