blob: abd6e3917acd731ddd2ced86c2dcd28c48f215a1 [file] [log] [blame]
Tom Rini83d290c2018-05-06 17:58:06 -04001// SPDX-License-Identifier: GPL-2.0+
Simon Glassb4ba2be2011-08-30 06:23:13 +00002/*
3 * Copyright (c) 2011 The Chromium OS Authors.
Tom Warren722e0002015-06-25 09:50:44 -07004 * (C) Copyright 2010-2015
5 * NVIDIA Corporation <www.nvidia.com>
Simon Glassb4ba2be2011-08-30 06:23:13 +00006 */
7
Allen Martin00a27492012-08-31 08:30:00 +00008/* Tegra20 Clock control functions */
Simon Glassb4ba2be2011-08-30 06:23:13 +00009
Simon Glassb4ba2be2011-08-30 06:23:13 +000010#include <common.h>
Thierry Redinga7230742014-12-09 22:25:06 -070011#include <errno.h>
Simon Glass691d7192020-05-10 11:40:02 -060012#include <init.h>
Simon Glassf7ae49f2020-05-10 11:40:05 -060013#include <log.h>
Tom Warren150c2492012-09-19 15:50:56 -070014#include <asm/io.h>
15#include <asm/arch/clock.h>
16#include <asm/arch/tegra.h>
17#include <asm/arch-tegra/clk_rst.h>
18#include <asm/arch-tegra/timer.h>
Simon Glass4ed59e72011-09-21 12:40:04 +000019#include <div64.h>
Simon Glassed297442012-03-06 17:10:27 +000020#include <fdtdec.h>
Simon Glassc05ed002020-05-10 11:40:11 -060021#include <linux/delay.h>
Simon Glass1e94b462023-09-14 18:21:46 -060022#include <linux/printk.h>
Simon Glass4ed59e72011-09-21 12:40:04 +000023
Svyatoslav Ryhel65e02742023-02-14 19:35:25 +020024#include <dt-bindings/clock/tegra20-car.h>
25
Simon Glass4ed59e72011-09-21 12:40:04 +000026/*
Allen Martin00a27492012-08-31 08:30:00 +000027 * Clock types that we can use as a source. The Tegra20 has muxes for the
Simon Glass4ed59e72011-09-21 12:40:04 +000028 * peripheral clocks, and in most cases there are four options for the clock
29 * source. This gives us a clock 'type' and exploits what commonality exists
30 * in the device.
31 *
32 * Letters are obvious, except for T which means CLK_M, and S which means the
33 * clock derived from 32KHz. Beware that CLK_M (also called OSC in the
34 * datasheet) and PLL_M are different things. The former is the basic
35 * clock supplied to the SOC from an external oscillator. The latter is the
36 * memory clock PLL.
37 *
38 * See definitions in clock_id in the header file.
39 */
40enum clock_type_id {
41 CLOCK_TYPE_AXPT, /* PLL_A, PLL_X, PLL_P, CLK_M */
42 CLOCK_TYPE_MCPA, /* and so on */
43 CLOCK_TYPE_MCPT,
44 CLOCK_TYPE_PCM,
45 CLOCK_TYPE_PCMT,
Simon Glass2e335592012-02-03 15:13:54 +000046 CLOCK_TYPE_PCMT16, /* CLOCK_TYPE_PCMT with 16-bit divider */
Simon Glass4ed59e72011-09-21 12:40:04 +000047 CLOCK_TYPE_PCXTS,
48 CLOCK_TYPE_PDCT,
49
50 CLOCK_TYPE_COUNT,
51 CLOCK_TYPE_NONE = -1, /* invalid clock type */
52};
53
Simon Glass4ed59e72011-09-21 12:40:04 +000054enum {
55 CLOCK_MAX_MUX = 4 /* number of source options for each clock */
56};
57
58/*
59 * Clock source mux for each clock type. This just converts our enum into
60 * a list of mux sources for use by the code. Note that CLOCK_TYPE_PCXTS
61 * is special as it has 5 sources. Since it also has a different number of
62 * bits in its register for the source, we just handle it with a special
63 * case in the code.
64 */
65#define CLK(x) CLOCK_ID_ ## x
66static enum clock_id clock_source[CLOCK_TYPE_COUNT][CLOCK_MAX_MUX] = {
67 { CLK(AUDIO), CLK(XCPU), CLK(PERIPH), CLK(OSC) },
68 { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(AUDIO) },
69 { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(OSC) },
70 { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(NONE) },
71 { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(OSC) },
Simon Glass2e335592012-02-03 15:13:54 +000072 { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(OSC) },
Simon Glass4ed59e72011-09-21 12:40:04 +000073 { CLK(PERIPH), CLK(CGENERAL), CLK(XCPU), CLK(OSC) },
74 { CLK(PERIPH), CLK(DISPLAY), CLK(CGENERAL), CLK(OSC) },
75};
76
77/*
78 * Clock peripheral IDs which sadly don't match up with PERIPH_ID. This is
79 * not in the header file since it is for purely internal use - we want
80 * callers to use the PERIPH_ID for all access to peripheral clocks to avoid
81 * confusion bewteen PERIPH_ID_... and PERIPHC_...
82 *
83 * We don't call this CLOCK_PERIPH_ID or PERIPH_CLOCK_ID as it would just be
84 * confusing.
85 *
86 * Note to SOC vendors: perhaps define a unified numbering for peripherals and
87 * use it for reset, clock enable, clock source/divider and even pinmuxing
88 * if you can.
89 */
90enum periphc_internal_id {
91 /* 0x00 */
92 PERIPHC_I2S1,
93 PERIPHC_I2S2,
94 PERIPHC_SPDIF_OUT,
95 PERIPHC_SPDIF_IN,
96 PERIPHC_PWM,
97 PERIPHC_SPI1,
98 PERIPHC_SPI2,
99 PERIPHC_SPI3,
100
101 /* 0x08 */
102 PERIPHC_XIO,
103 PERIPHC_I2C1,
104 PERIPHC_DVC_I2C,
105 PERIPHC_TWC,
106 PERIPHC_0c,
107 PERIPHC_10, /* PERIPHC_SPI1, what is this really? */
108 PERIPHC_DISP1,
109 PERIPHC_DISP2,
110
111 /* 0x10 */
112 PERIPHC_CVE,
113 PERIPHC_IDE0,
114 PERIPHC_VI,
115 PERIPHC_1c,
116 PERIPHC_SDMMC1,
117 PERIPHC_SDMMC2,
118 PERIPHC_G3D,
119 PERIPHC_G2D,
120
121 /* 0x18 */
122 PERIPHC_NDFLASH,
123 PERIPHC_SDMMC4,
124 PERIPHC_VFIR,
125 PERIPHC_EPP,
126 PERIPHC_MPE,
127 PERIPHC_MIPI,
128 PERIPHC_UART1,
129 PERIPHC_UART2,
130
131 /* 0x20 */
132 PERIPHC_HOST1X,
133 PERIPHC_21,
134 PERIPHC_TVO,
135 PERIPHC_HDMI,
136 PERIPHC_24,
137 PERIPHC_TVDAC,
138 PERIPHC_I2C2,
139 PERIPHC_EMC,
140
141 /* 0x28 */
142 PERIPHC_UART3,
143 PERIPHC_29,
144 PERIPHC_VI_SENSOR,
145 PERIPHC_2b,
146 PERIPHC_2c,
147 PERIPHC_SPI4,
148 PERIPHC_I2C3,
149 PERIPHC_SDMMC3,
150
151 /* 0x30 */
152 PERIPHC_UART4,
153 PERIPHC_UART5,
154 PERIPHC_VDE,
155 PERIPHC_OWR,
156 PERIPHC_NOR,
157 PERIPHC_CSITE,
158
159 PERIPHC_COUNT,
160
161 PERIPHC_NONE = -1,
162};
163
Simon Glass4ed59e72011-09-21 12:40:04 +0000164/*
165 * Clock type for each peripheral clock source. We put the name in each
166 * record just so it is easy to match things up
167 */
168#define TYPE(name, type) type
169static enum clock_type_id clock_periph_type[PERIPHC_COUNT] = {
170 /* 0x00 */
171 TYPE(PERIPHC_I2S1, CLOCK_TYPE_AXPT),
172 TYPE(PERIPHC_I2S2, CLOCK_TYPE_AXPT),
173 TYPE(PERIPHC_SPDIF_OUT, CLOCK_TYPE_AXPT),
174 TYPE(PERIPHC_SPDIF_IN, CLOCK_TYPE_PCM),
175 TYPE(PERIPHC_PWM, CLOCK_TYPE_PCXTS),
176 TYPE(PERIPHC_SPI1, CLOCK_TYPE_PCMT),
177 TYPE(PERIPHC_SPI22, CLOCK_TYPE_PCMT),
178 TYPE(PERIPHC_SPI3, CLOCK_TYPE_PCMT),
179
180 /* 0x08 */
181 TYPE(PERIPHC_XIO, CLOCK_TYPE_PCMT),
Simon Glass2e335592012-02-03 15:13:54 +0000182 TYPE(PERIPHC_I2C1, CLOCK_TYPE_PCMT16),
183 TYPE(PERIPHC_DVC_I2C, CLOCK_TYPE_PCMT16),
Simon Glass4ed59e72011-09-21 12:40:04 +0000184 TYPE(PERIPHC_TWC, CLOCK_TYPE_PCMT),
185 TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
186 TYPE(PERIPHC_SPI1, CLOCK_TYPE_PCMT),
187 TYPE(PERIPHC_DISP1, CLOCK_TYPE_PDCT),
188 TYPE(PERIPHC_DISP2, CLOCK_TYPE_PDCT),
189
190 /* 0x10 */
191 TYPE(PERIPHC_CVE, CLOCK_TYPE_PDCT),
192 TYPE(PERIPHC_IDE0, CLOCK_TYPE_PCMT),
193 TYPE(PERIPHC_VI, CLOCK_TYPE_MCPA),
194 TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
195 TYPE(PERIPHC_SDMMC1, CLOCK_TYPE_PCMT),
196 TYPE(PERIPHC_SDMMC2, CLOCK_TYPE_PCMT),
197 TYPE(PERIPHC_G3D, CLOCK_TYPE_MCPA),
198 TYPE(PERIPHC_G2D, CLOCK_TYPE_MCPA),
199
200 /* 0x18 */
201 TYPE(PERIPHC_NDFLASH, CLOCK_TYPE_PCMT),
202 TYPE(PERIPHC_SDMMC4, CLOCK_TYPE_PCMT),
203 TYPE(PERIPHC_VFIR, CLOCK_TYPE_PCMT),
204 TYPE(PERIPHC_EPP, CLOCK_TYPE_MCPA),
205 TYPE(PERIPHC_MPE, CLOCK_TYPE_MCPA),
206 TYPE(PERIPHC_MIPI, CLOCK_TYPE_PCMT),
207 TYPE(PERIPHC_UART1, CLOCK_TYPE_PCMT),
208 TYPE(PERIPHC_UART2, CLOCK_TYPE_PCMT),
209
210 /* 0x20 */
211 TYPE(PERIPHC_HOST1X, CLOCK_TYPE_MCPA),
212 TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
213 TYPE(PERIPHC_TVO, CLOCK_TYPE_PDCT),
214 TYPE(PERIPHC_HDMI, CLOCK_TYPE_PDCT),
215 TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
216 TYPE(PERIPHC_TVDAC, CLOCK_TYPE_PDCT),
Simon Glass2e335592012-02-03 15:13:54 +0000217 TYPE(PERIPHC_I2C2, CLOCK_TYPE_PCMT16),
Simon Glass4ed59e72011-09-21 12:40:04 +0000218 TYPE(PERIPHC_EMC, CLOCK_TYPE_MCPT),
219
220 /* 0x28 */
221 TYPE(PERIPHC_UART3, CLOCK_TYPE_PCMT),
222 TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
223 TYPE(PERIPHC_VI, CLOCK_TYPE_MCPA),
224 TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
225 TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
226 TYPE(PERIPHC_SPI4, CLOCK_TYPE_PCMT),
Simon Glass2e335592012-02-03 15:13:54 +0000227 TYPE(PERIPHC_I2C3, CLOCK_TYPE_PCMT16),
Simon Glass4ed59e72011-09-21 12:40:04 +0000228 TYPE(PERIPHC_SDMMC3, CLOCK_TYPE_PCMT),
229
230 /* 0x30 */
231 TYPE(PERIPHC_UART4, CLOCK_TYPE_PCMT),
232 TYPE(PERIPHC_UART5, CLOCK_TYPE_PCMT),
233 TYPE(PERIPHC_VDE, CLOCK_TYPE_PCMT),
234 TYPE(PERIPHC_OWR, CLOCK_TYPE_PCMT),
235 TYPE(PERIPHC_NOR, CLOCK_TYPE_PCMT),
236 TYPE(PERIPHC_CSITE, CLOCK_TYPE_PCMT),
237};
238
239/*
240 * This array translates a periph_id to a periphc_internal_id
241 *
242 * Not present/matched up:
243 * uint vi_sensor; _VI_SENSOR_0, 0x1A8
244 * SPDIF - which is both 0x08 and 0x0c
245 *
246 */
247#define NONE(name) (-1)
248#define OFFSET(name, value) PERIPHC_ ## name
249static s8 periph_id_to_internal_id[PERIPH_ID_COUNT] = {
250 /* Low word: 31:0 */
251 NONE(CPU),
252 NONE(RESERVED1),
253 NONE(RESERVED2),
254 NONE(AC97),
255 NONE(RTC),
256 NONE(TMR),
257 PERIPHC_UART1,
258 PERIPHC_UART2, /* and vfir 0x68 */
259
260 /* 0x08 */
261 NONE(GPIO),
262 PERIPHC_SDMMC2,
263 NONE(SPDIF), /* 0x08 and 0x0c, unclear which to use */
264 PERIPHC_I2S1,
265 PERIPHC_I2C1,
266 PERIPHC_NDFLASH,
267 PERIPHC_SDMMC1,
268 PERIPHC_SDMMC4,
269
270 /* 0x10 */
271 PERIPHC_TWC,
272 PERIPHC_PWM,
273 PERIPHC_I2S2,
274 PERIPHC_EPP,
275 PERIPHC_VI,
276 PERIPHC_G2D,
277 NONE(USBD),
278 NONE(ISP),
279
280 /* 0x18 */
281 PERIPHC_G3D,
282 PERIPHC_IDE0,
283 PERIPHC_DISP2,
284 PERIPHC_DISP1,
285 PERIPHC_HOST1X,
286 NONE(VCP),
287 NONE(RESERVED30),
288 NONE(CACHE2),
289
290 /* Middle word: 63:32 */
291 NONE(MEM),
292 NONE(AHBDMA),
293 NONE(APBDMA),
294 NONE(RESERVED35),
295 NONE(KBC),
296 NONE(STAT_MON),
297 NONE(PMC),
298 NONE(FUSE),
299
300 /* 0x28 */
301 NONE(KFUSE),
302 NONE(SBC1), /* SBC1, 0x34, is this SPI1? */
303 PERIPHC_NOR,
304 PERIPHC_SPI1,
305 PERIPHC_SPI2,
306 PERIPHC_XIO,
307 PERIPHC_SPI3,
308 PERIPHC_DVC_I2C,
309
310 /* 0x30 */
311 NONE(DSI),
312 PERIPHC_TVO, /* also CVE 0x40 */
313 PERIPHC_MIPI,
314 PERIPHC_HDMI,
315 PERIPHC_CSITE,
316 PERIPHC_TVDAC,
317 PERIPHC_I2C2,
318 PERIPHC_UART3,
319
320 /* 0x38 */
321 NONE(RESERVED56),
322 PERIPHC_EMC,
323 NONE(USB2),
324 NONE(USB3),
325 PERIPHC_MPE,
326 PERIPHC_VDE,
327 NONE(BSEA),
328 NONE(BSEV),
329
330 /* Upper word 95:64 */
331 NONE(SPEEDO),
332 PERIPHC_UART4,
333 PERIPHC_UART5,
334 PERIPHC_I2C3,
335 PERIPHC_SPI4,
336 PERIPHC_SDMMC3,
337 NONE(PCIE),
338 PERIPHC_OWR,
339
340 /* 0x48 */
341 NONE(AFI),
342 NONE(CORESIGHT),
Thierry Reding59cb3bf2014-12-09 22:25:07 -0700343 NONE(PCIEXCLK),
Simon Glass4ed59e72011-09-21 12:40:04 +0000344 NONE(AVPUCQ),
345 NONE(RESERVED76),
346 NONE(RESERVED77),
347 NONE(RESERVED78),
348 NONE(RESERVED79),
349
350 /* 0x50 */
351 NONE(RESERVED80),
352 NONE(RESERVED81),
353 NONE(RESERVED82),
354 NONE(RESERVED83),
355 NONE(IRAMA),
356 NONE(IRAMB),
357 NONE(IRAMC),
358 NONE(IRAMD),
359
360 /* 0x58 */
361 NONE(CRAM2),
362};
Simon Glassb4ba2be2011-08-30 06:23:13 +0000363
Simon Glassb4ba2be2011-08-30 06:23:13 +0000364/*
Tom Warren722e0002015-06-25 09:50:44 -0700365 * PLL divider shift/mask tables for all PLL IDs.
366 */
367struct clk_pll_info tegra_pll_info_table[CLOCK_ID_PLL_COUNT] = {
368 /*
369 * T20 and T25
370 * NOTE: If kcp_mask/kvco_mask == 0, they're not used in that PLL (PLLX, etc.)
371 * If lock_ena or lock_det are >31, they're not used in that PLL.
372 */
373
374 { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x0F,
375 .lock_ena = 24, .lock_det = 27, .kcp_shift = 28, .kcp_mask = 3, .kvco_shift = 27, .kvco_mask = 1 }, /* PLLC */
376 { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 0, .p_mask = 0,
377 .lock_ena = 0, .lock_det = 27, .kcp_shift = 1, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 }, /* PLLM */
378 { .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
379 .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF }, /* PLLP */
380 { .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
381 .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF }, /* PLLA */
382 { .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x01,
383 .lock_ena = 22, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF }, /* PLLU */
384 { .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
385 .lock_ena = 22, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF }, /* PLLD */
386 { .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x0F,
387 .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 0, .kvco_mask = 0 }, /* PLLX */
388 { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 0, .p_mask = 0,
389 .lock_ena = 9, .lock_det = 11, .kcp_shift = 6, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 }, /* PLLE */
390 { .m_shift = 0, .m_mask = 0x0F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
391 .lock_ena = 18, .lock_det = 0, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF }, /* PLLS */
392};
393
394/*
Simon Glassb4ba2be2011-08-30 06:23:13 +0000395 * Get the oscillator frequency, from the corresponding hardware configuration
Tom Warrenf29f0862013-01-23 14:01:01 -0700396 * field. T20 has 4 frequencies that it supports.
Simon Glassb4ba2be2011-08-30 06:23:13 +0000397 */
398enum clock_osc_freq clock_get_osc_freq(void)
399{
400 struct clk_rst_ctlr *clkrst =
401 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
402 u32 reg;
403
404 reg = readl(&clkrst->crc_osc_ctrl);
Svyatoslav Ryhel87a75862023-02-01 10:53:01 +0200405 reg = (reg & OSC_FREQ_MASK) >> OSC_FREQ_SHIFT;
406
407 return reg << 2;
Simon Glassb4ba2be2011-08-30 06:23:13 +0000408}
409
Simon Glass4ed59e72011-09-21 12:40:04 +0000410/* Returns a pointer to the clock source register for a peripheral */
Tom Warrenf29f0862013-01-23 14:01:01 -0700411u32 *get_periph_source_reg(enum periph_id periph_id)
Simon Glass4ed59e72011-09-21 12:40:04 +0000412{
413 struct clk_rst_ctlr *clkrst =
414 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
415 enum periphc_internal_id internal_id;
416
417 assert(clock_periph_id_isvalid(periph_id));
418 internal_id = periph_id_to_internal_id[periph_id];
419 assert(internal_id != -1);
420 return &clkrst->crc_clk_src[internal_id];
421}
422
Stephen Warrend0ad8a52016-09-13 10:45:56 -0600423int get_periph_clock_info(enum periph_id periph_id, int *mux_bits,
424 int *divider_bits, int *type)
425{
426 enum periphc_internal_id internal_id;
427
428 if (!clock_periph_id_isvalid(periph_id))
429 return -1;
430
431 internal_id = periph_id_to_internal_id[periph_id];
432 if (!periphc_internal_id_isvalid(internal_id))
433 return -1;
434
435 *type = clock_periph_type[internal_id];
436 if (!clock_type_id_isvalid(*type))
437 return -1;
438
439 /*
440 * Special cases here for the clock with a 4-bit source mux and I2C
441 * with its 16-bit divisor
442 */
443 if (*type == CLOCK_TYPE_PCXTS)
444 *mux_bits = MASK_BITS_31_28;
445 else
446 *mux_bits = MASK_BITS_31_30;
447 if (*type == CLOCK_TYPE_PCMT16)
448 *divider_bits = 16;
449 else
450 *divider_bits = 8;
451
452 return 0;
453}
454
455enum clock_id get_periph_clock_id(enum periph_id periph_id, int source)
456{
457 enum periphc_internal_id internal_id;
458 int type;
459
460 if (!clock_periph_id_isvalid(periph_id))
461 return CLOCK_ID_NONE;
462
463 internal_id = periph_id_to_internal_id[periph_id];
464 if (!periphc_internal_id_isvalid(internal_id))
465 return CLOCK_ID_NONE;
466
467 type = clock_periph_type[internal_id];
468 if (!clock_type_id_isvalid(type))
469 return CLOCK_ID_NONE;
470
471 return clock_source[type][source];
472}
473
Simon Glass4ed59e72011-09-21 12:40:04 +0000474/**
475 * Given a peripheral ID and the required source clock, this returns which
476 * value should be programmed into the source mux for that peripheral.
477 *
478 * There is special code here to handle the one source type with 5 sources.
479 *
480 * @param periph_id peripheral to start
481 * @param source PLL id of required parent clock
482 * @param mux_bits Set to number of bits in mux register: 2 or 4
Simon Glass2e335592012-02-03 15:13:54 +0000483 * @param divider_bits Set to number of divider bits (8 or 16)
Heinrich Schuchardt185f8122022-01-19 18:05:50 +0100484 * Return: mux value (0-4, or -1 if not found)
Simon Glass4ed59e72011-09-21 12:40:04 +0000485 */
Tom Warrenf29f0862013-01-23 14:01:01 -0700486int get_periph_clock_source(enum periph_id periph_id,
Simon Glass2e335592012-02-03 15:13:54 +0000487 enum clock_id parent, int *mux_bits, int *divider_bits)
Simon Glass4ed59e72011-09-21 12:40:04 +0000488{
489 enum clock_type_id type;
Stephen Warrend0ad8a52016-09-13 10:45:56 -0600490 int mux, err;
Simon Glass4ed59e72011-09-21 12:40:04 +0000491
Stephen Warrend0ad8a52016-09-13 10:45:56 -0600492 err = get_periph_clock_info(periph_id, mux_bits, divider_bits, &type);
493 assert(!err);
Simon Glass4ed59e72011-09-21 12:40:04 +0000494
495 for (mux = 0; mux < CLOCK_MAX_MUX; mux++)
496 if (clock_source[type][mux] == parent)
497 return mux;
498
499 /*
500 * Not found: it might be looking for the 'S' in CLOCK_TYPE_PCXTS
501 * which is not in our table. If not, then they are asking for a
502 * source which this peripheral can't access through its mux.
503 */
504 assert(type == CLOCK_TYPE_PCXTS);
505 assert(parent == CLOCK_ID_SFROM32KHZ);
506 if (type == CLOCK_TYPE_PCXTS && parent == CLOCK_ID_SFROM32KHZ)
507 return 4; /* mux value for this clock */
508
509 /* if we get here, either us or the caller has made a mistake */
510 printf("Caller requested bad clock: periph=%d, parent=%d\n", periph_id,
511 parent);
512 return -1;
513}
514
Simon Glassb4ba2be2011-08-30 06:23:13 +0000515void clock_set_enable(enum periph_id periph_id, int enable)
516{
517 struct clk_rst_ctlr *clkrst =
518 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
519 u32 *clk = &clkrst->crc_clk_out_enb[PERIPH_REG(periph_id)];
520 u32 reg;
521
522 /* Enable/disable the clock to this peripheral */
523 assert(clock_periph_id_isvalid(periph_id));
524 reg = readl(clk);
525 if (enable)
526 reg |= PERIPH_MASK(periph_id);
527 else
528 reg &= ~PERIPH_MASK(periph_id);
529 writel(reg, clk);
530}
531
Simon Glassb4ba2be2011-08-30 06:23:13 +0000532void reset_set_enable(enum periph_id periph_id, int enable)
533{
534 struct clk_rst_ctlr *clkrst =
535 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
536 u32 *reset = &clkrst->crc_rst_dev[PERIPH_REG(periph_id)];
537 u32 reg;
538
539 /* Enable/disable reset to the peripheral */
540 assert(clock_periph_id_isvalid(periph_id));
541 reg = readl(reset);
542 if (enable)
543 reg |= PERIPH_MASK(periph_id);
544 else
545 reg &= ~PERIPH_MASK(periph_id);
546 writel(reg, reset);
547}
548
Masahiro Yamada0f925822015-08-12 07:31:55 +0900549#if CONFIG_IS_ENABLED(OF_CONTROL)
Simon Glassed297442012-03-06 17:10:27 +0000550/*
551 * Convert a device tree clock ID to our peripheral ID. They are mostly
552 * the same but we are very cautious so we check that a valid clock ID is
553 * provided.
554 *
Allen Martin00a27492012-08-31 08:30:00 +0000555 * @param clk_id Clock ID according to tegra20 device tree binding
Heinrich Schuchardt185f8122022-01-19 18:05:50 +0100556 * Return: peripheral ID, or PERIPH_ID_NONE if the clock ID is invalid
Simon Glassed297442012-03-06 17:10:27 +0000557 */
Tom Warrenf29f0862013-01-23 14:01:01 -0700558enum periph_id clk_id_to_periph_id(int clk_id)
Simon Glassed297442012-03-06 17:10:27 +0000559{
Tom Warrenf29f0862013-01-23 14:01:01 -0700560 if (clk_id > PERIPH_ID_COUNT)
Simon Glassed297442012-03-06 17:10:27 +0000561 return PERIPH_ID_NONE;
562
563 switch (clk_id) {
Tom Warrenf29f0862013-01-23 14:01:01 -0700564 case PERIPH_ID_RESERVED1:
565 case PERIPH_ID_RESERVED2:
566 case PERIPH_ID_RESERVED30:
567 case PERIPH_ID_RESERVED35:
568 case PERIPH_ID_RESERVED56:
Thierry Reding59cb3bf2014-12-09 22:25:07 -0700569 case PERIPH_ID_PCIEXCLK:
Tom Warrenf29f0862013-01-23 14:01:01 -0700570 case PERIPH_ID_RESERVED76:
571 case PERIPH_ID_RESERVED77:
572 case PERIPH_ID_RESERVED78:
573 case PERIPH_ID_RESERVED79:
574 case PERIPH_ID_RESERVED80:
575 case PERIPH_ID_RESERVED81:
576 case PERIPH_ID_RESERVED82:
577 case PERIPH_ID_RESERVED83:
578 case PERIPH_ID_RESERVED91:
Simon Glassed297442012-03-06 17:10:27 +0000579 return PERIPH_ID_NONE;
580 default:
581 return clk_id;
582 }
583}
Svyatoslav Ryhel65e02742023-02-14 19:35:25 +0200584
585/*
586 * Convert a device tree clock ID to our PLL ID.
587 *
588 * @param clk_id Clock ID according to tegra20 device tree binding
589 * Return: clock ID, or CLOCK_ID_NONE if the clock ID is invalid
590 */
591enum clock_id clk_id_to_pll_id(int clk_id)
592{
593 switch (clk_id) {
594 case TEGRA20_CLK_PLL_C:
595 return CLOCK_ID_CGENERAL;
596 case TEGRA20_CLK_PLL_M:
597 return CLOCK_ID_MEMORY;
598 case TEGRA20_CLK_PLL_P:
599 return CLOCK_ID_PERIPH;
600 case TEGRA20_CLK_PLL_A:
601 return CLOCK_ID_AUDIO;
602 case TEGRA20_CLK_PLL_U:
603 return CLOCK_ID_USB;
604 case TEGRA20_CLK_PLL_D:
605 case TEGRA20_CLK_PLL_D_OUT0:
606 return CLOCK_ID_DISPLAY;
607 case TEGRA20_CLK_PLL_X:
608 return CLOCK_ID_XCPU;
609 case TEGRA20_CLK_PLL_E:
610 return CLOCK_ID_EPCI;
611 case TEGRA20_CLK_CLK_32K:
612 return CLOCK_ID_32KHZ;
613 case TEGRA20_CLK_CLK_M:
614 return CLOCK_ID_CLK_M;
615 default:
616 return CLOCK_ID_NONE;
617 }
618}
Masahiro Yamada0f925822015-08-12 07:31:55 +0900619#endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
Simon Glassed297442012-03-06 17:10:27 +0000620
Simon Glass4ed59e72011-09-21 12:40:04 +0000621void clock_early_init(void)
622{
623 /*
624 * PLLP output frequency set to 216MHz
625 * PLLC output frequency set to 600Mhz
626 *
627 * TODO: Can we calculate these values instead of hard-coding?
628 */
629 switch (clock_get_osc_freq()) {
630 case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
631 clock_set_rate(CLOCK_ID_PERIPH, 432, 12, 1, 8);
632 clock_set_rate(CLOCK_ID_CGENERAL, 600, 12, 0, 8);
633 break;
634
635 case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
636 clock_set_rate(CLOCK_ID_PERIPH, 432, 26, 1, 8);
637 clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
638 break;
639
Lucas Stachb8cb5192012-05-01 12:50:05 +0000640 case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
641 clock_set_rate(CLOCK_ID_PERIPH, 432, 13, 1, 8);
642 clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8);
643 break;
Simon Glass4ed59e72011-09-21 12:40:04 +0000644 case CLOCK_OSC_FREQ_19_2:
645 default:
646 /*
647 * These are not supported. It is too early to print a
648 * message and the UART likely won't work anyway due to the
649 * oscillator being wrong.
650 */
651 break;
652 }
653}
Tom Warrenb40f7342013-04-01 15:48:54 -0700654
655void arch_timer_init(void)
656{
657}
Thierry Redinga7230742014-12-09 22:25:06 -0700658
659#define PMC_SATA_PWRGT 0x1ac
660#define PMC_SATA_PWRGT_PLLE_IDDQ_OVERRIDE (1 << 5)
661#define PMC_SATA_PWRGT_PLLE_IDDQ_SWCTL (1 << 4)
662
663#define PLLE_SS_CNTL 0x68
664#define PLLE_SS_CNTL_SSCINCINTRV(x) (((x) & 0x3f) << 24)
665#define PLLE_SS_CNTL_SSCINC(x) (((x) & 0xff) << 16)
666#define PLLE_SS_CNTL_SSCBYP (1 << 12)
667#define PLLE_SS_CNTL_INTERP_RESET (1 << 11)
668#define PLLE_SS_CNTL_BYPASS_SS (1 << 10)
669#define PLLE_SS_CNTL_SSCMAX(x) (((x) & 0x1ff) << 0)
670
671#define PLLE_BASE 0x0e8
672#define PLLE_BASE_ENABLE_CML (1 << 31)
673#define PLLE_BASE_ENABLE (1 << 30)
674#define PLLE_BASE_PLDIV_CML(x) (((x) & 0xf) << 24)
675#define PLLE_BASE_PLDIV(x) (((x) & 0x3f) << 16)
676#define PLLE_BASE_NDIV(x) (((x) & 0xff) << 8)
677#define PLLE_BASE_MDIV(x) (((x) & 0xff) << 0)
678
679#define PLLE_MISC 0x0ec
680#define PLLE_MISC_SETUP_BASE(x) (((x) & 0xffff) << 16)
681#define PLLE_MISC_PLL_READY (1 << 15)
682#define PLLE_MISC_LOCK (1 << 11)
683#define PLLE_MISC_LOCK_ENABLE (1 << 9)
684#define PLLE_MISC_SETUP_EXT(x) (((x) & 0x3) << 2)
685
686static int tegra_plle_train(void)
687{
688 unsigned int timeout = 2000;
689 unsigned long value;
690
691 value = readl(NV_PA_PMC_BASE + PMC_SATA_PWRGT);
692 value |= PMC_SATA_PWRGT_PLLE_IDDQ_OVERRIDE;
693 writel(value, NV_PA_PMC_BASE + PMC_SATA_PWRGT);
694
695 value = readl(NV_PA_PMC_BASE + PMC_SATA_PWRGT);
696 value |= PMC_SATA_PWRGT_PLLE_IDDQ_SWCTL;
697 writel(value, NV_PA_PMC_BASE + PMC_SATA_PWRGT);
698
699 value = readl(NV_PA_PMC_BASE + PMC_SATA_PWRGT);
700 value &= ~PMC_SATA_PWRGT_PLLE_IDDQ_OVERRIDE;
701 writel(value, NV_PA_PMC_BASE + PMC_SATA_PWRGT);
702
703 do {
704 value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
705 if (value & PLLE_MISC_PLL_READY)
706 break;
707
708 udelay(100);
709 } while (--timeout);
710
711 if (timeout == 0) {
Masahiro Yamada9b643e32017-09-16 14:10:41 +0900712 pr_err("timeout waiting for PLLE to become ready");
Thierry Redinga7230742014-12-09 22:25:06 -0700713 return -ETIMEDOUT;
714 }
715
716 return 0;
717}
718
719int tegra_plle_enable(void)
720{
721 unsigned int timeout = 1000;
722 u32 value;
723 int err;
724
725 /* disable PLLE clock */
726 value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
727 value &= ~PLLE_BASE_ENABLE_CML;
728 value &= ~PLLE_BASE_ENABLE;
729 writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
730
731 /* clear lock enable and setup field */
732 value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
733 value &= ~PLLE_MISC_LOCK_ENABLE;
734 value &= ~PLLE_MISC_SETUP_BASE(0xffff);
735 value &= ~PLLE_MISC_SETUP_EXT(0x3);
736 writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
737
738 value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
739 if ((value & PLLE_MISC_PLL_READY) == 0) {
740 err = tegra_plle_train();
741 if (err < 0) {
Masahiro Yamada9b643e32017-09-16 14:10:41 +0900742 pr_err("failed to train PLLE: %d", err);
Thierry Redinga7230742014-12-09 22:25:06 -0700743 return err;
744 }
745 }
746
747 value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
748 value |= PLLE_MISC_SETUP_BASE(0x7);
749 value |= PLLE_MISC_LOCK_ENABLE;
750 value |= PLLE_MISC_SETUP_EXT(0);
751 writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
752
753 value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
754 value |= PLLE_SS_CNTL_SSCBYP | PLLE_SS_CNTL_INTERP_RESET |
755 PLLE_SS_CNTL_BYPASS_SS;
756 writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
757
758 value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
759 value |= PLLE_BASE_ENABLE_CML | PLLE_BASE_ENABLE;
760 writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
761
762 do {
763 value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
764 if (value & PLLE_MISC_LOCK)
765 break;
766
767 udelay(2);
768 } while (--timeout);
769
770 if (timeout == 0) {
Masahiro Yamada9b643e32017-09-16 14:10:41 +0900771 pr_err("timeout waiting for PLLE to lock");
Thierry Redinga7230742014-12-09 22:25:06 -0700772 return -ETIMEDOUT;
773 }
774
775 udelay(50);
776
777 value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
778 value &= ~PLLE_SS_CNTL_SSCINCINTRV(0x3f);
779 value |= PLLE_SS_CNTL_SSCINCINTRV(0x18);
780
781 value &= ~PLLE_SS_CNTL_SSCINC(0xff);
782 value |= PLLE_SS_CNTL_SSCINC(0x01);
783
784 value &= ~PLLE_SS_CNTL_SSCBYP;
785 value &= ~PLLE_SS_CNTL_INTERP_RESET;
786 value &= ~PLLE_SS_CNTL_BYPASS_SS;
787
788 value &= ~PLLE_SS_CNTL_SSCMAX(0x1ff);
789 value |= PLLE_SS_CNTL_SSCMAX(0x24);
790 writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
791
792 return 0;
793}
Stephen Warren6dbcc962016-09-13 10:45:55 -0600794
795struct periph_clk_init periph_clk_init_table[] = {
796 { PERIPH_ID_SPI1, CLOCK_ID_PERIPH },
797 { PERIPH_ID_SBC1, CLOCK_ID_PERIPH },
798 { PERIPH_ID_SBC2, CLOCK_ID_PERIPH },
799 { PERIPH_ID_SBC3, CLOCK_ID_PERIPH },
800 { PERIPH_ID_SBC4, CLOCK_ID_PERIPH },
Svyatoslav Ryhel2fafac32023-02-14 19:35:24 +0200801 { PERIPH_ID_HOST1X, CLOCK_ID_CGENERAL },
802 { PERIPH_ID_DISP1, CLOCK_ID_PERIPH },
Stephen Warren6dbcc962016-09-13 10:45:55 -0600803 { PERIPH_ID_NDFLASH, CLOCK_ID_PERIPH },
804 { PERIPH_ID_SDMMC1, CLOCK_ID_PERIPH },
805 { PERIPH_ID_SDMMC2, CLOCK_ID_PERIPH },
806 { PERIPH_ID_SDMMC3, CLOCK_ID_PERIPH },
807 { PERIPH_ID_SDMMC4, CLOCK_ID_PERIPH },
Svyatoslav Ryhel23d24df2023-02-14 19:35:28 +0200808 { PERIPH_ID_PWM, CLOCK_ID_PERIPH },
Stephen Warren6dbcc962016-09-13 10:45:55 -0600809 { PERIPH_ID_DVC_I2C, CLOCK_ID_PERIPH },
810 { PERIPH_ID_I2C1, CLOCK_ID_PERIPH },
811 { PERIPH_ID_I2C2, CLOCK_ID_PERIPH },
812 { PERIPH_ID_I2C3, CLOCK_ID_PERIPH },
813 { -1, },
814};