Sean Anderson | 019ef9a | 2020-06-24 06:41:09 -0400 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0+ |
| 2 | /* |
| 3 | * Copyright (C) 2019-20 Sean Anderson <seanga2@gmail.com> |
| 4 | */ |
| 5 | #define LOG_CATEGORY UCLASS_CLK |
Sean Anderson | 019ef9a | 2020-06-24 06:41:09 -0400 | [diff] [blame] | 6 | |
Simon Glass | fb989e0 | 2020-07-19 10:15:56 -0600 | [diff] [blame] | 7 | #include <common.h> |
| 8 | #include <dm.h> |
Sean Anderson | 019ef9a | 2020-06-24 06:41:09 -0400 | [diff] [blame] | 9 | /* For DIV_ROUND_DOWN_ULL, defined in linux/kernel.h */ |
| 10 | #include <div64.h> |
Simon Glass | fb989e0 | 2020-07-19 10:15:56 -0600 | [diff] [blame] | 11 | #include <log.h> |
| 12 | #include <serial.h> |
| 13 | #include <asm/io.h> |
Sean Anderson | 019ef9a | 2020-06-24 06:41:09 -0400 | [diff] [blame] | 14 | #include <dt-bindings/clock/k210-sysctl.h> |
Simon Glass | fb989e0 | 2020-07-19 10:15:56 -0600 | [diff] [blame] | 15 | #include <kendryte/pll.h> |
Sean Anderson | 019ef9a | 2020-06-24 06:41:09 -0400 | [diff] [blame] | 16 | #include <linux/bitfield.h> |
| 17 | #include <linux/clk-provider.h> |
| 18 | #include <linux/delay.h> |
| 19 | #include <linux/err.h> |
Sean Anderson | 019ef9a | 2020-06-24 06:41:09 -0400 | [diff] [blame] | 20 | |
| 21 | #define CLK_K210_PLL "k210_clk_pll" |
| 22 | |
| 23 | #ifdef CONFIG_CLK_K210_SET_RATE |
| 24 | static int k210_pll_enable(struct clk *clk); |
| 25 | static int k210_pll_disable(struct clk *clk); |
| 26 | |
| 27 | /* |
| 28 | * The PLL included with the Kendryte K210 appears to be a True Circuits, Inc. |
| 29 | * General-Purpose PLL. The logical layout of the PLL with internal feedback is |
| 30 | * approximately the following: |
| 31 | * |
| 32 | * +---------------+ |
| 33 | * |reference clock| |
| 34 | * +---------------+ |
| 35 | * | |
| 36 | * v |
| 37 | * +--+ |
| 38 | * |/r| |
| 39 | * +--+ |
| 40 | * | |
| 41 | * v |
| 42 | * +-------------+ |
| 43 | * |divided clock| |
| 44 | * +-------------+ |
| 45 | * | |
| 46 | * v |
| 47 | * +--------------+ |
| 48 | * |phase detector|<---+ |
| 49 | * +--------------+ | |
| 50 | * | | |
| 51 | * v +--------------+ |
| 52 | * +---+ |feedback clock| |
| 53 | * |VCO| +--------------+ |
| 54 | * +---+ ^ |
| 55 | * | +--+ | |
| 56 | * +--->|/f|---+ |
| 57 | * | +--+ |
| 58 | * v |
| 59 | * +---+ |
| 60 | * |/od| |
| 61 | * +---+ |
| 62 | * | |
| 63 | * v |
| 64 | * +------+ |
| 65 | * |output| |
| 66 | * +------+ |
| 67 | * |
| 68 | * The k210 PLLs have three factors: r, f, and od. Because of the feedback mode, |
| 69 | * the effect of the division by f is to multiply the input frequency. The |
| 70 | * equation for the output rate is |
| 71 | * rate = (rate_in * f) / (r * od). |
| 72 | * Moving knowns to one side of the equation, we get |
| 73 | * rate / rate_in = f / (r * od) |
| 74 | * Rearranging slightly, |
| 75 | * abs_error = abs((rate / rate_in) - (f / (r * od))). |
| 76 | * To get relative, error, we divide by the expected ratio |
| 77 | * error = abs((rate / rate_in) - (f / (r * od))) / (rate / rate_in). |
| 78 | * Simplifying, |
| 79 | * error = abs(1 - f / (r * od)) / (rate / rate_in) |
| 80 | * error = abs(1 - (f * rate_in) / (r * od * rate)) |
| 81 | * Using the constants ratio = rate / rate_in and inv_ratio = rate_in / rate, |
| 82 | * error = abs((f * inv_ratio) / (r * od) - 1) |
| 83 | * This is the error used in evaluating parameters. |
| 84 | * |
| 85 | * r and od are four bits each, while f is six bits. Because r and od are |
| 86 | * multiplied together, instead of the full 256 values possible if both bits |
| 87 | * were used fully, there are only 97 distinct products. Combined with f, there |
| 88 | * are 6208 theoretical settings for the PLL. However, most of these settings |
| 89 | * can be ruled out immediately because they do not have the correct ratio. |
| 90 | * |
| 91 | * In addition to the constraint of approximating the desired ratio, parameters |
| 92 | * must also keep internal pll frequencies within acceptable ranges. The divided |
| 93 | * clock's minimum and maximum frequencies have a ratio of around 128. This |
| 94 | * leaves fairly substantial room to work with, especially since the only |
| 95 | * affected parameter is r. The VCO's minimum and maximum frequency have a ratio |
| 96 | * of 5, which is considerably more restrictive. |
| 97 | * |
| 98 | * The r and od factors are stored in a table. This is to make it easy to find |
| 99 | * the next-largest product. Some products have multiple factorizations, but |
| 100 | * only when one factor has at least a 2.5x ratio to the factors of the other |
| 101 | * factorization. This is because any smaller ratio would not make a difference |
| 102 | * when ensuring the VCO's frequency is within spec. |
| 103 | * |
| 104 | * Throughout the calculation function, fixed point arithmetic is used. Because |
| 105 | * the range of rate and rate_in may be up to 1.75 GHz, or around 2^30, 64-bit |
| 106 | * 32.32 fixed-point numbers are used to represent ratios. In general, to |
| 107 | * implement division, the numerator is first multiplied by 2^32. This gives a |
| 108 | * result where the whole number part is in the upper 32 bits, and the fraction |
| 109 | * is in the lower 32 bits. |
| 110 | * |
| 111 | * In general, rounding is done to the closest integer. This helps find the best |
| 112 | * approximation for the ratio. Rounding in one direction (e.g down) could cause |
| 113 | * the function to miss a better ratio with one of the parameters increased by |
| 114 | * one. |
| 115 | */ |
| 116 | |
| 117 | /* |
| 118 | * The factors table was generated with the following python code: |
| 119 | * |
| 120 | * def p(x, y): |
| 121 | * return (1.0*x/y > 2.5) or (1.0*y/x > 2.5) |
| 122 | * |
| 123 | * factors = {} |
| 124 | * for i in range(1, 17): |
| 125 | * for j in range(1, 17): |
| 126 | * fs = factors.get(i*j) or [] |
| 127 | * if fs == [] or all([ |
| 128 | * (p(i, x) and p(i, y)) or (p(j, x) and p(j, y)) |
| 129 | * for (x, y) in fs]): |
| 130 | * fs.append((i, j)) |
| 131 | * factors[i*j] = fs |
| 132 | * |
| 133 | * for k, l in sorted(factors.items()): |
| 134 | * for v in l: |
| 135 | * print("PACK(%s, %s)," % v) |
| 136 | */ |
| 137 | #define PACK(r, od) (((((r) - 1) & 0xF) << 4) | (((od) - 1) & 0xF)) |
| 138 | #define UNPACK_R(val) ((((val) >> 4) & 0xF) + 1) |
| 139 | #define UNPACK_OD(val) (((val) & 0xF) + 1) |
| 140 | static const u8 factors[] = { |
| 141 | PACK(1, 1), |
| 142 | PACK(1, 2), |
| 143 | PACK(1, 3), |
| 144 | PACK(1, 4), |
| 145 | PACK(1, 5), |
| 146 | PACK(1, 6), |
| 147 | PACK(1, 7), |
| 148 | PACK(1, 8), |
| 149 | PACK(1, 9), |
| 150 | PACK(3, 3), |
| 151 | PACK(1, 10), |
| 152 | PACK(1, 11), |
| 153 | PACK(1, 12), |
| 154 | PACK(3, 4), |
| 155 | PACK(1, 13), |
| 156 | PACK(1, 14), |
| 157 | PACK(1, 15), |
| 158 | PACK(3, 5), |
| 159 | PACK(1, 16), |
| 160 | PACK(4, 4), |
| 161 | PACK(2, 9), |
| 162 | PACK(2, 10), |
| 163 | PACK(3, 7), |
| 164 | PACK(2, 11), |
| 165 | PACK(2, 12), |
| 166 | PACK(5, 5), |
| 167 | PACK(2, 13), |
| 168 | PACK(3, 9), |
| 169 | PACK(2, 14), |
| 170 | PACK(2, 15), |
| 171 | PACK(2, 16), |
| 172 | PACK(3, 11), |
| 173 | PACK(5, 7), |
| 174 | PACK(3, 12), |
| 175 | PACK(3, 13), |
| 176 | PACK(4, 10), |
| 177 | PACK(3, 14), |
| 178 | PACK(4, 11), |
| 179 | PACK(3, 15), |
| 180 | PACK(3, 16), |
| 181 | PACK(7, 7), |
| 182 | PACK(5, 10), |
| 183 | PACK(4, 13), |
| 184 | PACK(6, 9), |
| 185 | PACK(5, 11), |
| 186 | PACK(4, 14), |
| 187 | PACK(4, 15), |
| 188 | PACK(7, 9), |
| 189 | PACK(4, 16), |
| 190 | PACK(5, 13), |
| 191 | PACK(6, 11), |
| 192 | PACK(5, 14), |
| 193 | PACK(6, 12), |
| 194 | PACK(5, 15), |
| 195 | PACK(7, 11), |
| 196 | PACK(6, 13), |
| 197 | PACK(5, 16), |
| 198 | PACK(9, 9), |
| 199 | PACK(6, 14), |
| 200 | PACK(8, 11), |
| 201 | PACK(6, 15), |
| 202 | PACK(7, 13), |
| 203 | PACK(6, 16), |
| 204 | PACK(7, 14), |
| 205 | PACK(9, 11), |
| 206 | PACK(10, 10), |
| 207 | PACK(8, 13), |
| 208 | PACK(7, 15), |
| 209 | PACK(9, 12), |
| 210 | PACK(10, 11), |
| 211 | PACK(7, 16), |
| 212 | PACK(9, 13), |
| 213 | PACK(8, 15), |
| 214 | PACK(11, 11), |
| 215 | PACK(9, 14), |
| 216 | PACK(8, 16), |
| 217 | PACK(10, 13), |
| 218 | PACK(11, 12), |
| 219 | PACK(9, 15), |
| 220 | PACK(10, 14), |
| 221 | PACK(11, 13), |
| 222 | PACK(9, 16), |
| 223 | PACK(10, 15), |
| 224 | PACK(11, 14), |
| 225 | PACK(12, 13), |
| 226 | PACK(10, 16), |
| 227 | PACK(11, 15), |
| 228 | PACK(12, 14), |
| 229 | PACK(13, 13), |
| 230 | PACK(11, 16), |
| 231 | PACK(12, 15), |
| 232 | PACK(13, 14), |
| 233 | PACK(12, 16), |
| 234 | PACK(13, 15), |
| 235 | PACK(14, 14), |
| 236 | PACK(13, 16), |
| 237 | PACK(14, 15), |
| 238 | PACK(14, 16), |
| 239 | PACK(15, 15), |
| 240 | PACK(15, 16), |
| 241 | PACK(16, 16), |
| 242 | }; |
| 243 | |
| 244 | TEST_STATIC int k210_pll_calc_config(u32 rate, u32 rate_in, |
| 245 | struct k210_pll_config *best) |
| 246 | { |
| 247 | int i; |
| 248 | s64 error, best_error; |
| 249 | u64 ratio, inv_ratio; /* fixed point 32.32 ratio of the rates */ |
| 250 | u64 max_r; |
| 251 | u64 r, f, od; |
| 252 | |
| 253 | /* |
| 254 | * Can't go over 1.75 GHz or under 21.25 MHz due to limitations on the |
| 255 | * VCO frequency. These are not the same limits as below because od can |
| 256 | * reduce the output frequency by 16. |
| 257 | */ |
| 258 | if (rate > 1750000000 || rate < 21250000) |
| 259 | return -EINVAL; |
| 260 | |
| 261 | /* Similar restrictions on the input rate */ |
| 262 | if (rate_in > 1750000000 || rate_in < 13300000) |
| 263 | return -EINVAL; |
| 264 | |
| 265 | ratio = DIV_ROUND_CLOSEST_ULL((u64)rate << 32, rate_in); |
| 266 | inv_ratio = DIV_ROUND_CLOSEST_ULL((u64)rate_in << 32, rate); |
| 267 | /* Can't increase by more than 64 or reduce by more than 256 */ |
| 268 | if (rate > rate_in && ratio > (64ULL << 32)) |
| 269 | return -EINVAL; |
| 270 | else if (rate <= rate_in && inv_ratio > (256ULL << 32)) |
| 271 | return -EINVAL; |
| 272 | |
| 273 | /* |
| 274 | * The divided clock (rate_in / r) must stay between 1.75 GHz and 13.3 |
| 275 | * MHz. There is no minimum, since the only way to get a higher input |
| 276 | * clock than 26 MHz is to use a clock generated by a PLL. Because PLLs |
| 277 | * cannot output frequencies greater than 1.75 GHz, the minimum would |
| 278 | * never be greater than one. |
| 279 | */ |
| 280 | max_r = DIV_ROUND_DOWN_ULL(rate_in, 13300000); |
| 281 | |
| 282 | /* Variables get immediately incremented, so start at -1th iteration */ |
| 283 | i = -1; |
| 284 | f = 0; |
| 285 | r = 0; |
| 286 | od = 0; |
| 287 | best_error = S64_MAX; |
| 288 | error = best_error; |
| 289 | /* do-while here so we always try at least one ratio */ |
| 290 | do { |
| 291 | /* |
| 292 | * Whether we swapped r and od while enforcing frequency limits |
| 293 | */ |
| 294 | bool swapped = false; |
| 295 | u64 last_od = od; |
| 296 | u64 last_r = r; |
| 297 | |
| 298 | /* |
| 299 | * Try the next largest value for f (or r and od) and |
| 300 | * recalculate the other parameters based on that |
| 301 | */ |
| 302 | if (rate > rate_in) { |
| 303 | /* |
| 304 | * Skip factors of the same product if we already tried |
| 305 | * out that product |
| 306 | */ |
| 307 | do { |
| 308 | i++; |
| 309 | r = UNPACK_R(factors[i]); |
| 310 | od = UNPACK_OD(factors[i]); |
| 311 | } while (i + 1 < ARRAY_SIZE(factors) && |
| 312 | r * od == last_r * last_od); |
| 313 | |
| 314 | /* Round close */ |
| 315 | f = (r * od * ratio + BIT(31)) >> 32; |
| 316 | if (f > 64) |
| 317 | f = 64; |
| 318 | } else { |
| 319 | u64 tmp = ++f * inv_ratio; |
| 320 | bool round_up = !!(tmp & BIT(31)); |
| 321 | u32 goal = (tmp >> 32) + round_up; |
| 322 | u32 err, last_err; |
| 323 | |
| 324 | /* Get the next r/od pair in factors */ |
| 325 | while (r * od < goal && i + 1 < ARRAY_SIZE(factors)) { |
| 326 | i++; |
| 327 | r = UNPACK_R(factors[i]); |
| 328 | od = UNPACK_OD(factors[i]); |
| 329 | } |
| 330 | |
| 331 | /* |
| 332 | * This is a case of double rounding. If we rounded up |
| 333 | * above, we need to round down (in cases of ties) here. |
| 334 | * This prevents off-by-one errors resulting from |
| 335 | * choosing X+2 over X when X.Y rounds up to X+1 and |
| 336 | * there is no r * od = X+1. For the converse, when X.Y |
| 337 | * is rounded down to X, we should choose X+1 over X-1. |
| 338 | */ |
| 339 | err = abs(r * od - goal); |
| 340 | last_err = abs(last_r * last_od - goal); |
| 341 | if (last_err < err || (round_up && last_err == err)) { |
| 342 | i--; |
| 343 | r = last_r; |
| 344 | od = last_od; |
| 345 | } |
| 346 | } |
| 347 | |
| 348 | /* |
| 349 | * Enforce limits on internal clock frequencies. If we |
| 350 | * aren't in spec, try swapping r and od. If everything is |
| 351 | * in-spec, calculate the relative error. |
| 352 | */ |
| 353 | while (true) { |
| 354 | /* |
| 355 | * Whether the intermediate frequencies are out-of-spec |
| 356 | */ |
| 357 | bool out_of_spec = false; |
| 358 | |
| 359 | if (r > max_r) { |
| 360 | out_of_spec = true; |
| 361 | } else { |
| 362 | /* |
| 363 | * There is no way to only divide once; we need |
| 364 | * to examine the frequency with and without the |
| 365 | * effect of od. |
| 366 | */ |
| 367 | u64 vco = DIV_ROUND_CLOSEST_ULL(rate_in * f, r); |
| 368 | |
| 369 | if (vco > 1750000000 || vco < 340000000) |
| 370 | out_of_spec = true; |
| 371 | } |
| 372 | |
| 373 | if (out_of_spec) { |
| 374 | if (!swapped) { |
| 375 | u64 tmp = r; |
| 376 | |
| 377 | r = od; |
| 378 | od = tmp; |
| 379 | swapped = true; |
| 380 | continue; |
| 381 | } else { |
| 382 | /* |
| 383 | * Try looking ahead to see if there are |
| 384 | * additional factors for the same |
| 385 | * product. |
| 386 | */ |
| 387 | if (i + 1 < ARRAY_SIZE(factors)) { |
| 388 | u64 new_r, new_od; |
| 389 | |
| 390 | i++; |
| 391 | new_r = UNPACK_R(factors[i]); |
| 392 | new_od = UNPACK_OD(factors[i]); |
| 393 | if (r * od == new_r * new_od) { |
| 394 | r = new_r; |
| 395 | od = new_od; |
| 396 | swapped = false; |
| 397 | continue; |
| 398 | } |
| 399 | i--; |
| 400 | } |
| 401 | break; |
| 402 | } |
| 403 | } |
| 404 | |
| 405 | error = DIV_ROUND_CLOSEST_ULL(f * inv_ratio, r * od); |
| 406 | /* The lower 16 bits are spurious */ |
| 407 | error = abs((error - BIT(32))) >> 16; |
| 408 | |
| 409 | if (error < best_error) { |
| 410 | best->r = r; |
| 411 | best->f = f; |
| 412 | best->od = od; |
| 413 | best_error = error; |
| 414 | } |
| 415 | break; |
| 416 | } |
| 417 | } while (f < 64 && i + 1 < ARRAY_SIZE(factors) && error != 0); |
| 418 | |
| 419 | if (best_error == S64_MAX) |
| 420 | return -EINVAL; |
| 421 | |
| 422 | log_debug("best error %lld\n", best_error); |
| 423 | return 0; |
| 424 | } |
| 425 | |
| 426 | static ulong k210_pll_set_rate(struct clk *clk, ulong rate) |
| 427 | { |
| 428 | int err; |
| 429 | long long rate_in = clk_get_parent_rate(clk); |
| 430 | struct k210_pll_config config = {}; |
| 431 | struct k210_pll *pll = to_k210_pll(clk); |
| 432 | u32 reg; |
| 433 | |
| 434 | if (rate_in < 0) |
| 435 | return rate_in; |
| 436 | |
| 437 | log_debug("Calculating parameters with rate=%lu and rate_in=%lld\n", |
| 438 | rate, rate_in); |
| 439 | err = k210_pll_calc_config(rate, rate_in, &config); |
| 440 | if (err) |
| 441 | return err; |
| 442 | log_debug("Got r=%u f=%u od=%u\n", config.r, config.f, config.od); |
| 443 | |
| 444 | /* |
| 445 | * Don't use clk_disable as it might not actually disable the pll due to |
| 446 | * refcounting |
| 447 | */ |
| 448 | k210_pll_disable(clk); |
| 449 | |
| 450 | reg = readl(pll->reg); |
| 451 | reg &= ~K210_PLL_CLKR |
| 452 | & ~K210_PLL_CLKF |
| 453 | & ~K210_PLL_CLKOD |
| 454 | & ~K210_PLL_BWADJ; |
| 455 | reg |= FIELD_PREP(K210_PLL_CLKR, config.r - 1) |
| 456 | | FIELD_PREP(K210_PLL_CLKF, config.f - 1) |
| 457 | | FIELD_PREP(K210_PLL_CLKOD, config.od - 1) |
| 458 | | FIELD_PREP(K210_PLL_BWADJ, config.f - 1); |
| 459 | writel(reg, pll->reg); |
| 460 | |
| 461 | err = k210_pll_enable(clk); |
| 462 | if (err) |
| 463 | return err; |
| 464 | |
| 465 | serial_setbrg(); |
| 466 | return clk_get_rate(clk); |
| 467 | } |
| 468 | #endif /* CONFIG_CLK_K210_SET_RATE */ |
| 469 | |
| 470 | static ulong k210_pll_get_rate(struct clk *clk) |
| 471 | { |
| 472 | long long rate_in = clk_get_parent_rate(clk); |
| 473 | struct k210_pll *pll = to_k210_pll(clk); |
| 474 | u64 r, f, od; |
| 475 | u32 reg = readl(pll->reg); |
| 476 | |
| 477 | if (rate_in < 0 || (reg & K210_PLL_BYPASS)) |
| 478 | return rate_in; |
| 479 | |
| 480 | if (!(reg & K210_PLL_PWRD)) |
| 481 | return 0; |
| 482 | |
| 483 | r = FIELD_GET(K210_PLL_CLKR, reg) + 1; |
| 484 | f = FIELD_GET(K210_PLL_CLKF, reg) + 1; |
| 485 | od = FIELD_GET(K210_PLL_CLKOD, reg) + 1; |
| 486 | |
| 487 | return DIV_ROUND_DOWN_ULL(((u64)rate_in) * f, r * od); |
| 488 | } |
| 489 | |
| 490 | /* |
| 491 | * Wait for the PLL to be locked. If the PLL is not locked, try clearing the |
| 492 | * slip before retrying |
| 493 | */ |
| 494 | static void k210_pll_waitfor_lock(struct k210_pll *pll) |
| 495 | { |
| 496 | u32 mask = GENMASK(pll->width - 1, 0) << pll->shift; |
| 497 | |
| 498 | while (true) { |
| 499 | u32 reg = readl(pll->lock); |
| 500 | |
| 501 | if ((reg & mask) == mask) |
| 502 | break; |
| 503 | |
| 504 | reg |= BIT(pll->shift + K210_PLL_CLEAR_SLIP); |
| 505 | writel(reg, pll->lock); |
| 506 | } |
| 507 | } |
| 508 | |
| 509 | /* Adapted from sysctl_pll_enable */ |
| 510 | static int k210_pll_enable(struct clk *clk) |
| 511 | { |
| 512 | struct k210_pll *pll = to_k210_pll(clk); |
| 513 | u32 reg = readl(pll->reg); |
| 514 | |
| 515 | if ((reg | K210_PLL_PWRD) && !(reg | K210_PLL_RESET)) |
| 516 | return 0; |
| 517 | |
| 518 | reg |= K210_PLL_PWRD; |
| 519 | writel(reg, pll->reg); |
| 520 | |
| 521 | /* Ensure reset is low before asserting it */ |
| 522 | reg &= ~K210_PLL_RESET; |
| 523 | writel(reg, pll->reg); |
| 524 | reg |= K210_PLL_RESET; |
| 525 | writel(reg, pll->reg); |
| 526 | nop(); |
| 527 | nop(); |
| 528 | reg &= ~K210_PLL_RESET; |
| 529 | writel(reg, pll->reg); |
| 530 | |
| 531 | k210_pll_waitfor_lock(pll); |
| 532 | |
| 533 | reg &= ~K210_PLL_BYPASS; |
| 534 | writel(reg, pll->reg); |
| 535 | |
| 536 | return 0; |
| 537 | } |
| 538 | |
| 539 | static int k210_pll_disable(struct clk *clk) |
| 540 | { |
| 541 | struct k210_pll *pll = to_k210_pll(clk); |
| 542 | u32 reg = readl(pll->reg); |
| 543 | |
| 544 | /* |
| 545 | * Bypassing before powering off is important so child clocks don't stop |
| 546 | * working. This is especially important for pll0, the indirect parent |
| 547 | * of the cpu clock. |
| 548 | */ |
| 549 | reg |= K210_PLL_BYPASS; |
| 550 | writel(reg, pll->reg); |
| 551 | |
| 552 | reg &= ~K210_PLL_PWRD; |
| 553 | writel(reg, pll->reg); |
| 554 | return 0; |
| 555 | } |
| 556 | |
| 557 | const struct clk_ops k210_pll_ops = { |
| 558 | .get_rate = k210_pll_get_rate, |
| 559 | #ifdef CONFIG_CLK_K210_SET_RATE |
| 560 | .set_rate = k210_pll_set_rate, |
| 561 | #endif |
| 562 | .enable = k210_pll_enable, |
| 563 | .disable = k210_pll_disable, |
| 564 | }; |
| 565 | |
| 566 | struct clk *k210_register_pll_struct(const char *name, const char *parent_name, |
| 567 | struct k210_pll *pll) |
| 568 | { |
| 569 | int ret; |
| 570 | struct clk *clk = &pll->clk; |
| 571 | |
| 572 | ret = clk_register(clk, CLK_K210_PLL, name, parent_name); |
| 573 | if (ret) |
| 574 | return ERR_PTR(ret); |
| 575 | return clk; |
| 576 | } |
| 577 | |
| 578 | struct clk *k210_register_pll(const char *name, const char *parent_name, |
| 579 | void __iomem *reg, void __iomem *lock, u8 shift, |
| 580 | u8 width) |
| 581 | { |
| 582 | struct clk *clk; |
| 583 | struct k210_pll *pll; |
| 584 | |
| 585 | pll = kzalloc(sizeof(*pll), GFP_KERNEL); |
| 586 | if (!pll) |
| 587 | return ERR_PTR(-ENOMEM); |
| 588 | pll->reg = reg; |
| 589 | pll->lock = lock; |
| 590 | pll->shift = shift; |
| 591 | pll->width = width; |
| 592 | |
| 593 | clk = k210_register_pll_struct(name, parent_name, pll); |
| 594 | if (IS_ERR(clk)) |
| 595 | kfree(pll); |
| 596 | return clk; |
| 597 | } |
| 598 | |
| 599 | U_BOOT_DRIVER(k210_pll) = { |
| 600 | .name = CLK_K210_PLL, |
| 601 | .id = UCLASS_CLK, |
| 602 | .ops = &k210_pll_ops, |
| 603 | }; |