blob: e46d45378a96576927376d6e22e4857744b5d470 [file] [log] [blame]
Tom Rini83d290c2018-05-06 17:58:06 -04001/* SPDX-License-Identifier: GPL-2.0+ */
Thomas Chou8d52ea62010-05-15 06:00:05 +08002/* longlong.h -- definitions for mixed size 32/64 bit arithmetic.
3 Copyright (C) 1991, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2004,
4 2005 Free Software Foundation, Inc.
Thomas Chou1a05b5f2013-09-03 09:36:04 +08005 */
Thomas Chou8d52ea62010-05-15 06:00:05 +08006
7/* You have to define the following before including this file:
8
9 UWtype -- An unsigned type, default type for operations (typically a "word")
10 UHWtype -- An unsigned type, at least half the size of UWtype.
11 UDWtype -- An unsigned type, at least twice as large a UWtype
12 W_TYPE_SIZE -- size in bits of UWtype
13
14 UQItype -- Unsigned 8 bit type.
15 SItype, USItype -- Signed and unsigned 32 bit types.
16 DItype, UDItype -- Signed and unsigned 64 bit types.
17
18 On a 32 bit machine UWtype should typically be USItype;
19 on a 64 bit machine, UWtype should typically be UDItype. */
20
21#define __BITS4 (W_TYPE_SIZE / 4)
22#define __ll_B ((UWtype) 1 << (W_TYPE_SIZE / 2))
23#define __ll_lowpart(t) ((UWtype) (t) & (__ll_B - 1))
24#define __ll_highpart(t) ((UWtype) (t) >> (W_TYPE_SIZE / 2))
25
26#ifndef W_TYPE_SIZE
27#define W_TYPE_SIZE 32
28#define UWtype USItype
29#define UHWtype USItype
30#define UDWtype UDItype
31#endif
32
33extern const UQItype __clz_tab[256];
34
35/* Define auxiliary asm macros.
36
37 1) umul_ppmm(high_prod, low_prod, multiplier, multiplicand) multiplies two
38 UWtype integers MULTIPLIER and MULTIPLICAND, and generates a two UWtype
39 word product in HIGH_PROD and LOW_PROD.
40
41 2) __umulsidi3(a,b) multiplies two UWtype integers A and B, and returns a
42 UDWtype product. This is just a variant of umul_ppmm.
43
44 3) udiv_qrnnd(quotient, remainder, high_numerator, low_numerator,
45 denominator) divides a UDWtype, composed by the UWtype integers
46 HIGH_NUMERATOR and LOW_NUMERATOR, by DENOMINATOR and places the quotient
47 in QUOTIENT and the remainder in REMAINDER. HIGH_NUMERATOR must be less
48 than DENOMINATOR for correct operation. If, in addition, the most
49 significant bit of DENOMINATOR must be 1, then the pre-processor symbol
50 UDIV_NEEDS_NORMALIZATION is defined to 1.
51
52 4) sdiv_qrnnd(quotient, remainder, high_numerator, low_numerator,
53 denominator). Like udiv_qrnnd but the numbers are signed. The quotient
54 is rounded towards 0.
55
56 5) count_leading_zeros(count, x) counts the number of zero-bits from the
57 msb to the first nonzero bit in the UWtype X. This is the number of
58 steps X needs to be shifted left to set the msb. Undefined for X == 0,
59 unless the symbol COUNT_LEADING_ZEROS_0 is defined to some value.
60
61 6) count_trailing_zeros(count, x) like count_leading_zeros, but counts
62 from the least significant end.
63
64 7) add_ssaaaa(high_sum, low_sum, high_addend_1, low_addend_1,
65 high_addend_2, low_addend_2) adds two UWtype integers, composed by
66 HIGH_ADDEND_1 and LOW_ADDEND_1, and HIGH_ADDEND_2 and LOW_ADDEND_2
67 respectively. The result is placed in HIGH_SUM and LOW_SUM. Overflow
68 (i.e. carry out) is not stored anywhere, and is lost.
69
70 8) sub_ddmmss(high_difference, low_difference, high_minuend, low_minuend,
71 high_subtrahend, low_subtrahend) subtracts two two-word UWtype integers,
72 composed by HIGH_MINUEND_1 and LOW_MINUEND_1, and HIGH_SUBTRAHEND_2 and
73 LOW_SUBTRAHEND_2 respectively. The result is placed in HIGH_DIFFERENCE
74 and LOW_DIFFERENCE. Overflow (i.e. carry out) is not stored anywhere,
75 and is lost.
76
77 If any of these macros are left undefined for a particular CPU,
78 C macros are used. */
79
80/* The CPUs come in alphabetical order below.
81
82 Please add support for more CPUs here, or improve the current support
83 for the CPUs below!
84 (E.g. WE32100, IBM360.) */
85
86/* Snipped per CPU support */
87
88/* If this machine has no inline assembler, use C macros. */
89
90#if !defined (add_ssaaaa)
91#define add_ssaaaa(sh, sl, ah, al, bh, bl) \
92 do { \
93 UWtype __x; \
94 __x = (al) + (bl); \
95 (sh) = (ah) + (bh) + (__x < (al)); \
96 (sl) = __x; \
97 } while (0)
98#endif
99
100#if !defined (sub_ddmmss)
101#define sub_ddmmss(sh, sl, ah, al, bh, bl) \
102 do { \
103 UWtype __x; \
104 __x = (al) - (bl); \
105 (sh) = (ah) - (bh) - (__x > (al)); \
106 (sl) = __x; \
107 } while (0)
108#endif
109
110/* If we lack umul_ppmm but have smul_ppmm, define umul_ppmm in terms of
111 smul_ppmm. */
112#if !defined (umul_ppmm) && defined (smul_ppmm)
113#define umul_ppmm(w1, w0, u, v) \
114 do { \
115 UWtype __w1; \
116 UWtype __xm0 = (u), __xm1 = (v); \
117 smul_ppmm (__w1, w0, __xm0, __xm1); \
118 (w1) = __w1 + (-(__xm0 >> (W_TYPE_SIZE - 1)) & __xm1) \
119 + (-(__xm1 >> (W_TYPE_SIZE - 1)) & __xm0); \
120 } while (0)
121#endif
122
123/* If we still don't have umul_ppmm, define it using plain C. */
124#if !defined (umul_ppmm)
125#define umul_ppmm(w1, w0, u, v) \
126 do { \
127 UWtype __x0, __x1, __x2, __x3; \
128 UHWtype __ul, __vl, __uh, __vh; \
129 \
130 __ul = __ll_lowpart (u); \
131 __uh = __ll_highpart (u); \
132 __vl = __ll_lowpart (v); \
133 __vh = __ll_highpart (v); \
134 \
135 __x0 = (UWtype) __ul * __vl; \
136 __x1 = (UWtype) __ul * __vh; \
137 __x2 = (UWtype) __uh * __vl; \
138 __x3 = (UWtype) __uh * __vh; \
139 \
140 __x1 += __ll_highpart (__x0);/* this can't give carry */ \
141 __x1 += __x2; /* but this indeed can */ \
142 if (__x1 < __x2) /* did we get it? */ \
143 __x3 += __ll_B; /* yes, add it in the proper pos. */ \
144 \
145 (w1) = __x3 + __ll_highpart (__x1); \
146 (w0) = __ll_lowpart (__x1) * __ll_B + __ll_lowpart (__x0); \
147 } while (0)
148#endif
149
150#if !defined (__umulsidi3)
151#define __umulsidi3(u, v) \
152 ({DWunion __w; \
153 umul_ppmm (__w.s.high, __w.s.low, u, v); \
154 __w.ll; })
155#endif
156
157/* Define this unconditionally, so it can be used for debugging. */
158#define __udiv_qrnnd_c(q, r, n1, n0, d) \
159 do { \
160 UWtype __d1, __d0, __q1, __q0; \
161 UWtype __r1, __r0, __m; \
162 __d1 = __ll_highpart (d); \
163 __d0 = __ll_lowpart (d); \
164 \
165 __r1 = (n1) % __d1; \
166 __q1 = (n1) / __d1; \
167 __m = (UWtype) __q1 * __d0; \
168 __r1 = __r1 * __ll_B | __ll_highpart (n0); \
169 if (__r1 < __m) \
170 { \
171 __q1--, __r1 += (d); \
172 if (__r1 >= (d)) /* i.e. we didn't get carry when adding to __r1 */\
173 if (__r1 < __m) \
174 __q1--, __r1 += (d); \
175 } \
176 __r1 -= __m; \
177 \
178 __r0 = __r1 % __d1; \
179 __q0 = __r1 / __d1; \
180 __m = (UWtype) __q0 * __d0; \
181 __r0 = __r0 * __ll_B | __ll_lowpart (n0); \
182 if (__r0 < __m) \
183 { \
184 __q0--, __r0 += (d); \
185 if (__r0 >= (d)) \
186 if (__r0 < __m) \
187 __q0--, __r0 += (d); \
188 } \
189 __r0 -= __m; \
190 \
191 (q) = (UWtype) __q1 * __ll_B | __q0; \
192 (r) = __r0; \
193 } while (0)
194
195/* If the processor has no udiv_qrnnd but sdiv_qrnnd, go through
196 __udiv_w_sdiv (defined in libgcc or elsewhere). */
197#if !defined (udiv_qrnnd) && defined (sdiv_qrnnd)
198#define udiv_qrnnd(q, r, nh, nl, d) \
199 do { \
200 USItype __r; \
201 (q) = __udiv_w_sdiv (&__r, nh, nl, d); \
202 (r) = __r; \
203 } while (0)
204#endif
205
206/* If udiv_qrnnd was not defined for this processor, use __udiv_qrnnd_c. */
207#if !defined (udiv_qrnnd)
208#define UDIV_NEEDS_NORMALIZATION 1
209#define udiv_qrnnd __udiv_qrnnd_c
210#endif
211
212#if !defined (count_leading_zeros)
213#define count_leading_zeros(count, x) \
214 do { \
215 UWtype __xr = (x); \
216 UWtype __a; \
217 \
218 if (W_TYPE_SIZE <= 32) \
219 { \
220 __a = __xr < ((UWtype)1<<2*__BITS4) \
221 ? (__xr < ((UWtype)1<<__BITS4) ? 0 : __BITS4) \
222 : (__xr < ((UWtype)1<<3*__BITS4) ? 2*__BITS4 : 3*__BITS4); \
223 } \
224 else \
225 { \
226 for (__a = W_TYPE_SIZE - 8; __a > 0; __a -= 8) \
227 if (((__xr >> __a) & 0xff) != 0) \
228 break; \
229 } \
230 \
231 (count) = W_TYPE_SIZE - (__clz_tab[__xr >> __a] + __a); \
232 } while (0)
233#define COUNT_LEADING_ZEROS_0 W_TYPE_SIZE
234#endif
235
236#if !defined (count_trailing_zeros)
237/* Define count_trailing_zeros using count_leading_zeros. The latter might be
238 defined in asm, but if it is not, the C version above is good enough. */
239#define count_trailing_zeros(count, x) \
240 do { \
241 UWtype __ctz_x = (x); \
242 UWtype __ctz_c; \
243 count_leading_zeros (__ctz_c, __ctz_x & -__ctz_x); \
244 (count) = W_TYPE_SIZE - 1 - __ctz_c; \
245 } while (0)
246#endif
247
248#ifndef UDIV_NEEDS_NORMALIZATION
249#define UDIV_NEEDS_NORMALIZATION 0
250#endif