blob: ebf2b98fcd45955e71f11956bb89b72a269c5fc7 [file] [log] [blame]
Patrice Chotarda2a89b22019-04-30 18:08:28 +02001// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
2/*
3 * Copyright (C) 2019, STMicroelectronics - All Rights Reserved
4 *
5 * Driver for STMicroelectronics Serial peripheral interface (SPI)
6 */
7#include <common.h>
8#include <clk.h>
9#include <dm.h>
10#include <errno.h>
Simon Glass336d4612020-02-03 07:36:16 -070011#include <malloc.h>
Patrice Chotarda2a89b22019-04-30 18:08:28 +020012#include <reset.h>
13#include <spi.h>
Simon Glass336d4612020-02-03 07:36:16 -070014#include <dm/device_compat.h>
Patrice Chotarda2a89b22019-04-30 18:08:28 +020015
16#include <asm/io.h>
17#include <asm/gpio.h>
18#include <linux/bitfield.h>
19#include <linux/iopoll.h>
20
21/* STM32 SPI registers */
22#define STM32_SPI_CR1 0x00
23#define STM32_SPI_CR2 0x04
24#define STM32_SPI_CFG1 0x08
25#define STM32_SPI_CFG2 0x0C
26#define STM32_SPI_SR 0x14
27#define STM32_SPI_IFCR 0x18
28#define STM32_SPI_TXDR 0x20
29#define STM32_SPI_RXDR 0x30
30#define STM32_SPI_I2SCFGR 0x50
31
32/* STM32_SPI_CR1 bit fields */
33#define SPI_CR1_SPE BIT(0)
34#define SPI_CR1_MASRX BIT(8)
35#define SPI_CR1_CSTART BIT(9)
36#define SPI_CR1_CSUSP BIT(10)
37#define SPI_CR1_HDDIR BIT(11)
38#define SPI_CR1_SSI BIT(12)
39
40/* STM32_SPI_CR2 bit fields */
41#define SPI_CR2_TSIZE GENMASK(15, 0)
42
43/* STM32_SPI_CFG1 bit fields */
44#define SPI_CFG1_DSIZE GENMASK(4, 0)
45#define SPI_CFG1_DSIZE_MIN 3
46#define SPI_CFG1_FTHLV_SHIFT 5
47#define SPI_CFG1_FTHLV GENMASK(8, 5)
48#define SPI_CFG1_MBR_SHIFT 28
49#define SPI_CFG1_MBR GENMASK(30, 28)
50#define SPI_CFG1_MBR_MIN 0
51#define SPI_CFG1_MBR_MAX FIELD_GET(SPI_CFG1_MBR, SPI_CFG1_MBR)
52
53/* STM32_SPI_CFG2 bit fields */
54#define SPI_CFG2_COMM_SHIFT 17
55#define SPI_CFG2_COMM GENMASK(18, 17)
56#define SPI_CFG2_MASTER BIT(22)
57#define SPI_CFG2_LSBFRST BIT(23)
58#define SPI_CFG2_CPHA BIT(24)
59#define SPI_CFG2_CPOL BIT(25)
60#define SPI_CFG2_SSM BIT(26)
61#define SPI_CFG2_AFCNTR BIT(31)
62
63/* STM32_SPI_SR bit fields */
64#define SPI_SR_RXP BIT(0)
65#define SPI_SR_TXP BIT(1)
66#define SPI_SR_EOT BIT(3)
67#define SPI_SR_TXTF BIT(4)
68#define SPI_SR_OVR BIT(6)
69#define SPI_SR_SUSP BIT(11)
70#define SPI_SR_RXPLVL_SHIFT 13
71#define SPI_SR_RXPLVL GENMASK(14, 13)
72#define SPI_SR_RXWNE BIT(15)
73
74/* STM32_SPI_IFCR bit fields */
75#define SPI_IFCR_ALL GENMASK(11, 3)
76
77/* STM32_SPI_I2SCFGR bit fields */
78#define SPI_I2SCFGR_I2SMOD BIT(0)
79
80#define MAX_CS_COUNT 4
81
82/* SPI Master Baud Rate min/max divisor */
83#define STM32_MBR_DIV_MIN (2 << SPI_CFG1_MBR_MIN)
84#define STM32_MBR_DIV_MAX (2 << SPI_CFG1_MBR_MAX)
85
86#define STM32_SPI_TIMEOUT_US 100000
87
88/* SPI Communication mode */
89#define SPI_FULL_DUPLEX 0
90#define SPI_SIMPLEX_TX 1
91#define SPI_SIMPLEX_RX 2
92#define SPI_HALF_DUPLEX 3
93
94struct stm32_spi_priv {
95 void __iomem *base;
96 struct clk clk;
97 struct reset_ctl rst_ctl;
98 struct gpio_desc cs_gpios[MAX_CS_COUNT];
99 ulong bus_clk_rate;
100 unsigned int fifo_size;
101 unsigned int cur_bpw;
102 unsigned int cur_hz;
103 unsigned int cur_xferlen; /* current transfer length in bytes */
Patrick Delaunay54ef8fb2019-06-21 15:26:58 +0200104 unsigned int tx_len; /* number of data to be written in bytes */
105 unsigned int rx_len; /* number of data to be read in bytes */
Patrice Chotarda2a89b22019-04-30 18:08:28 +0200106 const void *tx_buf; /* data to be written, or NULL */
107 void *rx_buf; /* data to be read, or NULL */
108 u32 cur_mode;
109 bool cs_high;
110};
111
112static void stm32_spi_write_txfifo(struct stm32_spi_priv *priv)
113{
114 while ((priv->tx_len > 0) &&
115 (readl(priv->base + STM32_SPI_SR) & SPI_SR_TXP)) {
116 u32 offs = priv->cur_xferlen - priv->tx_len;
117
118 if (priv->tx_len >= sizeof(u32) &&
119 IS_ALIGNED((uintptr_t)(priv->tx_buf + offs), sizeof(u32))) {
120 const u32 *tx_buf32 = (const u32 *)(priv->tx_buf + offs);
121
122 writel(*tx_buf32, priv->base + STM32_SPI_TXDR);
123 priv->tx_len -= sizeof(u32);
124 } else if (priv->tx_len >= sizeof(u16) &&
125 IS_ALIGNED((uintptr_t)(priv->tx_buf + offs), sizeof(u16))) {
126 const u16 *tx_buf16 = (const u16 *)(priv->tx_buf + offs);
127
128 writew(*tx_buf16, priv->base + STM32_SPI_TXDR);
129 priv->tx_len -= sizeof(u16);
130 } else {
131 const u8 *tx_buf8 = (const u8 *)(priv->tx_buf + offs);
132
133 writeb(*tx_buf8, priv->base + STM32_SPI_TXDR);
134 priv->tx_len -= sizeof(u8);
135 }
136 }
137
138 debug("%s: %d bytes left\n", __func__, priv->tx_len);
139}
140
141static void stm32_spi_read_rxfifo(struct stm32_spi_priv *priv)
142{
143 u32 sr = readl(priv->base + STM32_SPI_SR);
144 u32 rxplvl = (sr & SPI_SR_RXPLVL) >> SPI_SR_RXPLVL_SHIFT;
145
146 while ((priv->rx_len > 0) &&
147 ((sr & SPI_SR_RXP) ||
148 ((sr & SPI_SR_EOT) && ((sr & SPI_SR_RXWNE) || (rxplvl > 0))))) {
149 u32 offs = priv->cur_xferlen - priv->rx_len;
150
151 if (IS_ALIGNED((uintptr_t)(priv->rx_buf + offs), sizeof(u32)) &&
152 (priv->rx_len >= sizeof(u32) || (sr & SPI_SR_RXWNE))) {
153 u32 *rx_buf32 = (u32 *)(priv->rx_buf + offs);
154
155 *rx_buf32 = readl(priv->base + STM32_SPI_RXDR);
156 priv->rx_len -= sizeof(u32);
157 } else if (IS_ALIGNED((uintptr_t)(priv->rx_buf + offs), sizeof(u16)) &&
158 (priv->rx_len >= sizeof(u16) ||
159 (!(sr & SPI_SR_RXWNE) &&
160 (rxplvl >= 2 || priv->cur_bpw > 8)))) {
161 u16 *rx_buf16 = (u16 *)(priv->rx_buf + offs);
162
163 *rx_buf16 = readw(priv->base + STM32_SPI_RXDR);
164 priv->rx_len -= sizeof(u16);
165 } else {
166 u8 *rx_buf8 = (u8 *)(priv->rx_buf + offs);
167
168 *rx_buf8 = readb(priv->base + STM32_SPI_RXDR);
169 priv->rx_len -= sizeof(u8);
170 }
171
172 sr = readl(priv->base + STM32_SPI_SR);
173 rxplvl = (sr & SPI_SR_RXPLVL) >> SPI_SR_RXPLVL_SHIFT;
174 }
175
176 debug("%s: %d bytes left\n", __func__, priv->rx_len);
177}
178
179static int stm32_spi_enable(struct stm32_spi_priv *priv)
180{
181 debug("%s\n", __func__);
182
183 /* Enable the SPI hardware */
184 setbits_le32(priv->base + STM32_SPI_CR1, SPI_CR1_SPE);
185
186 return 0;
187}
188
189static int stm32_spi_disable(struct stm32_spi_priv *priv)
190{
191 debug("%s\n", __func__);
192
193 /* Disable the SPI hardware */
194 clrbits_le32(priv->base + STM32_SPI_CR1, SPI_CR1_SPE);
195
196 return 0;
197}
198
199static int stm32_spi_claim_bus(struct udevice *slave)
200{
201 struct udevice *bus = dev_get_parent(slave);
202 struct stm32_spi_priv *priv = dev_get_priv(bus);
203
204 debug("%s\n", __func__);
205
206 /* Enable the SPI hardware */
207 return stm32_spi_enable(priv);
208}
209
210static int stm32_spi_release_bus(struct udevice *slave)
211{
212 struct udevice *bus = dev_get_parent(slave);
213 struct stm32_spi_priv *priv = dev_get_priv(bus);
214
215 debug("%s\n", __func__);
216
217 /* Disable the SPI hardware */
218 return stm32_spi_disable(priv);
219}
220
221static void stm32_spi_stopxfer(struct udevice *dev)
222{
223 struct stm32_spi_priv *priv = dev_get_priv(dev);
224 u32 cr1, sr;
225 int ret;
226
227 debug("%s\n", __func__);
228
229 cr1 = readl(priv->base + STM32_SPI_CR1);
230
231 if (!(cr1 & SPI_CR1_SPE))
232 return;
233
234 /* Wait on EOT or suspend the flow */
235 ret = readl_poll_timeout(priv->base + STM32_SPI_SR, sr,
236 !(sr & SPI_SR_EOT), 100000);
237 if (ret < 0) {
238 if (cr1 & SPI_CR1_CSTART) {
239 writel(cr1 | SPI_CR1_CSUSP, priv->base + STM32_SPI_CR1);
240 if (readl_poll_timeout(priv->base + STM32_SPI_SR,
241 sr, !(sr & SPI_SR_SUSP),
242 100000) < 0)
243 dev_err(dev, "Suspend request timeout\n");
244 }
245 }
246
247 /* clear status flags */
248 setbits_le32(priv->base + STM32_SPI_IFCR, SPI_IFCR_ALL);
249}
250
251static int stm32_spi_set_cs(struct udevice *dev, unsigned int cs, bool enable)
252{
253 struct stm32_spi_priv *priv = dev_get_priv(dev);
254
255 debug("%s: cs=%d enable=%d\n", __func__, cs, enable);
256
257 if (cs >= MAX_CS_COUNT)
258 return -ENODEV;
259
260 if (!dm_gpio_is_valid(&priv->cs_gpios[cs]))
261 return -EINVAL;
262
263 if (priv->cs_high)
264 enable = !enable;
265
266 return dm_gpio_set_value(&priv->cs_gpios[cs], enable ? 1 : 0);
267}
268
269static int stm32_spi_set_mode(struct udevice *bus, uint mode)
270{
271 struct stm32_spi_priv *priv = dev_get_priv(bus);
272 u32 cfg2_clrb = 0, cfg2_setb = 0;
273
274 debug("%s: mode=%d\n", __func__, mode);
275
276 if (mode & SPI_CPOL)
277 cfg2_setb |= SPI_CFG2_CPOL;
278 else
279 cfg2_clrb |= SPI_CFG2_CPOL;
280
281 if (mode & SPI_CPHA)
282 cfg2_setb |= SPI_CFG2_CPHA;
283 else
284 cfg2_clrb |= SPI_CFG2_CPHA;
285
286 if (mode & SPI_LSB_FIRST)
287 cfg2_setb |= SPI_CFG2_LSBFRST;
288 else
289 cfg2_clrb |= SPI_CFG2_LSBFRST;
290
291 if (cfg2_clrb || cfg2_setb)
292 clrsetbits_le32(priv->base + STM32_SPI_CFG2,
293 cfg2_clrb, cfg2_setb);
294
295 if (mode & SPI_CS_HIGH)
296 priv->cs_high = true;
297 else
298 priv->cs_high = false;
299 return 0;
300}
301
302static int stm32_spi_set_fthlv(struct udevice *dev, u32 xfer_len)
303{
304 struct stm32_spi_priv *priv = dev_get_priv(dev);
305 u32 fthlv, half_fifo;
306
307 /* data packet should not exceed 1/2 of fifo space */
308 half_fifo = (priv->fifo_size / 2);
309
310 /* data_packet should not exceed transfer length */
311 fthlv = (half_fifo > xfer_len) ? xfer_len : half_fifo;
312
313 /* align packet size with data registers access */
314 fthlv -= (fthlv % 4);
315
316 if (!fthlv)
317 fthlv = 1;
318 clrsetbits_le32(priv->base + STM32_SPI_CFG1, SPI_CFG1_FTHLV,
319 (fthlv - 1) << SPI_CFG1_FTHLV_SHIFT);
320
321 return 0;
322}
323
324static int stm32_spi_set_speed(struct udevice *bus, uint hz)
325{
326 struct stm32_spi_priv *priv = dev_get_priv(bus);
Patrick Delaunay54ef8fb2019-06-21 15:26:58 +0200327 u32 mbrdiv;
328 long div;
Patrice Chotarda2a89b22019-04-30 18:08:28 +0200329
330 debug("%s: hz=%d\n", __func__, hz);
331
332 if (priv->cur_hz == hz)
333 return 0;
334
335 div = DIV_ROUND_UP(priv->bus_clk_rate, hz);
336
337 if (div < STM32_MBR_DIV_MIN ||
338 div > STM32_MBR_DIV_MAX)
339 return -EINVAL;
340
341 /* Determine the first power of 2 greater than or equal to div */
342 if (div & (div - 1))
343 mbrdiv = fls(div);
344 else
345 mbrdiv = fls(div) - 1;
346
Patrick Delaunay54ef8fb2019-06-21 15:26:58 +0200347 if (!mbrdiv)
Patrice Chotarda2a89b22019-04-30 18:08:28 +0200348 return -EINVAL;
349
350 clrsetbits_le32(priv->base + STM32_SPI_CFG1, SPI_CFG1_MBR,
351 (mbrdiv - 1) << SPI_CFG1_MBR_SHIFT);
352
353 priv->cur_hz = hz;
354
355 return 0;
356}
357
358static int stm32_spi_xfer(struct udevice *slave, unsigned int bitlen,
359 const void *dout, void *din, unsigned long flags)
360{
361 struct udevice *bus = dev_get_parent(slave);
362 struct dm_spi_slave_platdata *slave_plat;
363 struct stm32_spi_priv *priv = dev_get_priv(bus);
364 u32 sr;
365 u32 ifcr = 0;
366 u32 xferlen;
367 u32 mode;
368 int xfer_status = 0;
369
370 xferlen = bitlen / 8;
371
372 if (xferlen <= SPI_CR2_TSIZE)
373 writel(xferlen, priv->base + STM32_SPI_CR2);
374 else
375 return -EMSGSIZE;
376
377 priv->tx_buf = dout;
378 priv->rx_buf = din;
379 priv->tx_len = priv->tx_buf ? bitlen / 8 : 0;
380 priv->rx_len = priv->rx_buf ? bitlen / 8 : 0;
381
382 mode = SPI_FULL_DUPLEX;
383 if (!priv->tx_buf)
384 mode = SPI_SIMPLEX_RX;
385 else if (!priv->rx_buf)
386 mode = SPI_SIMPLEX_TX;
387
388 if (priv->cur_xferlen != xferlen || priv->cur_mode != mode) {
389 priv->cur_mode = mode;
390 priv->cur_xferlen = xferlen;
391
392 /* Disable the SPI hardware to unlock CFG1/CFG2 registers */
393 stm32_spi_disable(priv);
394
395 clrsetbits_le32(priv->base + STM32_SPI_CFG2, SPI_CFG2_COMM,
396 mode << SPI_CFG2_COMM_SHIFT);
397
398 stm32_spi_set_fthlv(bus, xferlen);
399
400 /* Enable the SPI hardware */
401 stm32_spi_enable(priv);
402 }
403
404 debug("%s: priv->tx_len=%d priv->rx_len=%d\n", __func__,
405 priv->tx_len, priv->rx_len);
406
407 slave_plat = dev_get_parent_platdata(slave);
408 if (flags & SPI_XFER_BEGIN)
409 stm32_spi_set_cs(bus, slave_plat->cs, false);
410
411 /* Be sure to have data in fifo before starting data transfer */
412 if (priv->tx_buf)
413 stm32_spi_write_txfifo(priv);
414
415 setbits_le32(priv->base + STM32_SPI_CR1, SPI_CR1_CSTART);
416
417 while (1) {
418 sr = readl(priv->base + STM32_SPI_SR);
419
420 if (sr & SPI_SR_OVR) {
421 dev_err(bus, "Overrun: RX data lost\n");
422 xfer_status = -EIO;
423 break;
424 }
425
426 if (sr & SPI_SR_SUSP) {
427 dev_warn(bus, "System too slow is limiting data throughput\n");
428
429 if (priv->rx_buf && priv->rx_len > 0)
430 stm32_spi_read_rxfifo(priv);
431
432 ifcr |= SPI_SR_SUSP;
433 }
434
435 if (sr & SPI_SR_TXTF)
436 ifcr |= SPI_SR_TXTF;
437
438 if (sr & SPI_SR_TXP)
439 if (priv->tx_buf && priv->tx_len > 0)
440 stm32_spi_write_txfifo(priv);
441
442 if (sr & SPI_SR_RXP)
443 if (priv->rx_buf && priv->rx_len > 0)
444 stm32_spi_read_rxfifo(priv);
445
446 if (sr & SPI_SR_EOT) {
447 if (priv->rx_buf && priv->rx_len > 0)
448 stm32_spi_read_rxfifo(priv);
449 break;
450 }
451
452 writel(ifcr, priv->base + STM32_SPI_IFCR);
453 }
454
455 /* clear status flags */
456 setbits_le32(priv->base + STM32_SPI_IFCR, SPI_IFCR_ALL);
457 stm32_spi_stopxfer(bus);
458
459 if (flags & SPI_XFER_END)
460 stm32_spi_set_cs(bus, slave_plat->cs, true);
461
462 return xfer_status;
463}
464
465static int stm32_spi_get_fifo_size(struct udevice *dev)
466{
467 struct stm32_spi_priv *priv = dev_get_priv(dev);
468 u32 count = 0;
469
470 stm32_spi_enable(priv);
471
472 while (readl(priv->base + STM32_SPI_SR) & SPI_SR_TXP)
473 writeb(++count, priv->base + STM32_SPI_TXDR);
474
475 stm32_spi_disable(priv);
476
477 debug("%s %d x 8-bit fifo size\n", __func__, count);
478
479 return count;
480}
481
482static int stm32_spi_probe(struct udevice *dev)
483{
484 struct stm32_spi_priv *priv = dev_get_priv(dev);
485 unsigned long clk_rate;
486 int ret;
Patrick Delaunay54ef8fb2019-06-21 15:26:58 +0200487 unsigned int i;
Patrice Chotarda2a89b22019-04-30 18:08:28 +0200488
489 priv->base = dev_remap_addr(dev);
490 if (!priv->base)
491 return -EINVAL;
492
493 /* enable clock */
494 ret = clk_get_by_index(dev, 0, &priv->clk);
495 if (ret < 0)
496 return ret;
497
498 ret = clk_enable(&priv->clk);
499 if (ret < 0)
500 return ret;
501
502 clk_rate = clk_get_rate(&priv->clk);
503 if (!clk_rate) {
504 ret = -EINVAL;
505 goto clk_err;
506 }
507
508 priv->bus_clk_rate = clk_rate;
509
510 /* perform reset */
511 ret = reset_get_by_index(dev, 0, &priv->rst_ctl);
512 if (ret < 0)
513 goto clk_err;
514
515 reset_assert(&priv->rst_ctl);
516 udelay(2);
517 reset_deassert(&priv->rst_ctl);
518
519 ret = gpio_request_list_by_name(dev, "cs-gpios", priv->cs_gpios,
520 ARRAY_SIZE(priv->cs_gpios), 0);
521 if (ret < 0) {
522 pr_err("Can't get %s cs gpios: %d", dev->name, ret);
523 goto reset_err;
524 }
525
526 priv->fifo_size = stm32_spi_get_fifo_size(dev);
527
528 priv->cur_mode = SPI_FULL_DUPLEX;
529 priv->cur_xferlen = 0;
530 priv->cur_bpw = SPI_DEFAULT_WORDLEN;
531 clrsetbits_le32(priv->base + STM32_SPI_CFG1, SPI_CFG1_DSIZE,
532 priv->cur_bpw - 1);
533
534 for (i = 0; i < ARRAY_SIZE(priv->cs_gpios); i++) {
535 if (!dm_gpio_is_valid(&priv->cs_gpios[i]))
536 continue;
537
538 dm_gpio_set_dir_flags(&priv->cs_gpios[i],
539 GPIOD_IS_OUT | GPIOD_IS_OUT_ACTIVE);
540 }
541
542 /* Ensure I2SMOD bit is kept cleared */
543 clrbits_le32(priv->base + STM32_SPI_I2SCFGR, SPI_I2SCFGR_I2SMOD);
544
545 /*
546 * - SS input value high
547 * - transmitter half duplex direction
548 * - automatic communication suspend when RX-Fifo is full
549 */
550 setbits_le32(priv->base + STM32_SPI_CR1,
551 SPI_CR1_SSI | SPI_CR1_HDDIR | SPI_CR1_MASRX);
552
553 /*
554 * - Set the master mode (default Motorola mode)
555 * - Consider 1 master/n slaves configuration and
556 * SS input value is determined by the SSI bit
557 * - keep control of all associated GPIOs
558 */
559 setbits_le32(priv->base + STM32_SPI_CFG2,
560 SPI_CFG2_MASTER | SPI_CFG2_SSM | SPI_CFG2_AFCNTR);
561
562 return 0;
563
564reset_err:
565 reset_free(&priv->rst_ctl);
566
567clk_err:
568 clk_disable(&priv->clk);
569 clk_free(&priv->clk);
570
571 return ret;
572};
573
574static int stm32_spi_remove(struct udevice *dev)
575{
576 struct stm32_spi_priv *priv = dev_get_priv(dev);
577 int ret;
578
579 stm32_spi_stopxfer(dev);
580 stm32_spi_disable(priv);
581
582 ret = reset_assert(&priv->rst_ctl);
583 if (ret < 0)
584 return ret;
585
586 reset_free(&priv->rst_ctl);
587
588 ret = clk_disable(&priv->clk);
589 if (ret < 0)
590 return ret;
591
592 clk_free(&priv->clk);
593
594 return ret;
595};
596
597static const struct dm_spi_ops stm32_spi_ops = {
598 .claim_bus = stm32_spi_claim_bus,
599 .release_bus = stm32_spi_release_bus,
600 .set_mode = stm32_spi_set_mode,
601 .set_speed = stm32_spi_set_speed,
602 .xfer = stm32_spi_xfer,
603};
604
605static const struct udevice_id stm32_spi_ids[] = {
606 { .compatible = "st,stm32h7-spi", },
607 { }
608};
609
610U_BOOT_DRIVER(stm32_spi) = {
611 .name = "stm32_spi",
612 .id = UCLASS_SPI,
613 .of_match = stm32_spi_ids,
614 .ops = &stm32_spi_ops,
615 .priv_auto_alloc_size = sizeof(struct stm32_spi_priv),
616 .probe = stm32_spi_probe,
617 .remove = stm32_spi_remove,
618};