blob: 6af45c99e149abc8e69d4f851e43373819d0629f [file] [log] [blame]
Tom Rini83d290c2018-05-06 17:58:06 -04001// SPDX-License-Identifier: GPL-2.0+
Alexey Brodkin67482f52016-11-25 16:23:43 +03002/*
Eugeniy Paltsevada8aff2018-03-26 15:57:37 +03003 * Copyright (C) 2018 Synopsys, Inc. All rights reserved.
4 * Author: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com>
Alexey Brodkin67482f52016-11-25 16:23:43 +03005 */
6
7#include <common.h>
Eugeniy Paltsevada8aff2018-03-26 15:57:37 +03008#include <config.h>
Simon Glass9edefc22019-11-14 12:57:37 -07009#include <cpu_func.h>
Simon Glass168068f2019-08-01 09:46:47 -060010#include <env.h>
Simon Glass36bf4462019-11-14 12:57:42 -070011#include <irq_func.h>
Eugeniy Paltsevada8aff2018-03-26 15:57:37 +030012#include <linux/printk.h>
13#include <linux/kernel.h>
14#include <linux/io.h>
15#include <asm/arcregs.h>
16#include <fdt_support.h>
Alexey Brodkin67482f52016-11-25 16:23:43 +030017#include <dwmmc.h>
18#include <malloc.h>
Eugeniy Paltsevada8aff2018-03-26 15:57:37 +030019#include <usb.h>
20
21#include "clk-lib.h"
22#include "env-lib.h"
Alexey Brodkin67482f52016-11-25 16:23:43 +030023
24DECLARE_GLOBAL_DATA_PTR;
25
Eugeniy Paltsevada8aff2018-03-26 15:57:37 +030026#define ALL_CPU_MASK GENMASK(NR_CPUS - 1, 0)
27#define MASTER_CPU_ID 0
28#define APERTURE_SHIFT 28
29#define NO_CCM 0x10
30#define SLAVE_CPU_READY 0x12345678
31#define BOOTSTAGE_1 1 /* after SP, FP setup, before HW init */
32#define BOOTSTAGE_2 2 /* after HW init, before self halt */
33#define BOOTSTAGE_3 3 /* after self halt */
34#define BOOTSTAGE_4 4 /* before app launch */
35#define BOOTSTAGE_5 5 /* after app launch, unreachable */
Alexey Brodkin67482f52016-11-25 16:23:43 +030036
Eugeniy Paltsevada8aff2018-03-26 15:57:37 +030037#define RESET_VECTOR_ADDR 0x0
38
39#define CREG_BASE (ARC_PERIPHERAL_BASE + 0x1000)
40#define CREG_CPU_START (CREG_BASE + 0x400)
41#define CREG_CPU_START_MASK 0xF
42
43#define SDIO_BASE (ARC_PERIPHERAL_BASE + 0xA000)
44#define SDIO_UHS_REG_EXT (SDIO_BASE + 0x108)
45#define SDIO_UHS_REG_EXT_DIV_2 (2 << 30)
46
47/* Uncached access macros */
48#define arc_read_uncached_32(ptr) \
49({ \
50 unsigned int __ret; \
51 __asm__ __volatile__( \
52 " ld.di %0, [%1] \n" \
53 : "=r"(__ret) \
54 : "r"(ptr)); \
55 __ret; \
56})
57
58#define arc_write_uncached_32(ptr, data)\
59({ \
60 __asm__ __volatile__( \
61 " st.di %0, [%1] \n" \
62 : \
63 : "r"(data), "r"(ptr)); \
64})
65
66struct hsdk_env_core_ctl {
67 u32_env entry[NR_CPUS];
68 u32_env iccm[NR_CPUS];
69 u32_env dccm[NR_CPUS];
70};
71
72struct hsdk_env_common_ctl {
73 bool halt_on_boot;
74 u32_env core_mask;
75 u32_env cpu_freq;
76 u32_env axi_freq;
77 u32_env tun_freq;
78 u32_env nvlim;
79 u32_env icache;
80 u32_env dcache;
81};
82
83/*
84 * Uncached cross-cpu structure. All CPUs must access to this structure fields
85 * only with arc_read_uncached_32() / arc_write_uncached_32() accessors (which
86 * implement ld.di / st.di instructions). Simultaneous cached and uncached
87 * access to this area will lead to data loss.
88 * We flush all data caches in board_early_init_r() as we don't want to have
89 * any dirty line in L1d$ or SL$ in this area.
90 */
91struct hsdk_cross_cpu {
92 /* slave CPU ready flag */
93 u32 ready_flag;
94 /* address of the area, which can be used for stack by slave CPU */
95 u32 stack_ptr;
96 /* slave CPU status - bootstage number */
97 s32 status[NR_CPUS];
98
99 /*
100 * Slave CPU data - it is copy of corresponding fields in
101 * hsdk_env_core_ctl and hsdk_env_common_ctl structures which are
102 * required for slave CPUs initialization.
103 * This fields can be populated by copying from hsdk_env_core_ctl
104 * and hsdk_env_common_ctl structures with sync_cross_cpu_data()
105 * function.
106 */
107 u32 entry[NR_CPUS];
108 u32 iccm[NR_CPUS];
109 u32 dccm[NR_CPUS];
110
111 u32 core_mask;
112 u32 icache;
113 u32 dcache;
114
115 u8 cache_padding[ARCH_DMA_MINALIGN];
116} __aligned(ARCH_DMA_MINALIGN);
117
118/* Place for slave CPUs temporary stack */
119static u32 slave_stack[256 * NR_CPUS] __aligned(ARCH_DMA_MINALIGN);
120
121static struct hsdk_env_common_ctl env_common = {};
122static struct hsdk_env_core_ctl env_core = {};
123static struct hsdk_cross_cpu cross_cpu_data;
124
125static const struct env_map_common env_map_common[] = {
126 { "core_mask", ENV_HEX, true, 0x1, 0xF, &env_common.core_mask },
127 { "non_volatile_limit", ENV_HEX, true, 0, 0xF, &env_common.nvlim },
128 { "icache_ena", ENV_HEX, true, 0, 1, &env_common.icache },
129 { "dcache_ena", ENV_HEX, true, 0, 1, &env_common.dcache },
130 {}
131};
132
133static const struct env_map_common env_map_clock[] = {
134 { "cpu_freq", ENV_DEC, false, 100, 1000, &env_common.cpu_freq },
135 { "axi_freq", ENV_DEC, false, 200, 800, &env_common.axi_freq },
136 { "tun_freq", ENV_DEC, false, 0, 150, &env_common.tun_freq },
137 {}
138};
139
140static const struct env_map_percpu env_map_core[] = {
141 { "core_iccm", ENV_HEX, true, {NO_CCM, 0, NO_CCM, 0}, {NO_CCM, 0xF, NO_CCM, 0xF}, &env_core.iccm },
142 { "core_dccm", ENV_HEX, true, {NO_CCM, 0, NO_CCM, 0}, {NO_CCM, 0xF, NO_CCM, 0xF}, &env_core.dccm },
143 {}
144};
145
146static const struct env_map_common env_map_mask[] = {
147 { "core_mask", ENV_HEX, false, 0x1, 0xF, &env_common.core_mask },
148 {}
149};
150
151static const struct env_map_percpu env_map_go[] = {
152 { "core_entry", ENV_HEX, true, {0, 0, 0, 0}, {U32_MAX, U32_MAX, U32_MAX, U32_MAX}, &env_core.entry },
153 {}
154};
155
156static void sync_cross_cpu_data(void)
Alexey Brodkin67482f52016-11-25 16:23:43 +0300157{
Eugeniy Paltsevada8aff2018-03-26 15:57:37 +0300158 u32 value;
Alexey Brodkin67482f52016-11-25 16:23:43 +0300159
Eugeniy Paltsevada8aff2018-03-26 15:57:37 +0300160 for (u32 i = 0; i < NR_CPUS; i++) {
161 value = env_core.entry[i].val;
162 arc_write_uncached_32(&cross_cpu_data.entry[i], value);
163 }
164
165 for (u32 i = 0; i < NR_CPUS; i++) {
166 value = env_core.iccm[i].val;
167 arc_write_uncached_32(&cross_cpu_data.iccm[i], value);
168 }
169
170 for (u32 i = 0; i < NR_CPUS; i++) {
171 value = env_core.dccm[i].val;
172 arc_write_uncached_32(&cross_cpu_data.dccm[i], value);
173 }
174
175 value = env_common.core_mask.val;
176 arc_write_uncached_32(&cross_cpu_data.core_mask, value);
177
178 value = env_common.icache.val;
179 arc_write_uncached_32(&cross_cpu_data.icache, value);
180
181 value = env_common.dcache.val;
182 arc_write_uncached_32(&cross_cpu_data.dcache, value);
183}
184
185/* Can be used only on master CPU */
186static bool is_cpu_used(u32 cpu_id)
187{
188 return !!(env_common.core_mask.val & BIT(cpu_id));
189}
190
191/* TODO: add ICCM BCR and DCCM BCR runtime check */
192static void init_slave_cpu_func(u32 core)
193{
194 u32 val;
195
196 /* Remap ICCM to another memory region if it exists */
197 val = arc_read_uncached_32(&cross_cpu_data.iccm[core]);
198 if (val != NO_CCM)
199 write_aux_reg(ARC_AUX_ICCM_BASE, val << APERTURE_SHIFT);
200
201 /* Remap DCCM to another memory region if it exists */
202 val = arc_read_uncached_32(&cross_cpu_data.dccm[core]);
203 if (val != NO_CCM)
204 write_aux_reg(ARC_AUX_DCCM_BASE, val << APERTURE_SHIFT);
205
206 if (arc_read_uncached_32(&cross_cpu_data.icache))
207 icache_enable();
208 else
209 icache_disable();
210
211 if (arc_read_uncached_32(&cross_cpu_data.dcache))
212 dcache_enable();
213 else
214 dcache_disable();
215}
216
217static void init_cluster_nvlim(void)
218{
219 u32 val = env_common.nvlim.val << APERTURE_SHIFT;
220
221 flush_dcache_all();
222 write_aux_reg(ARC_AUX_NON_VOLATILE_LIMIT, val);
223 write_aux_reg(AUX_AUX_CACHE_LIMIT, val);
224 flush_n_invalidate_dcache_all();
225}
226
227static void init_master_icache(void)
228{
229 if (icache_status()) {
230 /* I$ is enabled - we need to disable it */
231 if (!env_common.icache.val)
232 icache_disable();
233 } else {
234 /* I$ is disabled - we need to enable it */
235 if (env_common.icache.val) {
236 icache_enable();
237
238 /* invalidate I$ right after enable */
239 invalidate_icache_all();
240 }
241 }
242}
243
244static void init_master_dcache(void)
245{
246 if (dcache_status()) {
247 /* D$ is enabled - we need to disable it */
248 if (!env_common.dcache.val)
249 dcache_disable();
250 } else {
251 /* D$ is disabled - we need to enable it */
252 if (env_common.dcache.val)
253 dcache_enable();
254
255 /* TODO: probably we need ti invalidate D$ right after enable */
256 }
257}
258
259static int cleanup_before_go(void)
260{
261 disable_interrupts();
262 sync_n_cleanup_cache_all();
Alexey Brodkin67482f52016-11-25 16:23:43 +0300263
264 return 0;
265}
266
Eugeniy Paltsevada8aff2018-03-26 15:57:37 +0300267void slave_cpu_set_boot_addr(u32 addr)
268{
269 /* All cores have reset vector pointing to 0 */
270 writel(addr, (void __iomem *)RESET_VECTOR_ADDR);
271
272 /* Make sure other cores see written value in memory */
273 sync_n_cleanup_cache_all();
274}
275
276static inline void halt_this_cpu(void)
277{
278 __builtin_arc_flag(1);
279}
280
281static void smp_kick_cpu_x(u32 cpu_id)
282{
283 int cmd = readl((void __iomem *)CREG_CPU_START);
284
285 if (cpu_id > NR_CPUS)
286 return;
287
288 cmd &= ~CREG_CPU_START_MASK;
289 cmd |= (1 << cpu_id);
290 writel(cmd, (void __iomem *)CREG_CPU_START);
291}
292
293static u32 prepare_cpu_ctart_reg(void)
294{
295 int cmd = readl((void __iomem *)CREG_CPU_START);
296
297 cmd &= ~CREG_CPU_START_MASK;
298
299 return cmd | env_common.core_mask.val;
300}
301
302/* slave CPU entry for configuration */
303__attribute__((naked, noreturn, flatten)) noinline void hsdk_core_init_f(void)
304{
305 __asm__ __volatile__(
306 "ld.di r8, [%0]\n"
307 "mov %%sp, r8\n"
308 "mov %%fp, %%sp\n"
309 : /* no output */
310 : "r" (&cross_cpu_data.stack_ptr));
311
312 invalidate_icache_all();
313
314 arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_1);
315 init_slave_cpu_func(CPU_ID_GET());
316
317 arc_write_uncached_32(&cross_cpu_data.ready_flag, SLAVE_CPU_READY);
318 arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_2);
319
320 /* Halt the processor until the master kick us again */
321 halt_this_cpu();
322
323 /*
324 * 3 NOPs after FLAG 1 instruction are no longer required for ARCv2
325 * cores but we leave them for gebug purposes.
326 */
327 __builtin_arc_nop();
328 __builtin_arc_nop();
329 __builtin_arc_nop();
330
331 arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_3);
332
333 /* get the updated entry - invalidate i$ */
334 invalidate_icache_all();
335
336 arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_4);
337
338 /* Run our program */
339 ((void (*)(void))(arc_read_uncached_32(&cross_cpu_data.entry[CPU_ID_GET()])))();
340
341 /* This bootstage is unreachable as we don't return from app we launch */
342 arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_5);
343
344 /* Something went terribly wrong */
345 while (true)
346 halt_this_cpu();
347}
348
349static void clear_cross_cpu_data(void)
350{
351 arc_write_uncached_32(&cross_cpu_data.ready_flag, 0);
352 arc_write_uncached_32(&cross_cpu_data.stack_ptr, 0);
353
354 for (u32 i = 0; i < NR_CPUS; i++)
355 arc_write_uncached_32(&cross_cpu_data.status[i], 0);
356}
357
358static noinline void do_init_slave_cpu(u32 cpu_id)
359{
360 /* attempts number for check clave CPU ready_flag */
361 u32 attempts = 100;
362 u32 stack_ptr = (u32)(slave_stack + (64 * cpu_id));
363
364 if (cpu_id >= NR_CPUS)
365 return;
366
367 arc_write_uncached_32(&cross_cpu_data.ready_flag, 0);
368
369 /* Use global unique place for each slave cpu stack */
370 arc_write_uncached_32(&cross_cpu_data.stack_ptr, stack_ptr);
371
372 debug("CPU %u: stack pool base: %p\n", cpu_id, slave_stack);
373 debug("CPU %u: current slave stack base: %x\n", cpu_id, stack_ptr);
374 slave_cpu_set_boot_addr((u32)hsdk_core_init_f);
375
376 smp_kick_cpu_x(cpu_id);
377
378 debug("CPU %u: cross-cpu flag: %x [before timeout]\n", cpu_id,
379 arc_read_uncached_32(&cross_cpu_data.ready_flag));
380
381 while (!arc_read_uncached_32(&cross_cpu_data.ready_flag) && attempts--)
382 mdelay(10);
383
384 /* Just to be sure that slave cpu is halted after it set ready_flag */
385 mdelay(20);
386
387 /*
388 * Only print error here if we reach timeout as there is no option to
389 * halt slave cpu (or check that slave cpu is halted)
390 */
391 if (!attempts)
392 pr_err("CPU %u is not responding after init!\n", cpu_id);
393
394 /* Check current stage of slave cpu */
395 if (arc_read_uncached_32(&cross_cpu_data.status[cpu_id]) != BOOTSTAGE_2)
396 pr_err("CPU %u status is unexpected: %d\n", cpu_id,
397 arc_read_uncached_32(&cross_cpu_data.status[cpu_id]));
398
399 debug("CPU %u: cross-cpu flag: %x [after timeout]\n", cpu_id,
400 arc_read_uncached_32(&cross_cpu_data.ready_flag));
401 debug("CPU %u: status: %d [after timeout]\n", cpu_id,
402 arc_read_uncached_32(&cross_cpu_data.status[cpu_id]));
403}
404
405static void do_init_slave_cpus(void)
406{
407 clear_cross_cpu_data();
408 sync_cross_cpu_data();
409
410 debug("cross_cpu_data location: %#x\n", (u32)&cross_cpu_data);
411
412 for (u32 i = MASTER_CPU_ID + 1; i < NR_CPUS; i++)
413 if (is_cpu_used(i))
414 do_init_slave_cpu(i);
415}
416
417static void do_init_master_cpu(void)
418{
419 /*
420 * Setup master caches even if master isn't used as we want to use
421 * same cache configuration on all running CPUs
422 */
423 init_master_icache();
424 init_master_dcache();
425}
426
427enum hsdk_axi_masters {
428 M_HS_CORE = 0,
429 M_HS_RTT,
430 M_AXI_TUN,
431 M_HDMI_VIDEO,
432 M_HDMI_AUDIO,
433 M_USB_HOST,
434 M_ETHERNET,
435 M_SDIO,
436 M_GPU,
437 M_DMAC_0,
438 M_DMAC_1,
439 M_DVFS
440};
441
442#define UPDATE_VAL 1
443
444/*
445 * m master AXI_M_m_SLV0 AXI_M_m_SLV1 AXI_M_m_OFFSET0 AXI_M_m_OFFSET1
446 * 0 HS (CBU) 0x11111111 0x63111111 0xFEDCBA98 0x0E543210
447 * 1 HS (RTT) 0x77777777 0x77777777 0xFEDCBA98 0x76543210
448 * 2 AXI Tunnel 0x88888888 0x88888888 0xFEDCBA98 0x76543210
449 * 3 HDMI-VIDEO 0x77777777 0x77777777 0xFEDCBA98 0x76543210
450 * 4 HDMI-ADUIO 0x77777777 0x77777777 0xFEDCBA98 0x76543210
451 * 5 USB-HOST 0x77777777 0x77999999 0xFEDCBA98 0x76DCBA98
452 * 6 ETHERNET 0x77777777 0x77999999 0xFEDCBA98 0x76DCBA98
453 * 7 SDIO 0x77777777 0x77999999 0xFEDCBA98 0x76DCBA98
454 * 8 GPU 0x77777777 0x77777777 0xFEDCBA98 0x76543210
455 * 9 DMAC (port #1) 0x77777777 0x77777777 0xFEDCBA98 0x76543210
456 * 10 DMAC (port #2) 0x77777777 0x77777777 0xFEDCBA98 0x76543210
457 * 11 DVFS 0x00000000 0x60000000 0x00000000 0x00000000
458 *
459 * Please read ARC HS Development IC Specification, section 17.2 for more
460 * information about apertures configuration.
461 * NOTE: we intentionally modify default settings in U-boot. Default settings
462 * are specified in "Table 111 CREG Address Decoder register reset values".
463 */
464
465#define CREG_AXI_M_SLV0(m) ((void __iomem *)(CREG_BASE + 0x020 * (m)))
466#define CREG_AXI_M_SLV1(m) ((void __iomem *)(CREG_BASE + 0x020 * (m) + 0x004))
467#define CREG_AXI_M_OFT0(m) ((void __iomem *)(CREG_BASE + 0x020 * (m) + 0x008))
468#define CREG_AXI_M_OFT1(m) ((void __iomem *)(CREG_BASE + 0x020 * (m) + 0x00C))
469#define CREG_AXI_M_UPDT(m) ((void __iomem *)(CREG_BASE + 0x020 * (m) + 0x014))
470
471#define CREG_AXI_M_HS_CORE_BOOT ((void __iomem *)(CREG_BASE + 0x010))
472
473#define CREG_PAE ((void __iomem *)(CREG_BASE + 0x180))
474#define CREG_PAE_UPDT ((void __iomem *)(CREG_BASE + 0x194))
475
476void init_memory_bridge(void)
477{
478 u32 reg;
479
480 /*
481 * M_HS_CORE has one unic register - BOOT.
482 * We need to clean boot mirror (BOOT[1:0]) bits in them.
483 */
484 reg = readl(CREG_AXI_M_HS_CORE_BOOT) & (~0x3);
485 writel(reg, CREG_AXI_M_HS_CORE_BOOT);
486 writel(0x11111111, CREG_AXI_M_SLV0(M_HS_CORE));
487 writel(0x63111111, CREG_AXI_M_SLV1(M_HS_CORE));
488 writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_HS_CORE));
489 writel(0x0E543210, CREG_AXI_M_OFT1(M_HS_CORE));
490 writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_HS_CORE));
491
492 writel(0x77777777, CREG_AXI_M_SLV0(M_HS_RTT));
493 writel(0x77777777, CREG_AXI_M_SLV1(M_HS_RTT));
494 writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_HS_RTT));
495 writel(0x76543210, CREG_AXI_M_OFT1(M_HS_RTT));
496 writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_HS_RTT));
497
498 writel(0x88888888, CREG_AXI_M_SLV0(M_AXI_TUN));
499 writel(0x88888888, CREG_AXI_M_SLV1(M_AXI_TUN));
500 writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_AXI_TUN));
501 writel(0x76543210, CREG_AXI_M_OFT1(M_AXI_TUN));
502 writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_AXI_TUN));
503
504 writel(0x77777777, CREG_AXI_M_SLV0(M_HDMI_VIDEO));
505 writel(0x77777777, CREG_AXI_M_SLV1(M_HDMI_VIDEO));
506 writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_HDMI_VIDEO));
507 writel(0x76543210, CREG_AXI_M_OFT1(M_HDMI_VIDEO));
508 writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_HDMI_VIDEO));
509
510 writel(0x77777777, CREG_AXI_M_SLV0(M_HDMI_AUDIO));
511 writel(0x77777777, CREG_AXI_M_SLV1(M_HDMI_AUDIO));
512 writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_HDMI_AUDIO));
513 writel(0x76543210, CREG_AXI_M_OFT1(M_HDMI_AUDIO));
514 writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_HDMI_AUDIO));
515
516 writel(0x77777777, CREG_AXI_M_SLV0(M_USB_HOST));
517 writel(0x77999999, CREG_AXI_M_SLV1(M_USB_HOST));
518 writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_USB_HOST));
519 writel(0x76DCBA98, CREG_AXI_M_OFT1(M_USB_HOST));
520 writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_USB_HOST));
521
522 writel(0x77777777, CREG_AXI_M_SLV0(M_ETHERNET));
523 writel(0x77999999, CREG_AXI_M_SLV1(M_ETHERNET));
524 writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_ETHERNET));
525 writel(0x76DCBA98, CREG_AXI_M_OFT1(M_ETHERNET));
526 writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_ETHERNET));
527
528 writel(0x77777777, CREG_AXI_M_SLV0(M_SDIO));
529 writel(0x77999999, CREG_AXI_M_SLV1(M_SDIO));
530 writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_SDIO));
531 writel(0x76DCBA98, CREG_AXI_M_OFT1(M_SDIO));
532 writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_SDIO));
533
534 writel(0x77777777, CREG_AXI_M_SLV0(M_GPU));
535 writel(0x77777777, CREG_AXI_M_SLV1(M_GPU));
536 writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_GPU));
537 writel(0x76543210, CREG_AXI_M_OFT1(M_GPU));
538 writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_GPU));
539
540 writel(0x77777777, CREG_AXI_M_SLV0(M_DMAC_0));
541 writel(0x77777777, CREG_AXI_M_SLV1(M_DMAC_0));
542 writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_DMAC_0));
543 writel(0x76543210, CREG_AXI_M_OFT1(M_DMAC_0));
544 writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_DMAC_0));
545
546 writel(0x77777777, CREG_AXI_M_SLV0(M_DMAC_1));
547 writel(0x77777777, CREG_AXI_M_SLV1(M_DMAC_1));
548 writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_DMAC_1));
549 writel(0x76543210, CREG_AXI_M_OFT1(M_DMAC_1));
550 writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_DMAC_1));
551
552 writel(0x00000000, CREG_AXI_M_SLV0(M_DVFS));
553 writel(0x60000000, CREG_AXI_M_SLV1(M_DVFS));
554 writel(0x00000000, CREG_AXI_M_OFT0(M_DVFS));
555 writel(0x00000000, CREG_AXI_M_OFT1(M_DVFS));
556 writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_DVFS));
557
558 writel(0x00000000, CREG_PAE);
559 writel(UPDATE_VAL, CREG_PAE_UPDT);
560}
561
562static void setup_clocks(void)
563{
564 ulong rate;
565
566 /* Setup CPU clock */
567 if (env_common.cpu_freq.set) {
568 rate = env_common.cpu_freq.val;
569 soc_clk_ctl("cpu-clk", &rate, CLK_ON | CLK_SET | CLK_MHZ);
570 }
571
572 /* Setup TUN clock */
573 if (env_common.tun_freq.set) {
574 rate = env_common.tun_freq.val;
575 if (rate)
576 soc_clk_ctl("tun-clk", &rate, CLK_ON | CLK_SET | CLK_MHZ);
577 else
578 soc_clk_ctl("tun-clk", NULL, CLK_OFF);
579 }
580
581 if (env_common.axi_freq.set) {
582 rate = env_common.axi_freq.val;
583 soc_clk_ctl("axi-clk", &rate, CLK_SET | CLK_ON | CLK_MHZ);
584 }
585}
586
587static void do_init_cluster(void)
588{
589 /*
590 * A multi-core ARC HS configuration always includes only one
591 * ARC_AUX_NON_VOLATILE_LIMIT register, which is shared by all the
592 * cores.
593 */
594 init_cluster_nvlim();
595}
596
597static int check_master_cpu_id(void)
598{
599 if (CPU_ID_GET() == MASTER_CPU_ID)
600 return 0;
601
602 pr_err("u-boot runs on non-master cpu with id: %lu\n", CPU_ID_GET());
603
604 return -ENOENT;
605}
606
607static noinline int prepare_cpus(void)
608{
609 int ret;
610
611 ret = check_master_cpu_id();
612 if (ret)
613 return ret;
614
615 ret = envs_process_and_validate(env_map_common, env_map_core, is_cpu_used);
616 if (ret)
617 return ret;
618
619 printf("CPU start mask is %#x\n", env_common.core_mask.val);
620
621 do_init_slave_cpus();
622 do_init_master_cpu();
623 do_init_cluster();
624
625 return 0;
626}
627
628static int hsdk_go_run(u32 cpu_start_reg)
629{
630 /* Cleanup caches, disable interrupts */
631 cleanup_before_go();
632
633 if (env_common.halt_on_boot)
634 halt_this_cpu();
635
636 /*
637 * 3 NOPs after FLAG 1 instruction are no longer required for ARCv2
638 * cores but we leave them for gebug purposes.
639 */
640 __builtin_arc_nop();
641 __builtin_arc_nop();
642 __builtin_arc_nop();
643
644 /* Kick chosen slave CPUs */
645 writel(cpu_start_reg, (void __iomem *)CREG_CPU_START);
646
647 if (is_cpu_used(MASTER_CPU_ID))
648 ((void (*)(void))(env_core.entry[MASTER_CPU_ID].val))();
649 else
650 halt_this_cpu();
651
652 pr_err("u-boot still runs on cpu [%ld]\n", CPU_ID_GET());
653
654 /*
655 * We will never return after executing our program if master cpu used
656 * otherwise halt master cpu manually.
657 */
658 while (true)
659 halt_this_cpu();
660
661 return 0;
662}
663
664int board_prep_linux(bootm_headers_t *images)
665{
666 int ret, ofst;
667 char mask[15];
668
669 ret = envs_read_validate_common(env_map_mask);
670 if (ret)
671 return ret;
672
673 /* Rollback to default values */
674 if (!env_common.core_mask.set) {
675 env_common.core_mask.val = ALL_CPU_MASK;
676 env_common.core_mask.set = true;
677 }
678
679 printf("CPU start mask is %#x\n", env_common.core_mask.val);
680
681 if (!is_cpu_used(MASTER_CPU_ID))
682 pr_err("ERR: try to launch linux with CPU[0] disabled! It doesn't work for ARC.\n");
683
684 /*
685 * If we want to launch linux on all CPUs we don't need to patch
686 * linux DTB as it is default configuration
687 */
688 if (env_common.core_mask.val == ALL_CPU_MASK)
689 return 0;
690
691 if (!IMAGE_ENABLE_OF_LIBFDT || !images->ft_len) {
692 pr_err("WARN: core_mask setup will work properly only with external DTB!\n");
693 return 0;
694 }
695
696 /* patch '/possible-cpus' property according to cpu mask */
697 ofst = fdt_path_offset(images->ft_addr, "/");
698 sprintf(mask, "%s%s%s%s",
699 is_cpu_used(0) ? "0," : "",
700 is_cpu_used(1) ? "1," : "",
701 is_cpu_used(2) ? "2," : "",
702 is_cpu_used(3) ? "3," : "");
703 ret = fdt_setprop_string(images->ft_addr, ofst, "possible-cpus", mask);
704 /*
705 * If we failed to patch '/possible-cpus' property we don't need break
706 * linux loading process: kernel will handle it but linux will print
707 * warning like "Timeout: CPU1 FAILED to comeup !!!".
708 * So warn here about error, but return 0 like no error had occurred.
709 */
710 if (ret)
711 pr_err("WARN: failed to patch '/possible-cpus' property, ret=%d\n",
712 ret);
713
714 return 0;
715}
716
717void board_jump_and_run(ulong entry, int zero, int arch, uint params)
718{
719 void (*kernel_entry)(int zero, int arch, uint params);
720 u32 cpu_start_reg;
721
722 kernel_entry = (void (*)(int, int, uint))entry;
723
724 /* Prepare CREG_CPU_START for kicking chosen CPUs */
725 cpu_start_reg = prepare_cpu_ctart_reg();
726
727 /* In case of run without hsdk_init */
728 slave_cpu_set_boot_addr(entry);
729
730 /* In case of run with hsdk_init */
731 for (u32 i = 0; i < NR_CPUS; i++) {
732 env_core.entry[i].val = entry;
733 env_core.entry[i].set = true;
734 }
735 /* sync cross_cpu struct as we updated core-entry variables */
736 sync_cross_cpu_data();
737
738 /* Kick chosen slave CPUs */
739 writel(cpu_start_reg, (void __iomem *)CREG_CPU_START);
740
741 if (is_cpu_used(0))
742 kernel_entry(zero, arch, params);
743}
744
745static int hsdk_go_prepare_and_run(void)
746{
747 /* Prepare CREG_CPU_START for kicking chosen CPUs */
748 u32 reg = prepare_cpu_ctart_reg();
749
750 if (env_common.halt_on_boot)
751 printf("CPU will halt before application start, start application with debugger.\n");
752
753 return hsdk_go_run(reg);
754}
755
756static int do_hsdk_go(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[])
757{
758 int ret;
759
760 /*
761 * Check for 'halt' parameter. 'halt' = enter halt-mode just before
762 * starting the application; can be used for debug.
763 */
764 if (argc > 1) {
765 env_common.halt_on_boot = !strcmp(argv[1], "halt");
766 if (!env_common.halt_on_boot) {
767 pr_err("Unrecognised parameter: \'%s\'\n", argv[1]);
768 return CMD_RET_FAILURE;
769 }
770 }
771
772 ret = check_master_cpu_id();
773 if (ret)
774 return ret;
775
776 ret = envs_process_and_validate(env_map_mask, env_map_go, is_cpu_used);
777 if (ret)
778 return ret;
779
780 /* sync cross_cpu struct as we updated core-entry variables */
781 sync_cross_cpu_data();
782
783 ret = hsdk_go_prepare_and_run();
784
785 return ret ? CMD_RET_FAILURE : CMD_RET_SUCCESS;
786}
787
788U_BOOT_CMD(
789 hsdk_go, 3, 0, do_hsdk_go,
790 "Synopsys HSDK specific command",
791 " - Boot stand-alone application on HSDK\n"
792 "hsdk_go halt - Boot stand-alone application on HSDK, halt CPU just before application run\n"
793);
794
795static int do_hsdk_init(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[])
796{
797 static bool done = false;
798 int ret;
799
800 /* hsdk_init can be run only once */
801 if (done) {
802 printf("HSDK HW is already initialized! Please reset the board if you want to change the configuration.\n");
803 return CMD_RET_FAILURE;
804 }
805
806 ret = prepare_cpus();
807 if (!ret)
808 done = true;
809
810 return ret ? CMD_RET_FAILURE : CMD_RET_SUCCESS;
811}
812
813U_BOOT_CMD(
814 hsdk_init, 1, 0, do_hsdk_init,
815 "Synopsys HSDK specific command",
816 "- Init HSDK HW\n"
817);
818
819static int do_hsdk_clock_set(cmd_tbl_t *cmdtp, int flag, int argc,
820 char *const argv[])
821{
822 int ret = 0;
823
824 /* Strip off leading subcommand argument */
825 argc--;
826 argv++;
827
828 envs_cleanup_common(env_map_clock);
829
830 if (!argc) {
831 printf("Set clocks to values specified in environment\n");
832 ret = envs_read_common(env_map_clock);
833 } else {
834 printf("Set clocks to values specified in args\n");
835 ret = args_envs_enumerate(env_map_clock, 2, argc, argv);
836 }
837
838 if (ret)
839 return CMD_RET_FAILURE;
840
841 ret = envs_validate_common(env_map_clock);
842 if (ret)
843 return CMD_RET_FAILURE;
844
845 /* Setup clock tree HW */
846 setup_clocks();
847
848 return CMD_RET_SUCCESS;
849}
850
851static int do_hsdk_clock_get(cmd_tbl_t *cmdtp, int flag, int argc,
852 char *const argv[])
853{
854 ulong rate;
855
856 if (soc_clk_ctl("cpu-clk", &rate, CLK_GET | CLK_MHZ))
857 return CMD_RET_FAILURE;
858
859 if (env_set_ulong("cpu_freq", rate))
860 return CMD_RET_FAILURE;
861
862 if (soc_clk_ctl("tun-clk", &rate, CLK_GET | CLK_MHZ))
863 return CMD_RET_FAILURE;
864
865 if (env_set_ulong("tun_freq", rate))
866 return CMD_RET_FAILURE;
867
868 if (soc_clk_ctl("axi-clk", &rate, CLK_GET | CLK_MHZ))
869 return CMD_RET_FAILURE;
870
871 if (env_set_ulong("axi_freq", rate))
872 return CMD_RET_FAILURE;
873
874 printf("Clock values are saved to environment\n");
875
876 return CMD_RET_SUCCESS;
877}
878
879static int do_hsdk_clock_print(cmd_tbl_t *cmdtp, int flag, int argc,
880 char *const argv[])
881{
882 /* Main clocks */
883 soc_clk_ctl("cpu-clk", NULL, CLK_PRINT | CLK_MHZ);
884 soc_clk_ctl("tun-clk", NULL, CLK_PRINT | CLK_MHZ);
885 soc_clk_ctl("axi-clk", NULL, CLK_PRINT | CLK_MHZ);
886 soc_clk_ctl("ddr-clk", NULL, CLK_PRINT | CLK_MHZ);
887
888 return CMD_RET_SUCCESS;
889}
890
891static int do_hsdk_clock_print_all(cmd_tbl_t *cmdtp, int flag, int argc,
892 char *const argv[])
893{
894 /*
895 * NOTE: as of today we don't use some peripherals like HDMI / EBI
896 * so we don't want to print their clocks ("hdmi-sys-clk", "hdmi-pll",
897 * "hdmi-clk", "ebi-clk"). Nevertheless their clock subsystems is fully
898 * functional and we can print their clocks if it is required
899 */
900
901 /* CPU clock domain */
902 soc_clk_ctl("cpu-pll", NULL, CLK_PRINT | CLK_MHZ);
903 soc_clk_ctl("cpu-clk", NULL, CLK_PRINT | CLK_MHZ);
904 printf("\n");
905
906 /* SYS clock domain */
907 soc_clk_ctl("sys-pll", NULL, CLK_PRINT | CLK_MHZ);
908 soc_clk_ctl("apb-clk", NULL, CLK_PRINT | CLK_MHZ);
909 soc_clk_ctl("axi-clk", NULL, CLK_PRINT | CLK_MHZ);
910 soc_clk_ctl("eth-clk", NULL, CLK_PRINT | CLK_MHZ);
911 soc_clk_ctl("usb-clk", NULL, CLK_PRINT | CLK_MHZ);
912 soc_clk_ctl("sdio-clk", NULL, CLK_PRINT | CLK_MHZ);
913/* soc_clk_ctl("hdmi-sys-clk", NULL, CLK_PRINT | CLK_MHZ); */
914 soc_clk_ctl("gfx-core-clk", NULL, CLK_PRINT | CLK_MHZ);
915 soc_clk_ctl("gfx-dma-clk", NULL, CLK_PRINT | CLK_MHZ);
916 soc_clk_ctl("gfx-cfg-clk", NULL, CLK_PRINT | CLK_MHZ);
917 soc_clk_ctl("dmac-core-clk", NULL, CLK_PRINT | CLK_MHZ);
918 soc_clk_ctl("dmac-cfg-clk", NULL, CLK_PRINT | CLK_MHZ);
919 soc_clk_ctl("sdio-ref-clk", NULL, CLK_PRINT | CLK_MHZ);
920 soc_clk_ctl("spi-clk", NULL, CLK_PRINT | CLK_MHZ);
921 soc_clk_ctl("i2c-clk", NULL, CLK_PRINT | CLK_MHZ);
922/* soc_clk_ctl("ebi-clk", NULL, CLK_PRINT | CLK_MHZ); */
923 soc_clk_ctl("uart-clk", NULL, CLK_PRINT | CLK_MHZ);
924 printf("\n");
925
926 /* DDR clock domain */
927 soc_clk_ctl("ddr-clk", NULL, CLK_PRINT | CLK_MHZ);
928 printf("\n");
929
930 /* HDMI clock domain */
931/* soc_clk_ctl("hdmi-pll", NULL, CLK_PRINT | CLK_MHZ); */
932/* soc_clk_ctl("hdmi-clk", NULL, CLK_PRINT | CLK_MHZ); */
933/* printf("\n"); */
934
935 /* TUN clock domain */
936 soc_clk_ctl("tun-pll", NULL, CLK_PRINT | CLK_MHZ);
937 soc_clk_ctl("tun-clk", NULL, CLK_PRINT | CLK_MHZ);
938 soc_clk_ctl("rom-clk", NULL, CLK_PRINT | CLK_MHZ);
939 soc_clk_ctl("pwm-clk", NULL, CLK_PRINT | CLK_MHZ);
940 printf("\n");
941
942 return CMD_RET_SUCCESS;
943}
944
945cmd_tbl_t cmd_hsdk_clock[] = {
946 U_BOOT_CMD_MKENT(set, 3, 0, do_hsdk_clock_set, "", ""),
947 U_BOOT_CMD_MKENT(get, 3, 0, do_hsdk_clock_get, "", ""),
948 U_BOOT_CMD_MKENT(print, 4, 0, do_hsdk_clock_print, "", ""),
949 U_BOOT_CMD_MKENT(print_all, 4, 0, do_hsdk_clock_print_all, "", ""),
950};
951
952static int do_hsdk_clock(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[])
953{
954 cmd_tbl_t *c;
955
956 if (argc < 2)
957 return CMD_RET_USAGE;
958
959 /* Strip off leading 'hsdk_clock' command argument */
960 argc--;
961 argv++;
962
963 c = find_cmd_tbl(argv[0], cmd_hsdk_clock, ARRAY_SIZE(cmd_hsdk_clock));
964 if (!c)
965 return CMD_RET_USAGE;
966
967 return c->cmd(cmdtp, flag, argc, argv);
968}
969
970U_BOOT_CMD(
971 hsdk_clock, CONFIG_SYS_MAXARGS, 0, do_hsdk_clock,
972 "Synopsys HSDK specific clock command",
973 "set - Set clock to values specified in environment / command line arguments\n"
974 "hsdk_clock get - Save clock values to environment\n"
975 "hsdk_clock print - Print main clock values to console\n"
976 "hsdk_clock print_all - Print all clock values to console\n"
977);
978
979/* init calls */
980int board_early_init_f(void)
981{
982 /*
983 * Setup AXI apertures unconditionally as we want to have DDR
984 * in 0x00000000 region when we are kicking slave cpus.
985 */
986 init_memory_bridge();
987
Eugeniy Paltsev54858312019-02-25 18:35:29 +0300988 /*
989 * Switch SDIO external ciu clock divider from default div-by-8 to
990 * minimum possible div-by-2.
991 */
992 writel(SDIO_UHS_REG_EXT_DIV_2, (void __iomem *)SDIO_UHS_REG_EXT);
993
Eugeniy Paltsevada8aff2018-03-26 15:57:37 +0300994 return 0;
995}
996
997int board_early_init_r(void)
998{
999 /*
1000 * TODO: Init USB here to be able read environment from USB MSD.
1001 * It can be done with usb_init() call. We can't do it right now
1002 * due to brocken USB IP SW reset and lack of USB IP HW reset in
1003 * linux kernel (if we init USB here we will break USB in linux)
1004 */
1005
1006 /*
1007 * Flush all d$ as we want to use uncached area with st.di / ld.di
1008 * instructions and we don't want to have any dirty line in L1d$ or SL$
1009 * in this area. It is enough to flush all d$ once here as we access to
1010 * uncached area with regular st (non .di) instruction only when we copy
1011 * data during u-boot relocation.
1012 */
1013 flush_dcache_all();
1014
1015 printf("Relocation Offset is: %08lx\n", gd->reloc_off);
1016
1017 return 0;
1018}
1019
1020int board_late_init(void)
1021{
1022 /*
1023 * Populate environment with clock frequency values -
1024 * run hsdk_clock get callback without uboot command run.
1025 */
1026 do_hsdk_clock_get(NULL, 0, 0, NULL);
1027
1028 return 0;
1029}
Eugeniy Paltsev4e782b52017-10-21 15:35:12 +03001030
Alexey Brodkin6ef705b2018-11-27 09:47:01 +03001031int checkboard(void)
1032{
1033 puts("Board: Synopsys ARC HS Development Kit\n");
1034 return 0;
1035};