blob: aee8727039083a43d6d411b66a27075a32fb69cf [file] [log] [blame]
Stefan Roese2255b2d2006-10-10 12:36:02 +02001/*
2 * drivers/nand/nand_util.c
3 *
4 * Copyright (C) 2006 by Weiss-Electronic GmbH.
5 * All rights reserved.
6 *
7 * @author: Guido Classen <clagix@gmail.com>
8 * @descr: NAND Flash support
9 * @references: borrowed heavily from Linux mtd-utils code:
10 * flash_eraseall.c by Arcom Control System Ltd
11 * nandwrite.c by Steven J. Hill (sjhill@realitydiluted.com)
12 * and Thomas Gleixner (tglx@linutronix.de)
13 *
14 * See file CREDITS for list of people who contributed to this
15 * project.
16 *
17 * This program is free software; you can redistribute it and/or
18 * modify it under the terms of the GNU General Public License version
19 * 2 as published by the Free Software Foundation.
20 *
21 * This program is distributed in the hope that it will be useful,
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 * GNU General Public License for more details.
25 *
26 * You should have received a copy of the GNU General Public License
27 * along with this program; if not, write to the Free Software
28 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
29 * MA 02111-1307 USA
30 *
31 */
32
33#include <common.h>
34
Jon Loeligercb51c0b2007-07-09 17:39:42 -050035#if defined(CONFIG_CMD_NAND) && !defined(CFG_NAND_LEGACY)
Stefan Roese2255b2d2006-10-10 12:36:02 +020036
37#include <command.h>
38#include <watchdog.h>
39#include <malloc.h>
Dirk Behme3a6d56c2007-08-02 17:42:08 +020040#include <div64.h>
Stefan Roese2255b2d2006-10-10 12:36:02 +020041
42#include <nand.h>
43#include <jffs2/jffs2.h>
44
45typedef struct erase_info erase_info_t;
46typedef struct mtd_info mtd_info_t;
47
48/* support only for native endian JFFS2 */
49#define cpu_to_je16(x) (x)
50#define cpu_to_je32(x) (x)
51
52/*****************************************************************************/
53static int nand_block_bad_scrub(struct mtd_info *mtd, loff_t ofs, int getchip)
54{
55 return 0;
56}
57
58/**
59 * nand_erase_opts: - erase NAND flash with support for various options
60 * (jffs2 formating)
61 *
62 * @param meminfo NAND device to erase
63 * @param opts options, @see struct nand_erase_options
64 * @return 0 in case of success
65 *
66 * This code is ported from flash_eraseall.c from Linux mtd utils by
67 * Arcom Control System Ltd.
68 */
69int nand_erase_opts(nand_info_t *meminfo, const nand_erase_options_t *opts)
70{
71 struct jffs2_unknown_node cleanmarker;
72 int clmpos = 0;
73 int clmlen = 8;
74 erase_info_t erase;
75 ulong erase_length;
76 int isNAND;
77 int bbtest = 1;
78 int result;
79 int percent_complete = -1;
80 int (*nand_block_bad_old)(struct mtd_info *, loff_t, int) = NULL;
81 const char *mtd_device = meminfo->name;
82
83 memset(&erase, 0, sizeof(erase));
84
85 erase.mtd = meminfo;
86 erase.len = meminfo->erasesize;
Stefan Roese856f0542006-10-28 15:55:52 +020087 erase.addr = opts->offset;
88 erase_length = opts->length;
Stefan Roese2255b2d2006-10-10 12:36:02 +020089
90 isNAND = meminfo->type == MTD_NANDFLASH ? 1 : 0;
91
92 if (opts->jffs2) {
93 cleanmarker.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK);
94 cleanmarker.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER);
95 if (isNAND) {
96 struct nand_oobinfo *oobinfo = &meminfo->oobinfo;
97
98 /* check for autoplacement */
99 if (oobinfo->useecc == MTD_NANDECC_AUTOPLACE) {
100 /* get the position of the free bytes */
101 if (!oobinfo->oobfree[0][1]) {
102 printf(" Eeep. Autoplacement selected "
103 "and no empty space in oob\n");
104 return -1;
105 }
106 clmpos = oobinfo->oobfree[0][0];
107 clmlen = oobinfo->oobfree[0][1];
108 if (clmlen > 8)
109 clmlen = 8;
110 } else {
111 /* legacy mode */
112 switch (meminfo->oobsize) {
113 case 8:
114 clmpos = 6;
115 clmlen = 2;
116 break;
117 case 16:
118 clmpos = 8;
119 clmlen = 8;
120 break;
121 case 64:
122 clmpos = 16;
123 clmlen = 8;
124 break;
125 }
126 }
127
128 cleanmarker.totlen = cpu_to_je32(8);
129 } else {
130 cleanmarker.totlen =
131 cpu_to_je32(sizeof(struct jffs2_unknown_node));
132 }
133 cleanmarker.hdr_crc = cpu_to_je32(
134 crc32_no_comp(0, (unsigned char *) &cleanmarker,
135 sizeof(struct jffs2_unknown_node) - 4));
136 }
137
138 /* scrub option allows to erase badblock. To prevent internal
139 * check from erase() method, set block check method to dummy
140 * and disable bad block table while erasing.
141 */
142 if (opts->scrub) {
143 struct nand_chip *priv_nand = meminfo->priv;
144
145 nand_block_bad_old = priv_nand->block_bad;
146 priv_nand->block_bad = nand_block_bad_scrub;
147 /* we don't need the bad block table anymore...
148 * after scrub, there are no bad blocks left!
149 */
150 if (priv_nand->bbt) {
151 kfree(priv_nand->bbt);
152 }
153 priv_nand->bbt = NULL;
154 }
155
156 for (;
157 erase.addr < opts->offset + erase_length;
158 erase.addr += meminfo->erasesize) {
159
160 WATCHDOG_RESET ();
161
162 if (!opts->scrub && bbtest) {
163 int ret = meminfo->block_isbad(meminfo, erase.addr);
164 if (ret > 0) {
165 if (!opts->quiet)
166 printf("\rSkipping bad block at "
Wolfgang Denk87621bc2006-10-12 11:43:47 +0200167 "0x%08x "
168 " \n",
169 erase.addr);
Stefan Roese2255b2d2006-10-10 12:36:02 +0200170 continue;
171
172 } else if (ret < 0) {
173 printf("\n%s: MTD get bad block failed: %d\n",
174 mtd_device,
175 ret);
176 return -1;
177 }
178 }
179
180 result = meminfo->erase(meminfo, &erase);
181 if (result != 0) {
182 printf("\n%s: MTD Erase failure: %d\n",
183 mtd_device, result);
184 continue;
185 }
186
187 /* format for JFFS2 ? */
188 if (opts->jffs2) {
189
190 /* write cleanmarker */
191 if (isNAND) {
192 size_t written;
193 result = meminfo->write_oob(meminfo,
194 erase.addr + clmpos,
195 clmlen,
196 &written,
197 (unsigned char *)
198 &cleanmarker);
199 if (result != 0) {
200 printf("\n%s: MTD writeoob failure: %d\n",
201 mtd_device, result);
202 continue;
203 }
204 } else {
205 printf("\n%s: this erase routine only supports"
206 " NAND devices!\n",
207 mtd_device);
208 }
209 }
210
211 if (!opts->quiet) {
Dirk Behme3a6d56c2007-08-02 17:42:08 +0200212 unsigned long long n =(unsigned long long)
Stefan Roese2255b2d2006-10-10 12:36:02 +0200213 (erase.addr+meminfo->erasesize-opts->offset)
Dirk Behme3a6d56c2007-08-02 17:42:08 +0200214 * 100;
215 int percent = (int)do_div(n, erase_length);
Stefan Roese2255b2d2006-10-10 12:36:02 +0200216
217 /* output progress message only at whole percent
218 * steps to reduce the number of messages printed
219 * on (slow) serial consoles
220 */
221 if (percent != percent_complete) {
222 percent_complete = percent;
223
224 printf("\rErasing at 0x%x -- %3d%% complete.",
225 erase.addr, percent);
226
227 if (opts->jffs2 && result == 0)
228 printf(" Cleanmarker written at 0x%x.",
229 erase.addr);
230 }
231 }
232 }
233 if (!opts->quiet)
234 printf("\n");
235
236 if (nand_block_bad_old) {
237 struct nand_chip *priv_nand = meminfo->priv;
238
239 priv_nand->block_bad = nand_block_bad_old;
240 priv_nand->scan_bbt(meminfo);
241 }
242
243 return 0;
244}
245
246#define MAX_PAGE_SIZE 2048
247#define MAX_OOB_SIZE 64
248
249/*
250 * buffer array used for writing data
251 */
252static unsigned char data_buf[MAX_PAGE_SIZE];
253static unsigned char oob_buf[MAX_OOB_SIZE];
254
255/* OOB layouts to pass into the kernel as default */
256static struct nand_oobinfo none_oobinfo = {
257 .useecc = MTD_NANDECC_OFF,
258};
259
260static struct nand_oobinfo jffs2_oobinfo = {
261 .useecc = MTD_NANDECC_PLACE,
262 .eccbytes = 6,
263 .eccpos = { 0, 1, 2, 3, 6, 7 }
264};
265
266static struct nand_oobinfo yaffs_oobinfo = {
267 .useecc = MTD_NANDECC_PLACE,
268 .eccbytes = 6,
269 .eccpos = { 8, 9, 10, 13, 14, 15}
270};
271
272static struct nand_oobinfo autoplace_oobinfo = {
273 .useecc = MTD_NANDECC_AUTOPLACE
274};
275
276/**
277 * nand_write_opts: - write image to NAND flash with support for various options
278 *
279 * @param meminfo NAND device to erase
280 * @param opts write options (@see nand_write_options)
281 * @return 0 in case of success
282 *
283 * This code is ported from nandwrite.c from Linux mtd utils by
284 * Steven J. Hill and Thomas Gleixner.
285 */
286int nand_write_opts(nand_info_t *meminfo, const nand_write_options_t *opts)
287{
288 int imglen = 0;
289 int pagelen;
290 int baderaseblock;
291 int blockstart = -1;
292 loff_t offs;
293 int readlen;
294 int oobinfochanged = 0;
295 int percent_complete = -1;
296 struct nand_oobinfo old_oobinfo;
297 ulong mtdoffset = opts->offset;
298 ulong erasesize_blockalign;
299 u_char *buffer = opts->buffer;
300 size_t written;
301 int result;
302
303 if (opts->pad && opts->writeoob) {
304 printf("Can't pad when oob data is present.\n");
305 return -1;
306 }
307
308 /* set erasesize to specified number of blocks - to match
309 * jffs2 (virtual) block size */
310 if (opts->blockalign == 0) {
311 erasesize_blockalign = meminfo->erasesize;
312 } else {
313 erasesize_blockalign = meminfo->erasesize * opts->blockalign;
314 }
315
316 /* make sure device page sizes are valid */
317 if (!(meminfo->oobsize == 16 && meminfo->oobblock == 512)
318 && !(meminfo->oobsize == 8 && meminfo->oobblock == 256)
319 && !(meminfo->oobsize == 64 && meminfo->oobblock == 2048)) {
320 printf("Unknown flash (not normal NAND)\n");
321 return -1;
322 }
323
324 /* read the current oob info */
325 memcpy(&old_oobinfo, &meminfo->oobinfo, sizeof(old_oobinfo));
326
327 /* write without ecc? */
328 if (opts->noecc) {
329 memcpy(&meminfo->oobinfo, &none_oobinfo,
330 sizeof(meminfo->oobinfo));
331 oobinfochanged = 1;
332 }
333
334 /* autoplace ECC? */
335 if (opts->autoplace && (old_oobinfo.useecc != MTD_NANDECC_AUTOPLACE)) {
336
337 memcpy(&meminfo->oobinfo, &autoplace_oobinfo,
338 sizeof(meminfo->oobinfo));
339 oobinfochanged = 1;
340 }
341
342 /* force OOB layout for jffs2 or yaffs? */
343 if (opts->forcejffs2 || opts->forceyaffs) {
344 struct nand_oobinfo *oobsel =
345 opts->forcejffs2 ? &jffs2_oobinfo : &yaffs_oobinfo;
346
347 if (meminfo->oobsize == 8) {
348 if (opts->forceyaffs) {
349 printf("YAFSS cannot operate on "
350 "256 Byte page size\n");
351 goto restoreoob;
352 }
353 /* Adjust number of ecc bytes */
354 jffs2_oobinfo.eccbytes = 3;
355 }
356
357 memcpy(&meminfo->oobinfo, oobsel, sizeof(meminfo->oobinfo));
358 }
359
360 /* get image length */
361 imglen = opts->length;
362 pagelen = meminfo->oobblock
363 + ((opts->writeoob != 0) ? meminfo->oobsize : 0);
364
365 /* check, if file is pagealigned */
366 if ((!opts->pad) && ((imglen % pagelen) != 0)) {
367 printf("Input block length is not page aligned\n");
368 goto restoreoob;
369 }
370
371 /* check, if length fits into device */
372 if (((imglen / pagelen) * meminfo->oobblock)
373 > (meminfo->size - opts->offset)) {
374 printf("Image %d bytes, NAND page %d bytes, "
375 "OOB area %u bytes, device size %u bytes\n",
376 imglen, pagelen, meminfo->oobblock, meminfo->size);
377 printf("Input block does not fit into device\n");
378 goto restoreoob;
379 }
380
381 if (!opts->quiet)
382 printf("\n");
383
384 /* get data from input and write to the device */
385 while (imglen && (mtdoffset < meminfo->size)) {
386
387 WATCHDOG_RESET ();
388
389 /*
390 * new eraseblock, check for bad block(s). Stay in the
391 * loop to be sure if the offset changes because of
392 * a bad block, that the next block that will be
393 * written to is also checked. Thus avoiding errors if
394 * the block(s) after the skipped block(s) is also bad
395 * (number of blocks depending on the blockalign
396 */
397 while (blockstart != (mtdoffset & (~erasesize_blockalign+1))) {
398 blockstart = mtdoffset & (~erasesize_blockalign+1);
399 offs = blockstart;
400 baderaseblock = 0;
401
402 /* check all the blocks in an erase block for
403 * bad blocks */
404 do {
405 int ret = meminfo->block_isbad(meminfo, offs);
406
407 if (ret < 0) {
408 printf("Bad block check failed\n");
409 goto restoreoob;
410 }
411 if (ret == 1) {
412 baderaseblock = 1;
413 if (!opts->quiet)
414 printf("\rBad block at 0x%lx "
415 "in erase block from "
416 "0x%x will be skipped\n",
417 (long) offs,
418 blockstart);
419 }
420
421 if (baderaseblock) {
422 mtdoffset = blockstart
423 + erasesize_blockalign;
424 }
425 offs += erasesize_blockalign
426 / opts->blockalign;
427 } while (offs < blockstart + erasesize_blockalign);
428 }
429
430 readlen = meminfo->oobblock;
431 if (opts->pad && (imglen < readlen)) {
432 readlen = imglen;
433 memset(data_buf + readlen, 0xff,
434 meminfo->oobblock - readlen);
435 }
436
437 /* read page data from input memory buffer */
438 memcpy(data_buf, buffer, readlen);
439 buffer += readlen;
440
441 if (opts->writeoob) {
442 /* read OOB data from input memory block, exit
443 * on failure */
444 memcpy(oob_buf, buffer, meminfo->oobsize);
445 buffer += meminfo->oobsize;
446
447 /* write OOB data first, as ecc will be placed
448 * in there*/
449 result = meminfo->write_oob(meminfo,
450 mtdoffset,
451 meminfo->oobsize,
452 &written,
453 (unsigned char *)
454 &oob_buf);
455
456 if (result != 0) {
457 printf("\nMTD writeoob failure: %d\n",
458 result);
459 goto restoreoob;
460 }
461 imglen -= meminfo->oobsize;
462 }
463
464 /* write out the page data */
465 result = meminfo->write(meminfo,
466 mtdoffset,
467 meminfo->oobblock,
468 &written,
469 (unsigned char *) &data_buf);
470
471 if (result != 0) {
472 printf("writing NAND page at offset 0x%lx failed\n",
473 mtdoffset);
474 goto restoreoob;
475 }
476 imglen -= readlen;
477
478 if (!opts->quiet) {
Dirk Behme3a6d56c2007-08-02 17:42:08 +0200479 unsigned long long n = (unsigned long long)
480 (opts->length-imglen) * 100;
481 int percent = (int)do_div(n, opts->length);
Stefan Roese2255b2d2006-10-10 12:36:02 +0200482 /* output progress message only at whole percent
483 * steps to reduce the number of messages printed
484 * on (slow) serial consoles
485 */
486 if (percent != percent_complete) {
487 printf("\rWriting data at 0x%x "
488 "-- %3d%% complete.",
489 mtdoffset, percent);
490 percent_complete = percent;
491 }
492 }
493
494 mtdoffset += meminfo->oobblock;
495 }
496
497 if (!opts->quiet)
498 printf("\n");
499
500restoreoob:
501 if (oobinfochanged) {
502 memcpy(&meminfo->oobinfo, &old_oobinfo,
503 sizeof(meminfo->oobinfo));
504 }
505
506 if (imglen > 0) {
507 printf("Data did not fit into device, due to bad blocks\n");
508 return -1;
509 }
510
511 /* return happy */
512 return 0;
513}
514
515/**
516 * nand_read_opts: - read image from NAND flash with support for various options
517 *
518 * @param meminfo NAND device to erase
519 * @param opts read options (@see struct nand_read_options)
520 * @return 0 in case of success
521 *
522 */
523int nand_read_opts(nand_info_t *meminfo, const nand_read_options_t *opts)
524{
525 int imglen = opts->length;
526 int pagelen;
527 int baderaseblock;
528 int blockstart = -1;
529 int percent_complete = -1;
530 loff_t offs;
531 size_t readlen;
532 ulong mtdoffset = opts->offset;
533 u_char *buffer = opts->buffer;
534 int result;
535
536 /* make sure device page sizes are valid */
537 if (!(meminfo->oobsize == 16 && meminfo->oobblock == 512)
538 && !(meminfo->oobsize == 8 && meminfo->oobblock == 256)
539 && !(meminfo->oobsize == 64 && meminfo->oobblock == 2048)) {
540 printf("Unknown flash (not normal NAND)\n");
541 return -1;
542 }
543
544 pagelen = meminfo->oobblock
545 + ((opts->readoob != 0) ? meminfo->oobsize : 0);
546
547 /* check, if length is not larger than device */
548 if (((imglen / pagelen) * meminfo->oobblock)
549 > (meminfo->size - opts->offset)) {
550 printf("Image %d bytes, NAND page %d bytes, "
551 "OOB area %u bytes, device size %u bytes\n",
552 imglen, pagelen, meminfo->oobblock, meminfo->size);
553 printf("Input block is larger than device\n");
554 return -1;
555 }
556
557 if (!opts->quiet)
558 printf("\n");
559
560 /* get data from input and write to the device */
561 while (imglen && (mtdoffset < meminfo->size)) {
562
563 WATCHDOG_RESET ();
564
565 /*
566 * new eraseblock, check for bad block(s). Stay in the
567 * loop to be sure if the offset changes because of
568 * a bad block, that the next block that will be
569 * written to is also checked. Thus avoiding errors if
570 * the block(s) after the skipped block(s) is also bad
571 * (number of blocks depending on the blockalign
572 */
573 while (blockstart != (mtdoffset & (~meminfo->erasesize+1))) {
574 blockstart = mtdoffset & (~meminfo->erasesize+1);
575 offs = blockstart;
576 baderaseblock = 0;
577
578 /* check all the blocks in an erase block for
579 * bad blocks */
580 do {
581 int ret = meminfo->block_isbad(meminfo, offs);
582
583 if (ret < 0) {
584 printf("Bad block check failed\n");
585 return -1;
586 }
587 if (ret == 1) {
588 baderaseblock = 1;
589 if (!opts->quiet)
590 printf("\rBad block at 0x%lx "
591 "in erase block from "
592 "0x%x will be skipped\n",
593 (long) offs,
594 blockstart);
595 }
596
597 if (baderaseblock) {
598 mtdoffset = blockstart
599 + meminfo->erasesize;
600 }
601 offs += meminfo->erasesize;
602
603 } while (offs < blockstart + meminfo->erasesize);
604 }
605
606
607 /* read page data to memory buffer */
608 result = meminfo->read(meminfo,
609 mtdoffset,
610 meminfo->oobblock,
611 &readlen,
612 (unsigned char *) &data_buf);
613
614 if (result != 0) {
615 printf("reading NAND page at offset 0x%lx failed\n",
616 mtdoffset);
617 return -1;
618 }
619
620 if (imglen < readlen) {
621 readlen = imglen;
622 }
623
624 memcpy(buffer, data_buf, readlen);
625 buffer += readlen;
626 imglen -= readlen;
627
628 if (opts->readoob) {
629 result = meminfo->read_oob(meminfo,
630 mtdoffset,
631 meminfo->oobsize,
632 &readlen,
633 (unsigned char *)
634 &oob_buf);
635
636 if (result != 0) {
637 printf("\nMTD readoob failure: %d\n",
638 result);
639 return -1;
640 }
641
642
643 if (imglen < readlen) {
644 readlen = imglen;
645 }
646
647 memcpy(buffer, oob_buf, readlen);
648
649 buffer += readlen;
650 imglen -= readlen;
651 }
652
653 if (!opts->quiet) {
Dirk Behme3a6d56c2007-08-02 17:42:08 +0200654 unsigned long long n = (unsigned long long)
655 (opts->length-imglen) * 100;
656 int percent = (int)do_div(n ,opts->length);
Stefan Roese2255b2d2006-10-10 12:36:02 +0200657 /* output progress message only at whole percent
658 * steps to reduce the number of messages printed
659 * on (slow) serial consoles
660 */
661 if (percent != percent_complete) {
662 if (!opts->quiet)
663 printf("\rReading data from 0x%x "
664 "-- %3d%% complete.",
665 mtdoffset, percent);
666 percent_complete = percent;
667 }
668 }
669
670 mtdoffset += meminfo->oobblock;
671 }
672
673 if (!opts->quiet)
674 printf("\n");
675
676 if (imglen > 0) {
677 printf("Could not read entire image due to bad blocks\n");
678 return -1;
679 }
680
681 /* return happy */
682 return 0;
683}
684
685/******************************************************************************
686 * Support for locking / unlocking operations of some NAND devices
687 *****************************************************************************/
688
689#define NAND_CMD_LOCK 0x2a
690#define NAND_CMD_LOCK_TIGHT 0x2c
691#define NAND_CMD_UNLOCK1 0x23
692#define NAND_CMD_UNLOCK2 0x24
693#define NAND_CMD_LOCK_STATUS 0x7a
694
695/**
696 * nand_lock: Set all pages of NAND flash chip to the LOCK or LOCK-TIGHT
697 * state
698 *
699 * @param meminfo nand mtd instance
700 * @param tight bring device in lock tight mode
701 *
702 * @return 0 on success, -1 in case of error
703 *
704 * The lock / lock-tight command only applies to the whole chip. To get some
705 * parts of the chip lock and others unlocked use the following sequence:
706 *
707 * - Lock all pages of the chip using nand_lock(mtd, 0) (or the lockpre pin)
708 * - Call nand_unlock() once for each consecutive area to be unlocked
709 * - If desired: Bring the chip to the lock-tight state using nand_lock(mtd, 1)
710 *
711 * If the device is in lock-tight state software can't change the
712 * current active lock/unlock state of all pages. nand_lock() / nand_unlock()
713 * calls will fail. It is only posible to leave lock-tight state by
714 * an hardware signal (low pulse on _WP pin) or by power down.
715 */
716int nand_lock(nand_info_t *meminfo, int tight)
717{
718 int ret = 0;
719 int status;
720 struct nand_chip *this = meminfo->priv;
721
722 /* select the NAND device */
723 this->select_chip(meminfo, 0);
724
725 this->cmdfunc(meminfo,
726 (tight ? NAND_CMD_LOCK_TIGHT : NAND_CMD_LOCK),
727 -1, -1);
728
729 /* call wait ready function */
730 status = this->waitfunc(meminfo, this, FL_WRITING);
731
732 /* see if device thinks it succeeded */
733 if (status & 0x01) {
734 ret = -1;
735 }
736
737 /* de-select the NAND device */
738 this->select_chip(meminfo, -1);
739 return ret;
740}
741
742/**
743 * nand_get_lock_status: - query current lock state from one page of NAND
744 * flash
745 *
746 * @param meminfo nand mtd instance
747 * @param offset page address to query (muss be page aligned!)
748 *
749 * @return -1 in case of error
750 * >0 lock status:
751 * bitfield with the following combinations:
752 * NAND_LOCK_STATUS_TIGHT: page in tight state
753 * NAND_LOCK_STATUS_LOCK: page locked
754 * NAND_LOCK_STATUS_UNLOCK: page unlocked
755 *
756 */
757int nand_get_lock_status(nand_info_t *meminfo, ulong offset)
758{
759 int ret = 0;
760 int chipnr;
761 int page;
762 struct nand_chip *this = meminfo->priv;
763
764 /* select the NAND device */
765 chipnr = (int)(offset >> this->chip_shift);
766 this->select_chip(meminfo, chipnr);
767
768
769 if ((offset & (meminfo->oobblock - 1)) != 0) {
770 printf ("nand_get_lock_status: "
771 "Start address must be beginning of "
772 "nand page!\n");
773 ret = -1;
774 goto out;
775 }
776
777 /* check the Lock Status */
778 page = (int)(offset >> this->page_shift);
779 this->cmdfunc(meminfo, NAND_CMD_LOCK_STATUS, -1, page & this->pagemask);
780
781 ret = this->read_byte(meminfo) & (NAND_LOCK_STATUS_TIGHT
782 | NAND_LOCK_STATUS_LOCK
783 | NAND_LOCK_STATUS_UNLOCK);
784
785 out:
786 /* de-select the NAND device */
787 this->select_chip(meminfo, -1);
788 return ret;
789}
790
791/**
792 * nand_unlock: - Unlock area of NAND pages
793 * only one consecutive area can be unlocked at one time!
794 *
795 * @param meminfo nand mtd instance
796 * @param start start byte address
797 * @param length number of bytes to unlock (must be a multiple of
798 * page size nand->oobblock)
799 *
800 * @return 0 on success, -1 in case of error
801 */
802int nand_unlock(nand_info_t *meminfo, ulong start, ulong length)
803{
804 int ret = 0;
805 int chipnr;
806 int status;
807 int page;
808 struct nand_chip *this = meminfo->priv;
809 printf ("nand_unlock: start: %08x, length: %d!\n",
810 (int)start, (int)length);
811
812 /* select the NAND device */
813 chipnr = (int)(start >> this->chip_shift);
814 this->select_chip(meminfo, chipnr);
815
816 /* check the WP bit */
817 this->cmdfunc(meminfo, NAND_CMD_STATUS, -1, -1);
818 if ((this->read_byte(meminfo) & 0x80) == 0) {
819 printf ("nand_unlock: Device is write protected!\n");
820 ret = -1;
821 goto out;
822 }
823
824 if ((start & (meminfo->oobblock - 1)) != 0) {
825 printf ("nand_unlock: Start address must be beginning of "
826 "nand page!\n");
827 ret = -1;
828 goto out;
829 }
830
831 if (length == 0 || (length & (meminfo->oobblock - 1)) != 0) {
832 printf ("nand_unlock: Length must be a multiple of nand page "
833 "size!\n");
834 ret = -1;
835 goto out;
836 }
837
838 /* submit address of first page to unlock */
839 page = (int)(start >> this->page_shift);
840 this->cmdfunc(meminfo, NAND_CMD_UNLOCK1, -1, page & this->pagemask);
841
842 /* submit ADDRESS of LAST page to unlock */
843 page += (int)(length >> this->page_shift) - 1;
844 this->cmdfunc(meminfo, NAND_CMD_UNLOCK2, -1, page & this->pagemask);
845
846 /* call wait ready function */
847 status = this->waitfunc(meminfo, this, FL_WRITING);
848 /* see if device thinks it succeeded */
849 if (status & 0x01) {
850 /* there was an error */
851 ret = -1;
852 goto out;
853 }
854
855 out:
856 /* de-select the NAND device */
857 this->select_chip(meminfo, -1);
858 return ret;
859}
860
Jon Loeligercb51c0b2007-07-09 17:39:42 -0500861#endif