blob: 7faabddbf249a60a7c4811cfcf2a265be1eda060 [file] [log] [blame]
Stefan Roese35f2edb2009-06-09 16:57:03 +02001/*
2 * Copyright 2004-2008 Freescale Semiconductor, Inc.
3 * Copyright 2009 Semihalf.
4 * (C) Copyright 2009 Stefan Roese <sr@denx.de>
5 *
6 * Based on original driver from Freescale Semiconductor
7 * written by John Rigby <jrigby@freescale.com> on basis
8 * of drivers/mtd/nand/mxc_nand.c. Reworked and extended
9 * Piotr Ziecik <kosmo@semihalf.com>.
10 *
Wolfgang Denk1a459662013-07-08 09:37:19 +020011 * SPDX-License-Identifier: GPL-2.0+
Stefan Roese35f2edb2009-06-09 16:57:03 +020012 */
13
14#include <common.h>
15#include <malloc.h>
16
17#include <linux/mtd/mtd.h>
18#include <linux/mtd/nand.h>
19#include <linux/mtd/nand_ecc.h>
Mike Frysinger7b15e2b2012-04-09 13:39:55 +000020#include <linux/compat.h>
Stefan Roese35f2edb2009-06-09 16:57:03 +020021
Masahiro Yamada1221ce42016-09-21 11:28:55 +090022#include <linux/errno.h>
Stefan Roese35f2edb2009-06-09 16:57:03 +020023#include <asm/io.h>
24#include <asm/processor.h>
25#include <nand.h>
26
27#define DRV_NAME "mpc5121_nfc"
28
29/* Timeouts */
30#define NFC_RESET_TIMEOUT 1000 /* 1 ms */
31#define NFC_TIMEOUT 2000 /* 2000 us */
32
33/* Addresses for NFC MAIN RAM BUFFER areas */
34#define NFC_MAIN_AREA(n) ((n) * 0x200)
35
36/* Addresses for NFC SPARE BUFFER areas */
37#define NFC_SPARE_BUFFERS 8
38#define NFC_SPARE_LEN 0x40
39#define NFC_SPARE_AREA(n) (0x1000 + ((n) * NFC_SPARE_LEN))
40
41/* MPC5121 NFC registers */
42#define NFC_BUF_ADDR 0x1E04
43#define NFC_FLASH_ADDR 0x1E06
44#define NFC_FLASH_CMD 0x1E08
45#define NFC_CONFIG 0x1E0A
46#define NFC_ECC_STATUS1 0x1E0C
47#define NFC_ECC_STATUS2 0x1E0E
48#define NFC_SPAS 0x1E10
49#define NFC_WRPROT 0x1E12
50#define NFC_NF_WRPRST 0x1E18
51#define NFC_CONFIG1 0x1E1A
52#define NFC_CONFIG2 0x1E1C
53#define NFC_UNLOCKSTART_BLK0 0x1E20
54#define NFC_UNLOCKEND_BLK0 0x1E22
55#define NFC_UNLOCKSTART_BLK1 0x1E24
56#define NFC_UNLOCKEND_BLK1 0x1E26
57#define NFC_UNLOCKSTART_BLK2 0x1E28
58#define NFC_UNLOCKEND_BLK2 0x1E2A
59#define NFC_UNLOCKSTART_BLK3 0x1E2C
60#define NFC_UNLOCKEND_BLK3 0x1E2E
61
62/* Bit Definitions: NFC_BUF_ADDR */
63#define NFC_RBA_MASK (7 << 0)
64#define NFC_ACTIVE_CS_SHIFT 5
65#define NFC_ACTIVE_CS_MASK (3 << NFC_ACTIVE_CS_SHIFT)
66
67/* Bit Definitions: NFC_CONFIG */
68#define NFC_BLS_UNLOCKED (1 << 1)
69
70/* Bit Definitions: NFC_CONFIG1 */
71#define NFC_ECC_4BIT (1 << 0)
72#define NFC_FULL_PAGE_DMA (1 << 1)
73#define NFC_SPARE_ONLY (1 << 2)
74#define NFC_ECC_ENABLE (1 << 3)
75#define NFC_INT_MASK (1 << 4)
76#define NFC_BIG_ENDIAN (1 << 5)
77#define NFC_RESET (1 << 6)
78#define NFC_CE (1 << 7)
79#define NFC_ONE_CYCLE (1 << 8)
80#define NFC_PPB_32 (0 << 9)
81#define NFC_PPB_64 (1 << 9)
82#define NFC_PPB_128 (2 << 9)
83#define NFC_PPB_256 (3 << 9)
84#define NFC_PPB_MASK (3 << 9)
85#define NFC_FULL_PAGE_INT (1 << 11)
86
87/* Bit Definitions: NFC_CONFIG2 */
88#define NFC_COMMAND (1 << 0)
89#define NFC_ADDRESS (1 << 1)
90#define NFC_INPUT (1 << 2)
91#define NFC_OUTPUT (1 << 3)
92#define NFC_ID (1 << 4)
93#define NFC_STATUS (1 << 5)
94#define NFC_CMD_FAIL (1 << 15)
95#define NFC_INT (1 << 15)
96
97/* Bit Definitions: NFC_WRPROT */
98#define NFC_WPC_LOCK_TIGHT (1 << 0)
99#define NFC_WPC_LOCK (1 << 1)
100#define NFC_WPC_UNLOCK (1 << 2)
101
102struct mpc5121_nfc_prv {
Stefan Roese35f2edb2009-06-09 16:57:03 +0200103 struct nand_chip chip;
104 int irq;
105 void __iomem *regs;
106 struct clk *clk;
107 uint column;
108 int spareonly;
109 int chipsel;
110};
111
112int mpc5121_nfc_chip = 0;
113
114static void mpc5121_nfc_done(struct mtd_info *mtd);
115
116/* Read NFC register */
117static inline u16 nfc_read(struct mtd_info *mtd, uint reg)
118{
Scott Wood17cb4b82016-05-30 13:57:56 -0500119 struct nand_chip *chip = mtd_to_nand(mtd);
120 struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip);
Stefan Roese35f2edb2009-06-09 16:57:03 +0200121
122 return in_be16(prv->regs + reg);
123}
124
125/* Write NFC register */
126static inline void nfc_write(struct mtd_info *mtd, uint reg, u16 val)
127{
Scott Wood17cb4b82016-05-30 13:57:56 -0500128 struct nand_chip *chip = mtd_to_nand(mtd);
129 struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip);
Stefan Roese35f2edb2009-06-09 16:57:03 +0200130
131 out_be16(prv->regs + reg, val);
132}
133
134/* Set bits in NFC register */
135static inline void nfc_set(struct mtd_info *mtd, uint reg, u16 bits)
136{
137 nfc_write(mtd, reg, nfc_read(mtd, reg) | bits);
138}
139
140/* Clear bits in NFC register */
141static inline void nfc_clear(struct mtd_info *mtd, uint reg, u16 bits)
142{
143 nfc_write(mtd, reg, nfc_read(mtd, reg) & ~bits);
144}
145
146/* Invoke address cycle */
147static inline void mpc5121_nfc_send_addr(struct mtd_info *mtd, u16 addr)
148{
149 nfc_write(mtd, NFC_FLASH_ADDR, addr);
150 nfc_write(mtd, NFC_CONFIG2, NFC_ADDRESS);
151 mpc5121_nfc_done(mtd);
152}
153
154/* Invoke command cycle */
155static inline void mpc5121_nfc_send_cmd(struct mtd_info *mtd, u16 cmd)
156{
157 nfc_write(mtd, NFC_FLASH_CMD, cmd);
158 nfc_write(mtd, NFC_CONFIG2, NFC_COMMAND);
159 mpc5121_nfc_done(mtd);
160}
161
162/* Send data from NFC buffers to NAND flash */
163static inline void mpc5121_nfc_send_prog_page(struct mtd_info *mtd)
164{
165 nfc_clear(mtd, NFC_BUF_ADDR, NFC_RBA_MASK);
166 nfc_write(mtd, NFC_CONFIG2, NFC_INPUT);
167 mpc5121_nfc_done(mtd);
168}
169
170/* Receive data from NAND flash */
171static inline void mpc5121_nfc_send_read_page(struct mtd_info *mtd)
172{
173 nfc_clear(mtd, NFC_BUF_ADDR, NFC_RBA_MASK);
174 nfc_write(mtd, NFC_CONFIG2, NFC_OUTPUT);
175 mpc5121_nfc_done(mtd);
176}
177
178/* Receive ID from NAND flash */
179static inline void mpc5121_nfc_send_read_id(struct mtd_info *mtd)
180{
181 nfc_clear(mtd, NFC_BUF_ADDR, NFC_RBA_MASK);
182 nfc_write(mtd, NFC_CONFIG2, NFC_ID);
183 mpc5121_nfc_done(mtd);
184}
185
186/* Receive status from NAND flash */
187static inline void mpc5121_nfc_send_read_status(struct mtd_info *mtd)
188{
189 nfc_clear(mtd, NFC_BUF_ADDR, NFC_RBA_MASK);
190 nfc_write(mtd, NFC_CONFIG2, NFC_STATUS);
191 mpc5121_nfc_done(mtd);
192}
193
194static void mpc5121_nfc_done(struct mtd_info *mtd)
195{
196 int max_retries = NFC_TIMEOUT;
197
198 while (1) {
199 max_retries--;
200 if (nfc_read(mtd, NFC_CONFIG2) & NFC_INT)
201 break;
202 udelay(1);
203 }
204
205 if (max_retries <= 0)
206 printk(KERN_WARNING DRV_NAME
207 ": Timeout while waiting for completion.\n");
208}
209
210/* Do address cycle(s) */
211static void mpc5121_nfc_addr_cycle(struct mtd_info *mtd, int column, int page)
212{
Scott Wood17cb4b82016-05-30 13:57:56 -0500213 struct nand_chip *chip = mtd_to_nand(mtd);
Stefan Roese35f2edb2009-06-09 16:57:03 +0200214 u32 pagemask = chip->pagemask;
215
216 if (column != -1) {
217 mpc5121_nfc_send_addr(mtd, column);
218 if (mtd->writesize > 512)
219 mpc5121_nfc_send_addr(mtd, column >> 8);
220 }
221
222 if (page != -1) {
223 do {
224 mpc5121_nfc_send_addr(mtd, page & 0xFF);
225 page >>= 8;
226 pagemask >>= 8;
227 } while (pagemask);
228 }
229}
230
231/* Control chip select signals */
232
233/*
234 * Selecting the active device:
235 *
236 * This is different than the linux version. Switching between chips
237 * is done via board_nand_select_device(). The Linux select_chip
238 * function used here in U-Boot has only 2 valid chip numbers:
239 * 0 select
240 * -1 deselect
241 */
242
243/*
244 * Implement it as a weak default, so that boards with a specific
245 * chip-select routine can use their own function.
246 */
247void __mpc5121_nfc_select_chip(struct mtd_info *mtd, int chip)
248{
249 if (chip < 0) {
250 nfc_clear(mtd, NFC_CONFIG1, NFC_CE);
251 return;
252 }
253
254 nfc_clear(mtd, NFC_BUF_ADDR, NFC_ACTIVE_CS_MASK);
255 nfc_set(mtd, NFC_BUF_ADDR, (chip << NFC_ACTIVE_CS_SHIFT) &
256 NFC_ACTIVE_CS_MASK);
257 nfc_set(mtd, NFC_CONFIG1, NFC_CE);
258}
259void mpc5121_nfc_select_chip(struct mtd_info *mtd, int chip)
260 __attribute__((weak, alias("__mpc5121_nfc_select_chip")));
261
262void board_nand_select_device(struct nand_chip *nand, int chip)
263{
264 /*
265 * Only save this chip number in global variable here. This
266 * will be used later in mpc5121_nfc_select_chip().
267 */
268 mpc5121_nfc_chip = chip;
269}
270
271/* Read NAND Ready/Busy signal */
272static int mpc5121_nfc_dev_ready(struct mtd_info *mtd)
273{
274 /*
275 * NFC handles ready/busy signal internally. Therefore, this function
276 * always returns status as ready.
277 */
278 return 1;
279}
280
281/* Write command to NAND flash */
282static void mpc5121_nfc_command(struct mtd_info *mtd, unsigned command,
283 int column, int page)
284{
Scott Wood17cb4b82016-05-30 13:57:56 -0500285 struct nand_chip *chip = mtd_to_nand(mtd);
286 struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip);
Stefan Roese35f2edb2009-06-09 16:57:03 +0200287
288 prv->column = (column >= 0) ? column : 0;
289 prv->spareonly = 0;
290
291 switch (command) {
292 case NAND_CMD_PAGEPROG:
293 mpc5121_nfc_send_prog_page(mtd);
294 break;
295 /*
296 * NFC does not support sub-page reads and writes,
297 * so emulate them using full page transfers.
298 */
299 case NAND_CMD_READ0:
300 column = 0;
301 break;
302
303 case NAND_CMD_READ1:
304 prv->column += 256;
305 command = NAND_CMD_READ0;
306 column = 0;
307 break;
308
309 case NAND_CMD_READOOB:
310 prv->spareonly = 1;
311 command = NAND_CMD_READ0;
312 column = 0;
313 break;
314
315 case NAND_CMD_SEQIN:
316 mpc5121_nfc_command(mtd, NAND_CMD_READ0, column, page);
317 column = 0;
318 break;
319
320 case NAND_CMD_ERASE1:
321 case NAND_CMD_ERASE2:
322 case NAND_CMD_READID:
323 case NAND_CMD_STATUS:
Paul Gibsond3f49412009-09-16 10:05:00 +1000324 case NAND_CMD_RESET:
Stefan Roese35f2edb2009-06-09 16:57:03 +0200325 break;
326
327 default:
328 return;
329 }
330
331 mpc5121_nfc_send_cmd(mtd, command);
332 mpc5121_nfc_addr_cycle(mtd, column, page);
333
334 switch (command) {
335 case NAND_CMD_READ0:
336 if (mtd->writesize > 512)
337 mpc5121_nfc_send_cmd(mtd, NAND_CMD_READSTART);
338 mpc5121_nfc_send_read_page(mtd);
339 break;
340
341 case NAND_CMD_READID:
342 mpc5121_nfc_send_read_id(mtd);
343 break;
344
345 case NAND_CMD_STATUS:
346 mpc5121_nfc_send_read_status(mtd);
347 if (chip->options & NAND_BUSWIDTH_16)
348 prv->column = 1;
349 else
350 prv->column = 0;
351 break;
352 }
353}
354
355/* Copy data from/to NFC spare buffers. */
356static void mpc5121_nfc_copy_spare(struct mtd_info *mtd, uint offset,
357 u8 * buffer, uint size, int wr)
358{
Scott Wood17cb4b82016-05-30 13:57:56 -0500359 struct nand_chip *nand = mtd_to_nand(mtd);
360 struct mpc5121_nfc_prv *prv = nand_get_controller_data(nand);
Stefan Roese35f2edb2009-06-09 16:57:03 +0200361 uint o, s, sbsize, blksize;
362
363 /*
364 * NAND spare area is available through NFC spare buffers.
365 * The NFC divides spare area into (page_size / 512) chunks.
366 * Each chunk is placed into separate spare memory area, using
367 * first (spare_size / num_of_chunks) bytes of the buffer.
368 *
369 * For NAND device in which the spare area is not divided fully
370 * by the number of chunks, number of used bytes in each spare
371 * buffer is rounded down to the nearest even number of bytes,
372 * and all remaining bytes are added to the last used spare area.
373 *
374 * For more information read section 26.6.10 of MPC5121e
375 * Microcontroller Reference Manual, Rev. 3.
376 */
377
378 /* Calculate number of valid bytes in each spare buffer */
379 sbsize = (mtd->oobsize / (mtd->writesize / 512)) & ~1;
380
381 while (size) {
382 /* Calculate spare buffer number */
383 s = offset / sbsize;
384 if (s > NFC_SPARE_BUFFERS - 1)
385 s = NFC_SPARE_BUFFERS - 1;
386
387 /*
388 * Calculate offset to requested data block in selected spare
389 * buffer and its size.
390 */
391 o = offset - (s * sbsize);
392 blksize = min(sbsize - o, size);
393
394 if (wr)
395 memcpy_toio(prv->regs + NFC_SPARE_AREA(s) + o,
396 buffer, blksize);
397 else
398 memcpy_fromio(buffer,
399 prv->regs + NFC_SPARE_AREA(s) + o,
400 blksize);
401
402 buffer += blksize;
403 offset += blksize;
404 size -= blksize;
405 };
406}
407
408/* Copy data from/to NFC main and spare buffers */
409static void mpc5121_nfc_buf_copy(struct mtd_info *mtd, u_char * buf, int len,
410 int wr)
411{
Scott Wood17cb4b82016-05-30 13:57:56 -0500412 struct nand_chip *chip = mtd_to_nand(mtd);
413 struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip);
Stefan Roese35f2edb2009-06-09 16:57:03 +0200414 uint c = prv->column;
415 uint l;
416
417 /* Handle spare area access */
418 if (prv->spareonly || c >= mtd->writesize) {
419 /* Calculate offset from beginning of spare area */
420 if (c >= mtd->writesize)
421 c -= mtd->writesize;
422
423 prv->column += len;
424 mpc5121_nfc_copy_spare(mtd, c, buf, len, wr);
425 return;
426 }
427
428 /*
429 * Handle main area access - limit copy length to prevent
430 * crossing main/spare boundary.
431 */
432 l = min((uint) len, mtd->writesize - c);
433 prv->column += l;
434
435 if (wr)
436 memcpy_toio(prv->regs + NFC_MAIN_AREA(0) + c, buf, l);
437 else
438 memcpy_fromio(buf, prv->regs + NFC_MAIN_AREA(0) + c, l);
439
440 /* Handle crossing main/spare boundary */
441 if (l != len) {
442 buf += l;
443 len -= l;
444 mpc5121_nfc_buf_copy(mtd, buf, len, wr);
445 }
446}
447
448/* Read data from NFC buffers */
449static void mpc5121_nfc_read_buf(struct mtd_info *mtd, u_char * buf, int len)
450{
451 mpc5121_nfc_buf_copy(mtd, buf, len, 0);
452}
453
454/* Write data to NFC buffers */
455static void mpc5121_nfc_write_buf(struct mtd_info *mtd,
456 const u_char * buf, int len)
457{
458 mpc5121_nfc_buf_copy(mtd, (u_char *) buf, len, 1);
459}
460
Stefan Roese35f2edb2009-06-09 16:57:03 +0200461/* Read byte from NFC buffers */
462static u8 mpc5121_nfc_read_byte(struct mtd_info *mtd)
463{
464 u8 tmp;
465
466 mpc5121_nfc_read_buf(mtd, &tmp, sizeof(tmp));
467
468 return tmp;
469}
470
471/* Read word from NFC buffers */
472static u16 mpc5121_nfc_read_word(struct mtd_info *mtd)
473{
474 u16 tmp;
475
476 mpc5121_nfc_read_buf(mtd, (u_char *) & tmp, sizeof(tmp));
477
478 return tmp;
479}
480
481/*
482 * Read NFC configuration from Reset Config Word
483 *
484 * NFC is configured during reset in basis of information stored
485 * in Reset Config Word. There is no other way to set NAND block
486 * size, spare size and bus width.
487 */
488static int mpc5121_nfc_read_hw_config(struct mtd_info *mtd)
489{
490 immap_t *im = (immap_t *)CONFIG_SYS_IMMR;
Scott Wood17cb4b82016-05-30 13:57:56 -0500491 struct nand_chip *chip = mtd_to_nand(mtd);
Stefan Roese35f2edb2009-06-09 16:57:03 +0200492 uint rcw_pagesize = 0;
493 uint rcw_sparesize = 0;
494 uint rcw_width;
495 uint rcwh;
496 uint romloc, ps;
497
498 rcwh = in_be32(&(im->reset.rcwh));
499
500 /* Bit 6: NFC bus width */
501 rcw_width = ((rcwh >> 6) & 0x1) ? 2 : 1;
502
503 /* Bit 7: NFC Page/Spare size */
504 ps = (rcwh >> 7) & 0x1;
505
506 /* Bits [22:21]: ROM Location */
507 romloc = (rcwh >> 21) & 0x3;
508
509 /* Decode RCW bits */
510 switch ((ps << 2) | romloc) {
511 case 0x00:
512 case 0x01:
513 rcw_pagesize = 512;
514 rcw_sparesize = 16;
515 break;
516 case 0x02:
517 case 0x03:
518 rcw_pagesize = 4096;
519 rcw_sparesize = 128;
520 break;
521 case 0x04:
522 case 0x05:
523 rcw_pagesize = 2048;
524 rcw_sparesize = 64;
525 break;
526 case 0x06:
527 case 0x07:
528 rcw_pagesize = 4096;
529 rcw_sparesize = 218;
530 break;
531 }
532
533 mtd->writesize = rcw_pagesize;
534 mtd->oobsize = rcw_sparesize;
535 if (rcw_width == 2)
536 chip->options |= NAND_BUSWIDTH_16;
537
538 debug(KERN_NOTICE DRV_NAME ": Configured for "
539 "%u-bit NAND, page size %u with %u spare.\n",
540 rcw_width * 8, rcw_pagesize, rcw_sparesize);
541 return 0;
542}
543
544int board_nand_init(struct nand_chip *chip)
545{
546 struct mpc5121_nfc_prv *prv;
547 struct mtd_info *mtd;
548 int resettime = 0;
549 int retval = 0;
550 int rev;
Stefan Roese35f2edb2009-06-09 16:57:03 +0200551
552 /*
553 * Check SoC revision. This driver supports only NFC
554 * in MPC5121 revision 2.
555 */
556 rev = (mfspr(SPRN_SVR) >> 4) & 0xF;
557 if (rev != 2) {
558 printk(KERN_ERR DRV_NAME
559 ": SoC revision %u is not supported!\n", rev);
560 return -ENXIO;
561 }
562
563 prv = malloc(sizeof(*prv));
564 if (!prv) {
565 printk(KERN_ERR DRV_NAME ": Memory exhausted!\n");
566 return -ENOMEM;
567 }
568
Scott Woodb616d9b2016-05-30 13:57:55 -0500569 mtd = &chip->mtd;
Scott Wood17cb4b82016-05-30 13:57:56 -0500570 nand_set_controller_data(chip, prv);
Stefan Roese35f2edb2009-06-09 16:57:03 +0200571
572 /* Read NFC configuration from Reset Config Word */
573 retval = mpc5121_nfc_read_hw_config(mtd);
574 if (retval) {
575 printk(KERN_ERR DRV_NAME ": Unable to read NFC config!\n");
576 return retval;
577 }
578
579 prv->regs = (void __iomem *)CONFIG_SYS_NAND_BASE;
580 chip->dev_ready = mpc5121_nfc_dev_ready;
581 chip->cmdfunc = mpc5121_nfc_command;
582 chip->read_byte = mpc5121_nfc_read_byte;
583 chip->read_word = mpc5121_nfc_read_word;
584 chip->read_buf = mpc5121_nfc_read_buf;
585 chip->write_buf = mpc5121_nfc_write_buf;
Stefan Roese35f2edb2009-06-09 16:57:03 +0200586 chip->select_chip = mpc5121_nfc_select_chip;
Sergey Lapindfe64e22013-01-14 03:46:50 +0000587 chip->bbt_options = NAND_BBT_USE_FLASH;
Stefan Roese35f2edb2009-06-09 16:57:03 +0200588 chip->ecc.mode = NAND_ECC_SOFT;
589
590 /* Reset NAND Flash controller */
591 nfc_set(mtd, NFC_CONFIG1, NFC_RESET);
592 while (nfc_read(mtd, NFC_CONFIG1) & NFC_RESET) {
593 if (resettime++ >= NFC_RESET_TIMEOUT) {
594 printk(KERN_ERR DRV_NAME
595 ": Timeout while resetting NFC!\n");
596 retval = -EINVAL;
597 goto error;
598 }
599
600 udelay(1);
601 }
602
603 /* Enable write to NFC memory */
604 nfc_write(mtd, NFC_CONFIG, NFC_BLS_UNLOCKED);
605
606 /* Enable write to all NAND pages */
607 nfc_write(mtd, NFC_UNLOCKSTART_BLK0, 0x0000);
608 nfc_write(mtd, NFC_UNLOCKEND_BLK0, 0xFFFF);
609 nfc_write(mtd, NFC_WRPROT, NFC_WPC_UNLOCK);
610
611 /*
612 * Setup NFC:
613 * - Big Endian transfers,
614 * - Interrupt after full page read/write.
615 */
616 nfc_write(mtd, NFC_CONFIG1, NFC_BIG_ENDIAN | NFC_INT_MASK |
617 NFC_FULL_PAGE_INT);
618
619 /* Set spare area size */
620 nfc_write(mtd, NFC_SPAS, mtd->oobsize >> 1);
621
622 /* Detect NAND chips */
623 if (nand_scan(mtd, 1)) {
624 printk(KERN_ERR DRV_NAME ": NAND Flash not found !\n");
625 retval = -ENXIO;
626 goto error;
627 }
628
629 /* Set erase block size */
630 switch (mtd->erasesize / mtd->writesize) {
631 case 32:
632 nfc_set(mtd, NFC_CONFIG1, NFC_PPB_32);
633 break;
634
635 case 64:
636 nfc_set(mtd, NFC_CONFIG1, NFC_PPB_64);
637 break;
638
639 case 128:
640 nfc_set(mtd, NFC_CONFIG1, NFC_PPB_128);
641 break;
642
643 case 256:
644 nfc_set(mtd, NFC_CONFIG1, NFC_PPB_256);
645 break;
646
647 default:
648 printk(KERN_ERR DRV_NAME ": Unsupported NAND flash!\n");
649 retval = -ENXIO;
650 goto error;
651 }
652
653 return 0;
654error:
655 return retval;
656}