blob: d98455401a0822cfc27524f6d824443630c712d3 [file] [log] [blame]
wdenk42d1f032003-10-15 23:53:47 +00001/*
Ed Swarthout40c7f9b2007-07-27 01:50:48 -05002 * Copyright 2004, 2007 Freescale Semiconductor.
wdenk42d1f032003-10-15 23:53:47 +00003 * (C) Copyright 2003 Motorola Inc.
4 * Xianghua Xiao (X.Xiao@motorola.com)
5 *
6 * See file CREDITS for list of people who contributed to this
7 * project.
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of
12 * the License, or (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
22 * MA 02111-1307 USA
23 */
24
25#include <common.h>
26#include <asm/processor.h>
27#include <i2c.h>
28#include <spd.h>
29#include <asm/mmu.h>
30
Jon Loeligerd9b94f22005-07-25 14:05:07 -050031
32#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
33extern void dma_init(void);
wdenk9aea9532004-08-01 23:02:45 +000034extern uint dma_check(void);
Jon Loeligerd9b94f22005-07-25 14:05:07 -050035extern int dma_xfer(void *dest, uint count, void *src);
wdenk42d1f032003-10-15 23:53:47 +000036#endif
37
wdenk384cc682005-04-03 22:35:21 +000038#ifdef CONFIG_SPD_EEPROM
wdenk42d1f032003-10-15 23:53:47 +000039
wdenk9aea9532004-08-01 23:02:45 +000040#ifndef CFG_READ_SPD
41#define CFG_READ_SPD i2c_read
42#endif
43
Jon Loeligerd9b94f22005-07-25 14:05:07 -050044static unsigned int setup_laws_and_tlbs(unsigned int memsize);
45
46
wdenk9aea9532004-08-01 23:02:45 +000047/*
48 * Convert picoseconds into clock cycles (rounding up if needed).
49 */
50
51int
52picos_to_clk(int picos)
53{
54 int clks;
55
56 clks = picos / (2000000000 / (get_bus_freq(0) / 1000));
57 if (picos % (2000000000 / (get_bus_freq(0) / 1000)) != 0) {
58 clks++;
59 }
60
61 return clks;
62}
63
Jon Loeligerd9b94f22005-07-25 14:05:07 -050064
65/*
66 * Calculate the Density of each Physical Rank.
67 * Returned size is in bytes.
68 *
69 * Study these table from Byte 31 of JEDEC SPD Spec.
70 *
71 * DDR I DDR II
72 * Bit Size Size
73 * --- ----- ------
74 * 7 high 512MB 512MB
75 * 6 256MB 256MB
76 * 5 128MB 128MB
77 * 4 64MB 16GB
78 * 3 32MB 8GB
79 * 2 16MB 4GB
80 * 1 2GB 2GB
81 * 0 low 1GB 1GB
82 *
83 * Reorder Table to be linear by stripping the bottom
84 * 2 or 5 bits off and shifting them up to the top.
85 */
86
wdenk9aea9532004-08-01 23:02:45 +000087unsigned int
Jon Loeligerd9b94f22005-07-25 14:05:07 -050088compute_banksize(unsigned int mem_type, unsigned char row_dens)
wdenk9aea9532004-08-01 23:02:45 +000089{
Jon Loeligerd9b94f22005-07-25 14:05:07 -050090 unsigned int bsize;
91
92 if (mem_type == SPD_MEMTYPE_DDR) {
93 /* Bottom 2 bits up to the top. */
94 bsize = ((row_dens >> 2) | ((row_dens & 3) << 6)) << 24;
95 debug("DDR: DDR I rank density = 0x%08x\n", bsize);
96 } else {
97 /* Bottom 5 bits up to the top. */
98 bsize = ((row_dens >> 5) | ((row_dens & 31) << 3)) << 27;
99 debug("DDR: DDR II rank density = 0x%08x\n", bsize);
100 }
101 return bsize;
wdenk9aea9532004-08-01 23:02:45 +0000102}
103
Jon Loeligerd9b94f22005-07-25 14:05:07 -0500104
105/*
106 * Convert a two-nibble BCD value into a cycle time.
107 * While the spec calls for nano-seconds, picos are returned.
108 *
109 * This implements the tables for bytes 9, 23 and 25 for both
110 * DDR I and II. No allowance for distinguishing the invalid
111 * fields absent for DDR I yet present in DDR II is made.
112 * (That is, cycle times of .25, .33, .66 and .75 ns are
113 * allowed for both DDR II and I.)
114 */
115
116unsigned int
117convert_bcd_tenths_to_cycle_time_ps(unsigned int spd_val)
118{
119 /*
120 * Table look up the lower nibble, allow DDR I & II.
121 */
122 unsigned int tenths_ps[16] = {
123 0,
124 100,
125 200,
126 300,
127 400,
128 500,
129 600,
130 700,
131 800,
132 900,
133 250,
Jon Loeliger1fd56992006-10-10 17:19:03 -0500134 330,
135 660,
Jon Loeligerd9b94f22005-07-25 14:05:07 -0500136 750,
137 0, /* undefined */
138 0 /* undefined */
139 };
140
141 unsigned int whole_ns = (spd_val & 0xF0) >> 4;
142 unsigned int tenth_ns = spd_val & 0x0F;
143 unsigned int ps = whole_ns * 1000 + tenths_ps[tenth_ns];
144
145 return ps;
146}
147
148
Jon Loeliger1fd56992006-10-10 17:19:03 -0500149/*
150 * Determine Refresh Rate. Ignore self refresh bit on DDR I.
151 * Table from SPD Spec, Byte 12, converted to picoseconds and
152 * filled in with "default" normal values.
153 */
154unsigned int determine_refresh_rate(unsigned int spd_refresh)
155{
156 unsigned int refresh_time_ns[8] = {
157 15625000, /* 0 Normal 1.00x */
158 3900000, /* 1 Reduced .25x */
159 7800000, /* 2 Extended .50x */
160 31300000, /* 3 Extended 2.00x */
161 62500000, /* 4 Extended 4.00x */
162 125000000, /* 5 Extended 8.00x */
163 15625000, /* 6 Normal 1.00x filler */
164 15625000, /* 7 Normal 1.00x filler */
165 };
166
167 return picos_to_clk(refresh_time_ns[spd_refresh & 0x7]);
168}
169
170
wdenk9aea9532004-08-01 23:02:45 +0000171long int
172spd_sdram(void)
173{
174 volatile immap_t *immap = (immap_t *)CFG_IMMR;
175 volatile ccsr_ddr_t *ddr = &immap->im_ddr;
wdenk9aea9532004-08-01 23:02:45 +0000176 spd_eeprom_t spd;
Jon Loeligerd9b94f22005-07-25 14:05:07 -0500177 unsigned int n_ranks;
178 unsigned int rank_density;
179 unsigned int odt_rd_cfg, odt_wr_cfg;
180 unsigned int odt_cfg, mode_odt_enable;
Jon Loeliger1fd56992006-10-10 17:19:03 -0500181 unsigned int refresh_clk;
182#ifdef MPC85xx_DDR_SDRAM_CLK_CNTL
183 unsigned char clk_adjust;
184#endif
Jon Loeligerd9b94f22005-07-25 14:05:07 -0500185 unsigned int dqs_cfg;
186 unsigned char twr_clk, twtr_clk, twr_auto_clk;
187 unsigned int tCKmin_ps, tCKmax_ps;
188 unsigned int max_data_rate, effective_data_rate;
189 unsigned int busfreq;
190 unsigned sdram_cfg;
Ed Swarthout40c7f9b2007-07-27 01:50:48 -0500191 unsigned int memsize = 0;
Jon Loeligerd9b94f22005-07-25 14:05:07 -0500192 unsigned char caslat, caslat_ctrl;
193 unsigned int trfc, trfc_clk, trfc_low, trfc_high;
194 unsigned int trcd_clk;
195 unsigned int trtp_clk;
196 unsigned char cke_min_clk;
197 unsigned char add_lat;
198 unsigned char wr_lat;
199 unsigned char wr_data_delay;
200 unsigned char four_act;
201 unsigned char cpo;
202 unsigned char burst_len;
203 unsigned int mode_caslat;
204 unsigned char sdram_type;
205 unsigned char d_init;
Ed Swarthout40c7f9b2007-07-27 01:50:48 -0500206 unsigned int bnds;
207
208 /*
209 * Skip configuration if already configured.
210 * memsize is determined from last configured chip select.
211 */
212 if (ddr->cs0_config & 0x80000000) {
213 debug(" cs0 already configured, bnds=%x\n",ddr->cs0_bnds);
214 bnds = 0xfff & ddr->cs0_bnds;
215 if (bnds < 0xff) { /* do not add if at top of 4G */
216 memsize = (bnds + 1) << 4;
217 }
218 }
219 if (ddr->cs1_config & 0x80000000) {
220 debug(" cs1 already configured, bnds=%x\n",ddr->cs1_bnds);
221 bnds = 0xfff & ddr->cs1_bnds;
222 if (bnds < 0xff) { /* do not add if at top of 4G */
223 memsize = (bnds + 1) << 4; /* assume ordered bnds */
224 }
225 }
226 if (ddr->cs2_config & 0x80000000) {
227 debug(" cs2 already configured, bnds=%x\n",ddr->cs2_bnds);
228 bnds = 0xfff & ddr->cs2_bnds;
229 if (bnds < 0xff) { /* do not add if at top of 4G */
230 memsize = (bnds + 1) << 4;
231 }
232 }
233 if (ddr->cs3_config & 0x80000000) {
234 debug(" cs3 already configured, bnds=%x\n",ddr->cs3_bnds);
235 bnds = 0xfff & ddr->cs3_bnds;
236 if (bnds < 0xff) { /* do not add if at top of 4G */
237 memsize = (bnds + 1) << 4;
238 }
239 }
240
241 if (memsize) {
242 printf(" Reusing current %dMB configuration\n",memsize);
243 memsize = setup_laws_and_tlbs(memsize);
244 return memsize << 20;
245 }
wdenk9aea9532004-08-01 23:02:45 +0000246
Jon Loeligerd9b94f22005-07-25 14:05:07 -0500247 /*
248 * Read SPD information.
249 */
250 CFG_READ_SPD(SPD_EEPROM_ADDRESS, 0, 1, (uchar *) &spd, sizeof(spd));
wdenk9aea9532004-08-01 23:02:45 +0000251
Jon Loeligerd9b94f22005-07-25 14:05:07 -0500252 /*
253 * Check for supported memory module types.
254 */
255 if (spd.mem_type != SPD_MEMTYPE_DDR &&
256 spd.mem_type != SPD_MEMTYPE_DDR2) {
257 printf("Unable to locate DDR I or DDR II module.\n"
258 " Fundamental memory type is 0x%0x\n",
259 spd.mem_type);
wdenk9aea9532004-08-01 23:02:45 +0000260 return 0;
261 }
262
Jon Loeligerd9b94f22005-07-25 14:05:07 -0500263 /*
264 * These test gloss over DDR I and II differences in interpretation
265 * of bytes 3 and 4, but irrelevantly. Multiple asymmetric banks
266 * are not supported on DDR I; and not encoded on DDR II.
267 *
268 * Also note that the 8548 controller can support:
269 * 12 <= nrow <= 16
270 * and
271 * 8 <= ncol <= 11 (still, for DDR)
272 * 6 <= ncol <= 9 (for FCRAM)
273 */
274 if (spd.nrow_addr < 12 || spd.nrow_addr > 14) {
275 printf("DDR: Unsupported number of Row Addr lines: %d.\n",
276 spd.nrow_addr);
277 return 0;
278 }
279 if (spd.ncol_addr < 8 || spd.ncol_addr > 11) {
280 printf("DDR: Unsupported number of Column Addr lines: %d.\n",
281 spd.ncol_addr);
wdenk9aea9532004-08-01 23:02:45 +0000282 return 0;
283 }
284
Jon Loeligerd9b94f22005-07-25 14:05:07 -0500285 /*
286 * Determine the number of physical banks controlled by
287 * different Chip Select signals. This is not quite the
288 * same as the number of DIMM modules on the board. Feh.
289 */
290 if (spd.mem_type == SPD_MEMTYPE_DDR) {
291 n_ranks = spd.nrows;
292 } else {
293 n_ranks = (spd.nrows & 0x7) + 1;
294 }
295
296 debug("DDR: number of ranks = %d\n", n_ranks);
297
298 if (n_ranks > 2) {
299 printf("DDR: Only 2 chip selects are supported: %d\n",
300 n_ranks);
301 return 0;
302 }
303
Ed Swarthout40c7f9b2007-07-27 01:50:48 -0500304#ifdef CONFIG_MPC8548
Jon Loeligerd9b94f22005-07-25 14:05:07 -0500305 /*
Andy Fleming1f9a3182007-02-23 16:28:46 -0600306 * Adjust DDR II IO voltage biasing.
307 * Only 8548 rev 1 needs the fix
Jon Loeligerd9b94f22005-07-25 14:05:07 -0500308 */
Andy Fleming1f9a3182007-02-23 16:28:46 -0600309 if ((SVR_VER(get_svr()) == SVR_8548_E) &&
310 (SVR_MJREV(get_svr()) == 1) &&
311 (spd.mem_type == SPD_MEMTYPE_DDR2)) {
Ed Swarthout40c7f9b2007-07-27 01:50:48 -0500312 volatile ccsr_gur_t *gur = &immap->im_gur;
Andy Fleming1f9a3182007-02-23 16:28:46 -0600313 gur->ddrioovcr = (0x80000000 /* Enable */
314 | 0x10000000);/* VSEL to 1.8V */
Jon Loeligerd9b94f22005-07-25 14:05:07 -0500315 }
Ed Swarthout40c7f9b2007-07-27 01:50:48 -0500316#endif
Jon Loeligerd9b94f22005-07-25 14:05:07 -0500317
318 /*
319 * Determine the size of each Rank in bytes.
320 */
321 rank_density = compute_banksize(spd.mem_type, spd.row_dens);
322
323
324 /*
325 * Eg: Bounds: 0x0000_0000 to 0x0f000_0000 first 256 Meg
326 */
327 ddr->cs0_bnds = (rank_density >> 24) - 1;
328
329 /*
330 * ODT configuration recommendation from DDR Controller Chapter.
331 */
332 odt_rd_cfg = 0; /* Never assert ODT */
333 odt_wr_cfg = 0; /* Never assert ODT */
334 if (spd.mem_type == SPD_MEMTYPE_DDR2) {
335 odt_wr_cfg = 1; /* Assert ODT on writes to CS0 */
336#if 0
337 /* FIXME: How to determine the number of dimm modules? */
338 if (n_dimm_modules == 2) {
339 odt_rd_cfg = 1; /* Assert ODT on reads to CS0 */
340 }
341#endif
342 }
343
wdenk9aea9532004-08-01 23:02:45 +0000344 ddr->cs0_config = ( 1 << 31
Jon Loeligerd9b94f22005-07-25 14:05:07 -0500345 | (odt_rd_cfg << 20)
346 | (odt_wr_cfg << 16)
wdenk9aea9532004-08-01 23:02:45 +0000347 | (spd.nrow_addr - 12) << 8
348 | (spd.ncol_addr - 8) );
349 debug("\n");
Jon Loeligerd9b94f22005-07-25 14:05:07 -0500350 debug("DDR: cs0_bnds = 0x%08x\n", ddr->cs0_bnds);
351 debug("DDR: cs0_config = 0x%08x\n", ddr->cs0_config);
wdenk9aea9532004-08-01 23:02:45 +0000352
Jon Loeligerd9b94f22005-07-25 14:05:07 -0500353 if (n_ranks == 2) {
354 /*
355 * Eg: Bounds: 0x0f00_0000 to 0x1e0000_0000, second 256 Meg
356 */
357 ddr->cs1_bnds = ( (rank_density >> 8)
358 | ((rank_density >> (24 - 1)) - 1) );
wdenk9aea9532004-08-01 23:02:45 +0000359 ddr->cs1_config = ( 1<<31
Jon Loeligerd9b94f22005-07-25 14:05:07 -0500360 | (odt_rd_cfg << 20)
361 | (odt_wr_cfg << 16)
362 | (spd.nrow_addr - 12) << 8
363 | (spd.ncol_addr - 8) );
364 debug("DDR: cs1_bnds = 0x%08x\n", ddr->cs1_bnds);
365 debug("DDR: cs1_config = 0x%08x\n", ddr->cs1_config);
wdenk9aea9532004-08-01 23:02:45 +0000366 }
367
Jon Loeligerd9b94f22005-07-25 14:05:07 -0500368
369 /*
370 * Find the largest CAS by locating the highest 1 bit
371 * in the spd.cas_lat field. Translate it to a DDR
372 * controller field value:
373 *
374 * CAS Lat DDR I DDR II Ctrl
375 * Clocks SPD Bit SPD Bit Value
376 * ------- ------- ------- -----
377 * 1.0 0 0001
378 * 1.5 1 0010
379 * 2.0 2 2 0011
380 * 2.5 3 0100
381 * 3.0 4 3 0101
382 * 3.5 5 0110
383 * 4.0 4 0111
384 * 4.5 1000
385 * 5.0 5 1001
386 */
387 caslat = __ilog2(spd.cas_lat);
388 if ((spd.mem_type == SPD_MEMTYPE_DDR)
389 && (caslat > 5)) {
390 printf("DDR I: Invalid SPD CAS Latency: 0x%x.\n", spd.cas_lat);
391 return 0;
392
393 } else if (spd.mem_type == SPD_MEMTYPE_DDR2
394 && (caslat < 2 || caslat > 5)) {
395 printf("DDR II: Invalid SPD CAS Latency: 0x%x.\n",
396 spd.cas_lat);
wdenk9aea9532004-08-01 23:02:45 +0000397 return 0;
398 }
Jon Loeligerd9b94f22005-07-25 14:05:07 -0500399 debug("DDR: caslat SPD bit is %d\n", caslat);
400
401 /*
402 * Calculate the Maximum Data Rate based on the Minimum Cycle time.
403 * The SPD clk_cycle field (tCKmin) is measured in tenths of
404 * nanoseconds and represented as BCD.
405 */
406 tCKmin_ps = convert_bcd_tenths_to_cycle_time_ps(spd.clk_cycle);
407 debug("DDR: tCKmin = %d ps\n", tCKmin_ps);
408
409 /*
410 * Double-data rate, scaled 1000 to picoseconds, and back down to MHz.
411 */
412 max_data_rate = 2 * 1000 * 1000 / tCKmin_ps;
413 debug("DDR: Module max data rate = %d Mhz\n", max_data_rate);
414
415
416 /*
417 * Adjust the CAS Latency to allow for bus speeds that
418 * are slower than the DDR module.
419 */
420 busfreq = get_bus_freq(0) / 1000000; /* MHz */
421
422 effective_data_rate = max_data_rate;
423 if (busfreq < 90) {
424 /* DDR rate out-of-range */
425 puts("DDR: platform frequency is not fit for DDR rate\n");
426 return 0;
427
428 } else if (90 <= busfreq && busfreq < 230 && max_data_rate >= 230) {
429 /*
430 * busfreq 90~230 range, treated as DDR 200.
431 */
432 effective_data_rate = 200;
433 if (spd.clk_cycle3 == 0xa0) /* 10 ns */
434 caslat -= 2;
435 else if (spd.clk_cycle2 == 0xa0)
436 caslat--;
437
438 } else if (230 <= busfreq && busfreq < 280 && max_data_rate >= 280) {
439 /*
440 * busfreq 230~280 range, treated as DDR 266.
441 */
442 effective_data_rate = 266;
443 if (spd.clk_cycle3 == 0x75) /* 7.5 ns */
444 caslat -= 2;
445 else if (spd.clk_cycle2 == 0x75)
446 caslat--;
447
448 } else if (280 <= busfreq && busfreq < 350 && max_data_rate >= 350) {
449 /*
450 * busfreq 280~350 range, treated as DDR 333.
451 */
452 effective_data_rate = 333;
453 if (spd.clk_cycle3 == 0x60) /* 6.0 ns */
454 caslat -= 2;
455 else if (spd.clk_cycle2 == 0x60)
456 caslat--;
457
458 } else if (350 <= busfreq && busfreq < 460 && max_data_rate >= 460) {
459 /*
460 * busfreq 350~460 range, treated as DDR 400.
461 */
462 effective_data_rate = 400;
463 if (spd.clk_cycle3 == 0x50) /* 5.0 ns */
464 caslat -= 2;
465 else if (spd.clk_cycle2 == 0x50)
466 caslat--;
467
468 } else if (460 <= busfreq && busfreq < 560 && max_data_rate >= 560) {
469 /*
470 * busfreq 460~560 range, treated as DDR 533.
471 */
472 effective_data_rate = 533;
473 if (spd.clk_cycle3 == 0x3D) /* 3.75 ns */
474 caslat -= 2;
475 else if (spd.clk_cycle2 == 0x3D)
476 caslat--;
477
478 } else if (560 <= busfreq && busfreq < 700 && max_data_rate >= 700) {
479 /*
480 * busfreq 560~700 range, treated as DDR 667.
481 */
482 effective_data_rate = 667;
483 if (spd.clk_cycle3 == 0x30) /* 3.0 ns */
484 caslat -= 2;
485 else if (spd.clk_cycle2 == 0x30)
486 caslat--;
487
488 } else if (700 <= busfreq) {
489 /*
490 * DDR rate out-of-range
491 */
492 printf("DDR: Bus freq %d MHz is not fit for DDR rate %d MHz\n",
493 busfreq, max_data_rate);
494 return 0;
495 }
496
497
498 /*
499 * Convert caslat clocks to DDR controller value.
500 * Force caslat_ctrl to be DDR Controller field-sized.
501 */
502 if (spd.mem_type == SPD_MEMTYPE_DDR) {
503 caslat_ctrl = (caslat + 1) & 0x07;
504 } else {
505 caslat_ctrl = (2 * caslat - 1) & 0x0f;
506 }
507
508 debug("DDR: effective data rate is %d MHz\n", effective_data_rate);
509 debug("DDR: caslat SPD bit is %d, controller field is 0x%x\n",
510 caslat, caslat_ctrl);
511
512 /*
513 * Timing Config 0.
514 * Avoid writing for DDR I. The new PQ38 DDR controller
515 * dreams up non-zero default values to be backwards compatible.
516 */
517 if (spd.mem_type == SPD_MEMTYPE_DDR2) {
518 unsigned char taxpd_clk = 8; /* By the book. */
519 unsigned char tmrd_clk = 2; /* By the book. */
520 unsigned char act_pd_exit = 2; /* Empirical? */
521 unsigned char pre_pd_exit = 6; /* Empirical? */
522
523 ddr->timing_cfg_0 = (0
524 | ((act_pd_exit & 0x7) << 20) /* ACT_PD_EXIT */
525 | ((pre_pd_exit & 0x7) << 16) /* PRE_PD_EXIT */
526 | ((taxpd_clk & 0xf) << 8) /* ODT_PD_EXIT */
527 | ((tmrd_clk & 0xf) << 0) /* MRS_CYC */
528 );
529#if 0
530 ddr->timing_cfg_0 |= 0xaa000000; /* extra cycles */
531#endif
532 debug("DDR: timing_cfg_0 = 0x%08x\n", ddr->timing_cfg_0);
533
534 } else {
535#if 0
536 /*
537 * Force extra cycles with 0xaa bits.
538 * Incidentally supply the dreamt-up backwards compat value!
539 */
540 ddr->timing_cfg_0 = 0x00110105; /* backwards compat value */
541 ddr->timing_cfg_0 |= 0xaa000000; /* extra cycles */
542 debug("DDR: HACK timing_cfg_0 = 0x%08x\n", ddr->timing_cfg_0);
543#endif
544 }
545
546
547 /*
548 * Some Timing Config 1 values now.
549 * Sneak Extended Refresh Recovery in here too.
550 */
551
552 /*
553 * For DDR I, WRREC(Twr) and WRTORD(Twtr) are not in SPD,
554 * use conservative value.
555 * For DDR II, they are bytes 36 and 37, in quarter nanos.
556 */
557
558 if (spd.mem_type == SPD_MEMTYPE_DDR) {
559 twr_clk = 3; /* Clocks */
560 twtr_clk = 1; /* Clocks */
561 } else {
562 twr_clk = picos_to_clk(spd.twr * 250);
563 twtr_clk = picos_to_clk(spd.twtr * 250);
564 }
565
566 /*
567 * Calculate Trfc, in picos.
568 * DDR I: Byte 42 straight up in ns.
569 * DDR II: Byte 40 and 42 swizzled some, in ns.
570 */
571 if (spd.mem_type == SPD_MEMTYPE_DDR) {
572 trfc = spd.trfc * 1000; /* up to ps */
573 } else {
574 unsigned int byte40_table_ps[8] = {
575 0,
576 250,
577 330,
578 500,
579 660,
580 750,
581 0,
582 0
583 };
584
585 trfc = (((spd.trctrfc_ext & 0x1) * 256) + spd.trfc) * 1000
586 + byte40_table_ps[(spd.trctrfc_ext >> 1) & 0x7];
587 }
588 trfc_clk = picos_to_clk(trfc);
589
590 /*
591 * Trcd, Byte 29, from quarter nanos to ps and clocks.
592 */
593 trcd_clk = picos_to_clk(spd.trcd * 250) & 0x7;
594
595 /*
596 * Convert trfc_clk to DDR controller fields. DDR I should
597 * fit in the REFREC field (16-19) of TIMING_CFG_1, but the
598 * 8548 controller has an extended REFREC field of three bits.
599 * The controller automatically adds 8 clocks to this value,
600 * so preadjust it down 8 first before splitting it up.
601 */
602 trfc_low = (trfc_clk - 8) & 0xf;
603 trfc_high = ((trfc_clk - 8) >> 4) & 0x3;
604
605 /*
606 * Sneak in some Extended Refresh Recovery.
607 */
608 ddr->ext_refrec = (trfc_high << 16);
609 debug("DDR: ext_refrec = 0x%08x\n", ddr->ext_refrec);
610
611 ddr->timing_cfg_1 =
612 (0
613 | ((picos_to_clk(spd.trp * 250) & 0x07) << 28) /* PRETOACT */
614 | ((picos_to_clk(spd.tras * 1000) & 0x0f ) << 24) /* ACTTOPRE */
615 | (trcd_clk << 20) /* ACTTORW */
616 | (caslat_ctrl << 16) /* CASLAT */
617 | (trfc_low << 12) /* REFEC */
618 | ((twr_clk & 0x07) << 8) /* WRRREC */
619 | ((picos_to_clk(spd.trrd * 250) & 0x07) << 4) /* ACTTOACT */
620 | ((twtr_clk & 0x07) << 0) /* WRTORD */
621 );
622
623 debug("DDR: timing_cfg_1 = 0x%08x\n", ddr->timing_cfg_1);
624
625
626 /*
627 * Timing_Config_2
628 * Was: 0x00000800;
629 */
630
631 /*
632 * Additive Latency
633 * For DDR I, 0.
634 * For DDR II, with ODT enabled, use "a value" less than ACTTORW,
635 * which comes from Trcd, and also note that:
636 * add_lat + caslat must be >= 4
637 */
638 add_lat = 0;
639 if (spd.mem_type == SPD_MEMTYPE_DDR2
640 && (odt_wr_cfg || odt_rd_cfg)
641 && (caslat < 4)) {
642 add_lat = 4 - caslat;
643 if (add_lat > trcd_clk) {
644 add_lat = trcd_clk - 1;
645 }
646 }
647
648 /*
649 * Write Data Delay
650 * Historically 0x2 == 4/8 clock delay.
651 * Empirically, 0x3 == 6/8 clock delay is suggested for DDR I 266.
652 */
653 wr_data_delay = 3;
654
655 /*
656 * Write Latency
657 * Read to Precharge
658 * Minimum CKE Pulse Width.
659 * Four Activate Window
660 */
661 if (spd.mem_type == SPD_MEMTYPE_DDR) {
662 /*
663 * This is a lie. It should really be 1, but if it is
664 * set to 1, bits overlap into the old controller's
665 * otherwise unused ACSM field. If we leave it 0, then
666 * the HW will magically treat it as 1 for DDR 1. Oh Yea.
667 */
668 wr_lat = 0;
669
670 trtp_clk = 2; /* By the book. */
671 cke_min_clk = 1; /* By the book. */
672 four_act = 1; /* By the book. */
673
674 } else {
675 wr_lat = caslat - 1;
676
677 /* Convert SPD value from quarter nanos to picos. */
678 trtp_clk = picos_to_clk(spd.trtp * 250);
679
680 cke_min_clk = 3; /* By the book. */
681 four_act = picos_to_clk(37500); /* By the book. 1k pages? */
682 }
683
684 /*
685 * Empirically set ~MCAS-to-preamble override for DDR 2.
686 * Your milage will vary.
687 */
688 cpo = 0;
689 if (spd.mem_type == SPD_MEMTYPE_DDR2) {
690 if (effective_data_rate == 266 || effective_data_rate == 333) {
691 cpo = 0x7; /* READ_LAT + 5/4 */
692 } else if (effective_data_rate == 400) {
693 cpo = 0x9; /* READ_LAT + 7/4 */
694 } else {
695 /* Pure speculation */
696 cpo = 0xb;
697 }
698 }
699
700 ddr->timing_cfg_2 = (0
701 | ((add_lat & 0x7) << 28) /* ADD_LAT */
Jon Loeligerde1d0a62005-08-01 13:20:47 -0500702 | ((cpo & 0x1f) << 23) /* CPO */
Jon Loeligerd9b94f22005-07-25 14:05:07 -0500703 | ((wr_lat & 0x7) << 19) /* WR_LAT */
704 | ((trtp_clk & 0x7) << 13) /* RD_TO_PRE */
705 | ((wr_data_delay & 0x7) << 10) /* WR_DATA_DELAY */
706 | ((cke_min_clk & 0x7) << 6) /* CKE_PLS */
707 | ((four_act & 0x1f) << 0) /* FOUR_ACT */
708 );
709
710 debug("DDR: timing_cfg_2 = 0x%08x\n", ddr->timing_cfg_2);
711
712
713 /*
714 * Determine the Mode Register Set.
715 *
716 * This is nominally part specific, but it appears to be
717 * consistent for all DDR I devices, and for all DDR II devices.
718 *
719 * caslat must be programmed
720 * burst length is always 4
721 * burst type is sequential
722 *
723 * For DDR I:
724 * operating mode is "normal"
725 *
726 * For DDR II:
727 * other stuff
728 */
729
730 mode_caslat = 0;
731
732 /*
733 * Table lookup from DDR I or II Device Operation Specs.
734 */
735 if (spd.mem_type == SPD_MEMTYPE_DDR) {
736 if (1 <= caslat && caslat <= 4) {
737 unsigned char mode_caslat_table[4] = {
738 0x5, /* 1.5 clocks */
739 0x2, /* 2.0 clocks */
740 0x6, /* 2.5 clocks */
741 0x3 /* 3.0 clocks */
742 };
743 mode_caslat = mode_caslat_table[caslat - 1];
744 } else {
745 puts("DDR I: Only CAS Latencies of 1.5, 2.0, "
746 "2.5 and 3.0 clocks are supported.\n");
747 return 0;
748 }
749
750 } else {
751 if (2 <= caslat && caslat <= 5) {
752 mode_caslat = caslat;
753 } else {
754 puts("DDR II: Only CAS Latencies of 2.0, 3.0, "
755 "4.0 and 5.0 clocks are supported.\n");
756 return 0;
757 }
758 }
759
760 /*
761 * Encoded Burst Lenght of 4.
762 */
763 burst_len = 2; /* Fiat. */
764
765 if (spd.mem_type == SPD_MEMTYPE_DDR) {
766 twr_auto_clk = 0; /* Historical */
767 } else {
768 /*
769 * Determine tCK max in picos. Grab tWR and convert to picos.
770 * Auto-precharge write recovery is:
771 * WR = roundup(tWR_ns/tCKmax_ns).
772 *
773 * Ponder: Is twr_auto_clk different than twr_clk?
774 */
775 tCKmax_ps = convert_bcd_tenths_to_cycle_time_ps(spd.tckmax);
776 twr_auto_clk = (spd.twr * 250 + tCKmax_ps - 1) / tCKmax_ps;
777 }
778
779
780 /*
781 * Mode Reg in bits 16 ~ 31,
782 * Extended Mode Reg 1 in bits 0 ~ 15.
783 */
784 mode_odt_enable = 0x0; /* Default disabled */
785 if (odt_wr_cfg || odt_rd_cfg) {
786 /*
787 * Bits 6 and 2 in Extended MRS(1)
788 * Bit 2 == 0x04 == 75 Ohm, with 2 DIMM modules.
789 * Bit 6 == 0x40 == 150 Ohm, with 1 DIMM module.
790 */
791 mode_odt_enable = 0x40; /* 150 Ohm */
792 }
793
794 ddr->sdram_mode =
795 (0
796 | (add_lat << (16 + 3)) /* Additive Latency in EMRS1 */
797 | (mode_odt_enable << 16) /* ODT Enable in EMRS1 */
798 | (twr_auto_clk << 9) /* Write Recovery Autopre */
799 | (mode_caslat << 4) /* caslat */
800 | (burst_len << 0) /* Burst length */
801 );
802
803 debug("DDR: sdram_mode = 0x%08x\n", ddr->sdram_mode);
804
805
806 /*
807 * Clear EMRS2 and EMRS3.
808 */
809 ddr->sdram_mode_2 = 0;
810 debug("DDR: sdram_mode_2 = 0x%08x\n", ddr->sdram_mode_2);
811
Jon Loeligerd9b94f22005-07-25 14:05:07 -0500812 /*
Jon Loeliger1fd56992006-10-10 17:19:03 -0500813 * Determine Refresh Rate.
Jon Loeligerd9b94f22005-07-25 14:05:07 -0500814 */
Jon Loeliger1fd56992006-10-10 17:19:03 -0500815 refresh_clk = determine_refresh_rate(spd.refresh & 0x7);
Wolfgang Denk47a69892006-10-24 15:32:57 +0200816
Jon Loeliger1fd56992006-10-10 17:19:03 -0500817 /*
818 * Set BSTOPRE to 0x100 for page mode
819 * If auto-charge is used, set BSTOPRE = 0
820 */
821 ddr->sdram_interval =
822 (0
823 | (refresh_clk & 0x3fff) << 16
824 | 0x100
825 );
826 debug("DDR: sdram_interval = 0x%08x\n", ddr->sdram_interval);
Jon Loeligerd9b94f22005-07-25 14:05:07 -0500827
828 /*
829 * Is this an ECC DDR chip?
830 * But don't mess with it if the DDR controller will init mem.
831 */
Andy Fleming9343dbf2007-02-24 01:16:45 -0600832#ifdef CONFIG_DDR_ECC
Jon Loeligerd9b94f22005-07-25 14:05:07 -0500833 if (spd.config == 0x02) {
Andy Fleming9343dbf2007-02-24 01:16:45 -0600834#ifndef CONFIG_ECC_INIT_VIA_DDRCONTROLLER
Jon Loeligerd9b94f22005-07-25 14:05:07 -0500835 ddr->err_disable = 0x0000000d;
Andy Fleming9343dbf2007-02-24 01:16:45 -0600836#endif
Jon Loeligerd9b94f22005-07-25 14:05:07 -0500837 ddr->err_sbe = 0x00ff0000;
838 }
Andy Fleming9343dbf2007-02-24 01:16:45 -0600839
Jon Loeligerd9b94f22005-07-25 14:05:07 -0500840 debug("DDR: err_disable = 0x%08x\n", ddr->err_disable);
841 debug("DDR: err_sbe = 0x%08x\n", ddr->err_sbe);
Andy Fleming9343dbf2007-02-24 01:16:45 -0600842#endif /* CONFIG_DDR_ECC */
Jon Loeligerd9b94f22005-07-25 14:05:07 -0500843
844 asm("sync;isync;msync");
845 udelay(500);
846
847 /*
848 * SDRAM Cfg 2
849 */
850
851 /*
852 * When ODT is enabled, Chap 9 suggests asserting ODT to
853 * internal IOs only during reads.
854 */
855 odt_cfg = 0;
856 if (odt_rd_cfg | odt_wr_cfg) {
857 odt_cfg = 0x2; /* ODT to IOs during reads */
858 }
859
860 /*
861 * Try to use differential DQS with DDR II.
862 */
863 if (spd.mem_type == SPD_MEMTYPE_DDR) {
864 dqs_cfg = 0; /* No Differential DQS for DDR I */
865 } else {
866 dqs_cfg = 0x1; /* Differential DQS for DDR II */
867 }
868
869#if defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
870 /*
871 * Use the DDR controller to auto initialize memory.
872 */
873 d_init = 1;
874 ddr->sdram_data_init = CONFIG_MEM_INIT_VALUE;
875 debug("DDR: ddr_data_init = 0x%08x\n", ddr->sdram_data_init);
876#else
877 /*
878 * Memory will be initialized via DMA, or not at all.
879 */
Jon Loeligerde1d0a62005-08-01 13:20:47 -0500880 d_init = 0;
Jon Loeligerd9b94f22005-07-25 14:05:07 -0500881#endif
882
883 ddr->sdram_cfg_2 = (0
884 | (dqs_cfg << 26) /* Differential DQS */
885 | (odt_cfg << 21) /* ODT */
886 | (d_init << 4) /* D_INIT auto init DDR */
887 );
888
889 debug("DDR: sdram_cfg_2 = 0x%08x\n", ddr->sdram_cfg_2);
890
891
892#ifdef MPC85xx_DDR_SDRAM_CLK_CNTL
Jon Loeliger1fd56992006-10-10 17:19:03 -0500893 /*
894 * Setup the clock control.
895 * SDRAM_CLK_CNTL[0] = Source synchronous enable == 1
896 * SDRAM_CLK_CNTL[5-7] = Clock Adjust
897 * 0110 3/4 cycle late
898 * 0111 7/8 cycle late
899 */
900 if (spd.mem_type == SPD_MEMTYPE_DDR)
901 clk_adjust = 0x6;
902 else
903 clk_adjust = 0x7;
Jon Loeligerd9b94f22005-07-25 14:05:07 -0500904
Jon Loeliger1fd56992006-10-10 17:19:03 -0500905 ddr->sdram_clk_cntl = (0
Jon Loeligerd9b94f22005-07-25 14:05:07 -0500906 | 0x80000000
907 | (clk_adjust << 23)
908 );
Jon Loeliger1fd56992006-10-10 17:19:03 -0500909 debug("DDR: sdram_clk_cntl = 0x%08x\n", ddr->sdram_clk_cntl);
Jon Loeligerd9b94f22005-07-25 14:05:07 -0500910#endif
911
912 /*
913 * Figure out the settings for the sdram_cfg register.
914 * Build up the entire register in 'sdram_cfg' before writing
915 * since the write into the register will actually enable the
916 * memory controller; all settings must be done before enabling.
917 *
918 * sdram_cfg[0] = 1 (ddr sdram logic enable)
919 * sdram_cfg[1] = 1 (self-refresh-enable)
920 * sdram_cfg[5:7] = (SDRAM type = DDR SDRAM)
921 * 010 DDR 1 SDRAM
922 * 011 DDR 2 SDRAM
923 */
924 sdram_type = (spd.mem_type == SPD_MEMTYPE_DDR) ? 2 : 3;
925 sdram_cfg = (0
926 | (1 << 31) /* Enable */
927 | (1 << 30) /* Self refresh */
928 | (sdram_type << 24) /* SDRAM type */
929 );
930
931 /*
932 * sdram_cfg[3] = RD_EN - registered DIMM enable
933 * A value of 0x26 indicates micron registered DIMMS (micron.com)
934 */
935 if (spd.mem_type == SPD_MEMTYPE_DDR && spd.mod_attr == 0x26) {
936 sdram_cfg |= 0x10000000; /* RD_EN */
937 }
938
939#if defined(CONFIG_DDR_ECC)
940 /*
941 * If the user wanted ECC (enabled via sdram_cfg[2])
942 */
943 if (spd.config == 0x02) {
944 sdram_cfg |= 0x20000000; /* ECC_EN */
945 }
946#endif
947
948 /*
949 * REV1 uses 1T timing.
950 * REV2 may use 1T or 2T as configured by the user.
951 */
952 {
953 uint pvr = get_pvr();
954
955 if (pvr != PVR_85xx_REV1) {
956#if defined(CONFIG_DDR_2T_TIMING)
957 /*
958 * Enable 2T timing by setting sdram_cfg[16].
959 */
960 sdram_cfg |= 0x8000; /* 2T_EN */
961#endif
962 }
963 }
964
965 /*
966 * 200 painful micro-seconds must elapse between
967 * the DDR clock setup and the DDR config enable.
968 */
969 udelay(200);
970
971 /*
972 * Go!
973 */
974 ddr->sdram_cfg = sdram_cfg;
975
976 asm("sync;isync;msync");
977 udelay(500);
978
979 debug("DDR: sdram_cfg = 0x%08x\n", ddr->sdram_cfg);
980
981
982#if defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
983 /*
984 * Poll until memory is initialized.
985 * 512 Meg at 400 might hit this 200 times or so.
986 */
987 while ((ddr->sdram_cfg_2 & (d_init << 4)) != 0) {
988 udelay(1000);
989 }
990#endif
991
wdenk9aea9532004-08-01 23:02:45 +0000992
993 /*
994 * Figure out memory size in Megabytes.
995 */
Jon Loeligerd9b94f22005-07-25 14:05:07 -0500996 memsize = n_ranks * rank_density / 0x100000;
wdenk9aea9532004-08-01 23:02:45 +0000997
998 /*
Jon Loeligerd9b94f22005-07-25 14:05:07 -0500999 * Establish Local Access Window and TLB mappings for DDR memory.
wdenk9aea9532004-08-01 23:02:45 +00001000 */
Jon Loeligerd9b94f22005-07-25 14:05:07 -05001001 memsize = setup_laws_and_tlbs(memsize);
1002 if (memsize == 0) {
1003 return 0;
1004 }
1005
1006 return memsize * 1024 * 1024;
1007}
1008
1009
1010/*
1011 * Setup Local Access Window and TLB1 mappings for the requested
1012 * amount of memory. Returns the amount of memory actually mapped
1013 * (usually the original request size), or 0 on error.
1014 */
1015
1016static unsigned int
1017setup_laws_and_tlbs(unsigned int memsize)
1018{
1019 volatile immap_t *immap = (immap_t *)CFG_IMMR;
1020 volatile ccsr_local_ecm_t *ecm = &immap->im_local_ecm;
1021 unsigned int tlb_size;
1022 unsigned int law_size;
1023 unsigned int ram_tlb_index;
1024 unsigned int ram_tlb_address;
wdenk9aea9532004-08-01 23:02:45 +00001025
1026 /*
1027 * Determine size of each TLB1 entry.
1028 */
1029 switch (memsize) {
1030 case 16:
1031 case 32:
1032 tlb_size = BOOKE_PAGESZ_16M;
1033 break;
1034 case 64:
1035 case 128:
1036 tlb_size = BOOKE_PAGESZ_64M;
1037 break;
1038 case 256:
1039 case 512:
Andy Fleming0d8c3a22007-02-23 17:12:25 -06001040 tlb_size = BOOKE_PAGESZ_256M;
1041 break;
wdenk9aea9532004-08-01 23:02:45 +00001042 case 1024:
1043 case 2048:
Andy Fleming0d8c3a22007-02-23 17:12:25 -06001044 if (PVR_VER(get_pvr()) > PVR_VER(PVR_85xx))
1045 tlb_size = BOOKE_PAGESZ_1G;
1046 else
1047 tlb_size = BOOKE_PAGESZ_256M;
wdenk9aea9532004-08-01 23:02:45 +00001048 break;
1049 default:
Jon Loeligerd9b94f22005-07-25 14:05:07 -05001050 puts("DDR: only 16M,32M,64M,128M,256M,512M,1G and 2G are supported.\n");
1051
1052 /*
1053 * The memory was not able to be mapped.
Andy Fleming0d8c3a22007-02-23 17:12:25 -06001054 * Default to a small size.
Jon Loeligerd9b94f22005-07-25 14:05:07 -05001055 */
Andy Fleming0d8c3a22007-02-23 17:12:25 -06001056 tlb_size = BOOKE_PAGESZ_64M;
1057 memsize=64;
wdenk9aea9532004-08-01 23:02:45 +00001058 break;
1059 }
1060
1061 /*
1062 * Configure DDR TLB1 entries.
1063 * Starting at TLB1 8, use no more than 8 TLB1 entries.
1064 */
1065 ram_tlb_index = 8;
1066 ram_tlb_address = (unsigned int)CFG_DDR_SDRAM_BASE;
1067 while (ram_tlb_address < (memsize * 1024 * 1024)
1068 && ram_tlb_index < 16) {
1069 mtspr(MAS0, TLB1_MAS0(1, ram_tlb_index, 0));
1070 mtspr(MAS1, TLB1_MAS1(1, 1, 0, 0, tlb_size));
1071 mtspr(MAS2, TLB1_MAS2(E500_TLB_EPN(ram_tlb_address),
1072 0, 0, 0, 0, 0, 0, 0, 0));
1073 mtspr(MAS3, TLB1_MAS3(E500_TLB_RPN(ram_tlb_address),
1074 0, 0, 0, 0, 0, 1, 0, 1, 0, 1));
1075 asm volatile("isync;msync;tlbwe;isync");
1076
Jon Loeligerd9b94f22005-07-25 14:05:07 -05001077 debug("DDR: MAS0=0x%08x\n", TLB1_MAS0(1, ram_tlb_index, 0));
1078 debug("DDR: MAS1=0x%08x\n", TLB1_MAS1(1, 1, 0, 0, tlb_size));
1079 debug("DDR: MAS2=0x%08x\n",
wdenk9aea9532004-08-01 23:02:45 +00001080 TLB1_MAS2(E500_TLB_EPN(ram_tlb_address),
1081 0, 0, 0, 0, 0, 0, 0, 0));
Jon Loeligerd9b94f22005-07-25 14:05:07 -05001082 debug("DDR: MAS3=0x%08x\n",
wdenk9aea9532004-08-01 23:02:45 +00001083 TLB1_MAS3(E500_TLB_RPN(ram_tlb_address),
1084 0, 0, 0, 0, 0, 1, 0, 1, 0, 1));
1085
1086 ram_tlb_address += (0x1000 << ((tlb_size - 1) * 2));
1087 ram_tlb_index++;
1088 }
1089
Jon Loeligerd9b94f22005-07-25 14:05:07 -05001090
1091 /*
1092 * First supported LAW size is 16M, at LAWAR_SIZE_16M == 23. Fnord.
1093 */
1094 law_size = 19 + __ilog2(memsize);
1095
wdenk9aea9532004-08-01 23:02:45 +00001096 /*
1097 * Set up LAWBAR for all of DDR.
1098 */
Jon Loeligerd9b94f22005-07-25 14:05:07 -05001099 ecm->lawbar1 = ((CFG_DDR_SDRAM_BASE >> 12) & 0xfffff);
1100 ecm->lawar1 = (LAWAR_EN
1101 | LAWAR_TRGT_IF_DDR
1102 | (LAWAR_SIZE & law_size));
1103 debug("DDR: LAWBAR1=0x%08x\n", ecm->lawbar1);
1104 debug("DDR: LARAR1=0x%08x\n", ecm->lawar1);
wdenk9aea9532004-08-01 23:02:45 +00001105
1106 /*
Jon Loeligerd9b94f22005-07-25 14:05:07 -05001107 * Confirm that the requested amount of memory was mapped.
wdenk9aea9532004-08-01 23:02:45 +00001108 */
Jon Loeligerd9b94f22005-07-25 14:05:07 -05001109 return memsize;
wdenk42d1f032003-10-15 23:53:47 +00001110}
Jon Loeligerd9b94f22005-07-25 14:05:07 -05001111
wdenk42d1f032003-10-15 23:53:47 +00001112#endif /* CONFIG_SPD_EEPROM */
wdenk9aea9532004-08-01 23:02:45 +00001113
1114
Jon Loeligerd9b94f22005-07-25 14:05:07 -05001115#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
1116
wdenk9aea9532004-08-01 23:02:45 +00001117/*
1118 * Initialize all of memory for ECC, then enable errors.
1119 */
Jon Loeligerd9b94f22005-07-25 14:05:07 -05001120
wdenk9aea9532004-08-01 23:02:45 +00001121void
1122ddr_enable_ecc(unsigned int dram_size)
1123{
1124 uint *p = 0;
1125 uint i = 0;
1126 volatile immap_t *immap = (immap_t *)CFG_IMMR;
1127 volatile ccsr_ddr_t *ddr= &immap->im_ddr;
1128
1129 dma_init();
1130
1131 for (*p = 0; p < (uint *)(8 * 1024); p++) {
1132 if (((unsigned int)p & 0x1f) == 0) {
1133 ppcDcbz((unsigned long) p);
1134 }
Jon Loeligerd9b94f22005-07-25 14:05:07 -05001135 *p = (unsigned int)CONFIG_MEM_INIT_VALUE;
wdenk9aea9532004-08-01 23:02:45 +00001136 if (((unsigned int)p & 0x1c) == 0x1c) {
1137 ppcDcbf((unsigned long) p);
1138 }
1139 }
1140
Jon Loeliger1fd56992006-10-10 17:19:03 -05001141 dma_xfer((uint *)0x002000, 0x002000, (uint *)0); /* 8K */
1142 dma_xfer((uint *)0x004000, 0x004000, (uint *)0); /* 16K */
1143 dma_xfer((uint *)0x008000, 0x008000, (uint *)0); /* 32K */
1144 dma_xfer((uint *)0x010000, 0x010000, (uint *)0); /* 64K */
1145 dma_xfer((uint *)0x020000, 0x020000, (uint *)0); /* 128k */
1146 dma_xfer((uint *)0x040000, 0x040000, (uint *)0); /* 256k */
1147 dma_xfer((uint *)0x080000, 0x080000, (uint *)0); /* 512k */
1148 dma_xfer((uint *)0x100000, 0x100000, (uint *)0); /* 1M */
1149 dma_xfer((uint *)0x200000, 0x200000, (uint *)0); /* 2M */
1150 dma_xfer((uint *)0x400000, 0x400000, (uint *)0); /* 4M */
wdenk9aea9532004-08-01 23:02:45 +00001151
1152 for (i = 1; i < dram_size / 0x800000; i++) {
1153 dma_xfer((uint *)(0x800000*i), 0x800000, (uint *)0);
1154 }
1155
1156 /*
1157 * Enable errors for ECC.
1158 */
Jon Loeligerd9b94f22005-07-25 14:05:07 -05001159 debug("DMA DDR: err_disable = 0x%08x\n", ddr->err_disable);
wdenk9aea9532004-08-01 23:02:45 +00001160 ddr->err_disable = 0x00000000;
1161 asm("sync;isync;msync");
Jon Loeligerd9b94f22005-07-25 14:05:07 -05001162 debug("DMA DDR: err_disable = 0x%08x\n", ddr->err_disable);
wdenk9aea9532004-08-01 23:02:45 +00001163}
Jon Loeligerd9b94f22005-07-25 14:05:07 -05001164
1165#endif /* CONFIG_DDR_ECC && ! CONFIG_ECC_INIT_VIA_DDRCONTROLLER */