wdenk | ae64480 | 2002-03-08 23:11:41 +0000 | [diff] [blame] | 1 | /*------------------------------------------------------------------------- |
| 2 | * Filename: mini_inflate.c |
| 3 | * Version: $Id: mini_inflate.c,v 1.3 2002/01/24 22:58:42 rfeany Exp $ |
| 4 | * Copyright: Copyright (C) 2001, Russ Dill |
| 5 | * Author: Russ Dill <Russ.Dill@asu.edu> |
| 6 | * Description: Mini inflate implementation (RFC 1951) |
| 7 | *-----------------------------------------------------------------------*/ |
| 8 | /* |
| 9 | * |
| 10 | * This program is free software; you can redistribute it and/or modify |
| 11 | * it under the terms of the GNU General Public License as published by |
| 12 | * the Free Software Foundation; either version 2 of the License, or |
| 13 | * (at your option) any later version. |
| 14 | * |
| 15 | * This program is distributed in the hope that it will be useful, |
| 16 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 17 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 18 | * GNU General Public License for more details. |
| 19 | * |
| 20 | * You should have received a copy of the GNU General Public License |
| 21 | * along with this program; if not, write to the Free Software |
| 22 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| 23 | * |
| 24 | */ |
| 25 | |
| 26 | #include <config.h> |
wdenk | ae64480 | 2002-03-08 23:11:41 +0000 | [diff] [blame] | 27 | #include <jffs2/mini_inflate.h> |
| 28 | |
| 29 | /* The order that the code lengths in section 3.2.7 are in */ |
| 30 | static unsigned char huffman_order[] = {16, 17, 18, 0, 8, 7, 9, 6, 10, 5, |
| 31 | 11, 4, 12, 3, 13, 2, 14, 1, 15}; |
| 32 | |
| 33 | inline void cramfs_memset(int *s, const int c, size n) |
| 34 | { |
| 35 | n--; |
| 36 | for (;n > 0; n--) s[n] = c; |
| 37 | s[0] = c; |
| 38 | } |
| 39 | |
| 40 | /* associate a stream with a block of data and reset the stream */ |
| 41 | static void init_stream(struct bitstream *stream, unsigned char *data, |
| 42 | void *(*inflate_memcpy)(void *, const void *, size)) |
| 43 | { |
| 44 | stream->error = NO_ERROR; |
| 45 | stream->memcpy = inflate_memcpy; |
| 46 | stream->decoded = 0; |
| 47 | stream->data = data; |
| 48 | stream->bit = 0; /* The first bit of the stream is the lsb of the |
| 49 | * first byte */ |
| 50 | |
| 51 | /* really sorry about all this initialization, think of a better way, |
| 52 | * let me know and it will get cleaned up */ |
| 53 | stream->codes.bits = 8; |
| 54 | stream->codes.num_symbols = 19; |
| 55 | stream->codes.lengths = stream->code_lengths; |
| 56 | stream->codes.symbols = stream->code_symbols; |
| 57 | stream->codes.count = stream->code_count; |
| 58 | stream->codes.first = stream->code_first; |
| 59 | stream->codes.pos = stream->code_pos; |
| 60 | |
| 61 | stream->lengths.bits = 16; |
| 62 | stream->lengths.num_symbols = 288; |
| 63 | stream->lengths.lengths = stream->length_lengths; |
| 64 | stream->lengths.symbols = stream->length_symbols; |
| 65 | stream->lengths.count = stream->length_count; |
| 66 | stream->lengths.first = stream->length_first; |
| 67 | stream->lengths.pos = stream->length_pos; |
| 68 | |
| 69 | stream->distance.bits = 16; |
| 70 | stream->distance.num_symbols = 32; |
| 71 | stream->distance.lengths = stream->distance_lengths; |
| 72 | stream->distance.symbols = stream->distance_symbols; |
| 73 | stream->distance.count = stream->distance_count; |
| 74 | stream->distance.first = stream->distance_first; |
| 75 | stream->distance.pos = stream->distance_pos; |
| 76 | |
| 77 | } |
| 78 | |
| 79 | /* pull 'bits' bits out of the stream. The last bit pulled it returned as the |
| 80 | * msb. (section 3.1.1) |
| 81 | */ |
| 82 | inline unsigned long pull_bits(struct bitstream *stream, |
| 83 | const unsigned int bits) |
| 84 | { |
| 85 | unsigned long ret; |
| 86 | int i; |
| 87 | |
| 88 | ret = 0; |
| 89 | for (i = 0; i < bits; i++) { |
| 90 | ret += ((*(stream->data) >> stream->bit) & 1) << i; |
| 91 | |
| 92 | /* if, before incrementing, we are on bit 7, |
| 93 | * go to the lsb of the next byte */ |
| 94 | if (stream->bit++ == 7) { |
| 95 | stream->bit = 0; |
| 96 | stream->data++; |
| 97 | } |
| 98 | } |
| 99 | return ret; |
| 100 | } |
| 101 | |
| 102 | inline int pull_bit(struct bitstream *stream) |
| 103 | { |
| 104 | int ret = ((*(stream->data) >> stream->bit) & 1); |
| 105 | if (stream->bit++ == 7) { |
| 106 | stream->bit = 0; |
| 107 | stream->data++; |
| 108 | } |
| 109 | return ret; |
| 110 | } |
| 111 | |
| 112 | /* discard bits up to the next whole byte */ |
| 113 | static void discard_bits(struct bitstream *stream) |
| 114 | { |
| 115 | if (stream->bit != 0) { |
| 116 | stream->bit = 0; |
| 117 | stream->data++; |
| 118 | } |
| 119 | } |
| 120 | |
| 121 | /* No decompression, the data is all literals (section 3.2.4) */ |
| 122 | static void decompress_none(struct bitstream *stream, unsigned char *dest) |
| 123 | { |
| 124 | unsigned int length; |
| 125 | |
| 126 | discard_bits(stream); |
| 127 | length = *(stream->data++); |
| 128 | length += *(stream->data++) << 8; |
| 129 | pull_bits(stream, 16); /* throw away the inverse of the size */ |
| 130 | |
| 131 | stream->decoded += length; |
| 132 | stream->memcpy(dest, stream->data, length); |
| 133 | stream->data += length; |
| 134 | } |
| 135 | |
| 136 | /* Read in a symbol from the stream (section 3.2.2) */ |
| 137 | static int read_symbol(struct bitstream *stream, struct huffman_set *set) |
| 138 | { |
| 139 | int bits = 0; |
| 140 | int code = 0; |
| 141 | while (!(set->count[bits] && code < set->first[bits] + |
| 142 | set->count[bits])) { |
| 143 | code = (code << 1) + pull_bit(stream); |
| 144 | if (++bits > set->bits) { |
| 145 | /* error decoding (corrupted data?) */ |
| 146 | stream->error = CODE_NOT_FOUND; |
| 147 | return -1; |
| 148 | } |
| 149 | } |
| 150 | return set->symbols[set->pos[bits] + code - set->first[bits]]; |
| 151 | } |
| 152 | |
| 153 | /* decompress a stream of data encoded with the passed length and distance |
| 154 | * huffman codes */ |
| 155 | static void decompress_huffman(struct bitstream *stream, unsigned char *dest) |
| 156 | { |
| 157 | struct huffman_set *lengths = &(stream->lengths); |
| 158 | struct huffman_set *distance = &(stream->distance); |
| 159 | |
| 160 | int symbol, length, dist, i; |
| 161 | |
| 162 | do { |
| 163 | if ((symbol = read_symbol(stream, lengths)) < 0) return; |
| 164 | if (symbol < 256) { |
| 165 | *(dest++) = symbol; /* symbol is a literal */ |
| 166 | stream->decoded++; |
| 167 | } else if (symbol > 256) { |
| 168 | /* Determine the length of the repitition |
| 169 | * (section 3.2.5) */ |
| 170 | if (symbol < 265) length = symbol - 254; |
| 171 | else if (symbol == 285) length = 258; |
| 172 | else { |
| 173 | length = pull_bits(stream, (symbol - 261) >> 2); |
| 174 | length += (4 << ((symbol - 261) >> 2)) + 3; |
| 175 | length += ((symbol - 1) % 4) << |
| 176 | ((symbol - 261) >> 2); |
| 177 | } |
| 178 | |
| 179 | /* Determine how far back to go */ |
| 180 | if ((symbol = read_symbol(stream, distance)) < 0) |
| 181 | return; |
| 182 | if (symbol < 4) dist = symbol + 1; |
| 183 | else { |
| 184 | dist = pull_bits(stream, (symbol - 2) >> 1); |
| 185 | dist += (2 << ((symbol - 2) >> 1)) + 1; |
| 186 | dist += (symbol % 2) << ((symbol - 2) >> 1); |
| 187 | } |
| 188 | stream->decoded += length; |
| 189 | for (i = 0; i < length; i++) { |
| 190 | *dest = dest[-dist]; |
| 191 | dest++; |
| 192 | } |
| 193 | } |
| 194 | } while (symbol != 256); /* 256 is the end of the data block */ |
| 195 | } |
| 196 | |
| 197 | /* Fill the lookup tables (section 3.2.2) */ |
| 198 | static void fill_code_tables(struct huffman_set *set) |
| 199 | { |
| 200 | int code = 0, i, length; |
| 201 | |
| 202 | /* fill in the first code of each bit length, and the pos pointer */ |
| 203 | set->pos[0] = 0; |
| 204 | for (i = 1; i < set->bits; i++) { |
| 205 | code = (code + set->count[i - 1]) << 1; |
| 206 | set->first[i] = code; |
| 207 | set->pos[i] = set->pos[i - 1] + set->count[i - 1]; |
| 208 | } |
| 209 | |
| 210 | /* Fill in the table of symbols in order of their huffman code */ |
| 211 | for (i = 0; i < set->num_symbols; i++) { |
| 212 | if ((length = set->lengths[i])) |
| 213 | set->symbols[set->pos[length]++] = i; |
| 214 | } |
| 215 | |
| 216 | /* reset the pos pointer */ |
| 217 | for (i = 1; i < set->bits; i++) set->pos[i] -= set->count[i]; |
| 218 | } |
| 219 | |
| 220 | static void init_code_tables(struct huffman_set *set) |
| 221 | { |
| 222 | cramfs_memset(set->lengths, 0, set->num_symbols); |
| 223 | cramfs_memset(set->count, 0, set->bits); |
| 224 | cramfs_memset(set->first, 0, set->bits); |
| 225 | } |
| 226 | |
| 227 | /* read in the huffman codes for dynamic decoding (section 3.2.7) */ |
| 228 | static void decompress_dynamic(struct bitstream *stream, unsigned char *dest) |
| 229 | { |
| 230 | /* I tried my best to minimize the memory footprint here, while still |
| 231 | * keeping up performance. I really dislike the _lengths[] tables, but |
| 232 | * I see no way of eliminating them without a sizable performance |
| 233 | * impact. The first struct table keeps track of stats on each bit |
| 234 | * length. The _length table keeps a record of the bit length of each |
| 235 | * symbol. The _symbols table is for looking up symbols by the huffman |
| 236 | * code (the pos element points to the first place in the symbol table |
| 237 | * where that bit length occurs). I also hate the initization of these |
| 238 | * structs, if someone knows how to compact these, lemme know. */ |
| 239 | |
| 240 | struct huffman_set *codes = &(stream->codes); |
| 241 | struct huffman_set *lengths = &(stream->lengths); |
| 242 | struct huffman_set *distance = &(stream->distance); |
| 243 | |
| 244 | int hlit = pull_bits(stream, 5) + 257; |
| 245 | int hdist = pull_bits(stream, 5) + 1; |
| 246 | int hclen = pull_bits(stream, 4) + 4; |
| 247 | int length, curr_code, symbol, i, last_code; |
| 248 | |
| 249 | last_code = 0; |
| 250 | |
| 251 | init_code_tables(codes); |
| 252 | init_code_tables(lengths); |
| 253 | init_code_tables(distance); |
| 254 | |
| 255 | /* fill in the count of each bit length' as well as the lengths |
| 256 | * table */ |
| 257 | for (i = 0; i < hclen; i++) { |
| 258 | length = pull_bits(stream, 3); |
| 259 | codes->lengths[huffman_order[i]] = length; |
| 260 | if (length) codes->count[length]++; |
| 261 | |
| 262 | } |
| 263 | fill_code_tables(codes); |
| 264 | |
| 265 | /* Do the same for the length codes, being carefull of wrap through |
| 266 | * to the distance table */ |
| 267 | curr_code = 0; |
| 268 | while (curr_code < hlit) { |
| 269 | if ((symbol = read_symbol(stream, codes)) < 0) return; |
| 270 | if (symbol == 0) { |
| 271 | curr_code++; |
| 272 | last_code = 0; |
| 273 | } else if (symbol < 16) { /* Literal length */ |
| 274 | lengths->lengths[curr_code] = last_code = symbol; |
| 275 | lengths->count[symbol]++; |
| 276 | curr_code++; |
| 277 | } else if (symbol == 16) { /* repeat the last symbol 3 - 6 |
| 278 | * times */ |
| 279 | length = 3 + pull_bits(stream, 2); |
| 280 | for (;length; length--, curr_code++) |
| 281 | if (curr_code < hlit) { |
| 282 | lengths->lengths[curr_code] = |
| 283 | last_code; |
| 284 | lengths->count[last_code]++; |
| 285 | } else { /* wrap to the distance table */ |
| 286 | distance->lengths[curr_code - hlit] = |
| 287 | last_code; |
| 288 | distance->count[last_code]++; |
| 289 | } |
| 290 | } else if (symbol == 17) { /* repeat a bit length 0 */ |
| 291 | curr_code += 3 + pull_bits(stream, 3); |
| 292 | last_code = 0; |
| 293 | } else { /* same, but more times */ |
| 294 | curr_code += 11 + pull_bits(stream, 7); |
| 295 | last_code = 0; |
| 296 | } |
| 297 | } |
| 298 | fill_code_tables(lengths); |
| 299 | |
| 300 | /* Fill the distance table, don't need to worry about wrapthrough |
| 301 | * here */ |
| 302 | curr_code -= hlit; |
| 303 | while (curr_code < hdist) { |
| 304 | if ((symbol = read_symbol(stream, codes)) < 0) return; |
| 305 | if (symbol == 0) { |
| 306 | curr_code++; |
| 307 | last_code = 0; |
| 308 | } else if (symbol < 16) { |
| 309 | distance->lengths[curr_code] = last_code = symbol; |
| 310 | distance->count[symbol]++; |
| 311 | curr_code++; |
| 312 | } else if (symbol == 16) { |
| 313 | length = 3 + pull_bits(stream, 2); |
| 314 | for (;length; length--, curr_code++) { |
| 315 | distance->lengths[curr_code] = |
| 316 | last_code; |
| 317 | distance->count[last_code]++; |
| 318 | } |
| 319 | } else if (symbol == 17) { |
| 320 | curr_code += 3 + pull_bits(stream, 3); |
| 321 | last_code = 0; |
| 322 | } else { |
| 323 | curr_code += 11 + pull_bits(stream, 7); |
| 324 | last_code = 0; |
| 325 | } |
| 326 | } |
| 327 | fill_code_tables(distance); |
| 328 | |
| 329 | decompress_huffman(stream, dest); |
| 330 | } |
| 331 | |
| 332 | /* fill in the length and distance huffman codes for fixed encoding |
| 333 | * (section 3.2.6) */ |
| 334 | static void decompress_fixed(struct bitstream *stream, unsigned char *dest) |
| 335 | { |
| 336 | /* let gcc fill in the initial values */ |
| 337 | struct huffman_set *lengths = &(stream->lengths); |
| 338 | struct huffman_set *distance = &(stream->distance); |
| 339 | |
| 340 | cramfs_memset(lengths->count, 0, 16); |
| 341 | cramfs_memset(lengths->first, 0, 16); |
| 342 | cramfs_memset(lengths->lengths, 8, 144); |
| 343 | cramfs_memset(lengths->lengths + 144, 9, 112); |
| 344 | cramfs_memset(lengths->lengths + 256, 7, 24); |
| 345 | cramfs_memset(lengths->lengths + 280, 8, 8); |
| 346 | lengths->count[7] = 24; |
| 347 | lengths->count[8] = 152; |
| 348 | lengths->count[9] = 112; |
| 349 | |
| 350 | cramfs_memset(distance->count, 0, 16); |
| 351 | cramfs_memset(distance->first, 0, 16); |
| 352 | cramfs_memset(distance->lengths, 5, 32); |
| 353 | distance->count[5] = 32; |
| 354 | |
| 355 | |
| 356 | fill_code_tables(lengths); |
| 357 | fill_code_tables(distance); |
| 358 | |
| 359 | |
| 360 | decompress_huffman(stream, dest); |
| 361 | } |
| 362 | |
| 363 | /* returns the number of bytes decoded, < 0 if there was an error. Note that |
| 364 | * this function assumes that the block starts on a byte boundry |
| 365 | * (non-compliant, but I don't see where this would happen). section 3.2.3 */ |
| 366 | long decompress_block(unsigned char *dest, unsigned char *source, |
| 367 | void *(*inflate_memcpy)(void *, const void *, size)) |
| 368 | { |
| 369 | int bfinal, btype; |
| 370 | struct bitstream stream; |
| 371 | |
| 372 | init_stream(&stream, source, inflate_memcpy); |
| 373 | do { |
| 374 | bfinal = pull_bit(&stream); |
| 375 | btype = pull_bits(&stream, 2); |
| 376 | if (btype == NO_COMP) decompress_none(&stream, dest + stream.decoded); |
| 377 | else if (btype == DYNAMIC_COMP) |
| 378 | decompress_dynamic(&stream, dest + stream.decoded); |
| 379 | else if (btype == FIXED_COMP) decompress_fixed(&stream, dest + stream.decoded); |
| 380 | else stream.error = COMP_UNKNOWN; |
| 381 | } while (!bfinal && !stream.error); |
| 382 | |
| 383 | #if 0 |
| 384 | putstr("decompress_block start\r\n"); |
| 385 | putLabeledWord("stream.error = ",stream.error); |
| 386 | putLabeledWord("stream.decoded = ",stream.decoded); |
| 387 | putLabeledWord("dest = ",dest); |
| 388 | putstr("decompress_block end\r\n"); |
| 389 | #endif |
| 390 | return stream.error ? -stream.error : stream.decoded; |
| 391 | } |