Tom Rini | 83d290c | 2018-05-06 17:58:06 -0400 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
Anton Habegger | 040cc7b | 2015-01-22 22:29:11 +0100 | [diff] [blame] | 2 | /* |
| 3 | * This file is part of UBIFS. |
| 4 | * |
| 5 | * Copyright (C) 2006-2008 Nokia Corporation. |
| 6 | * |
Anton Habegger | 040cc7b | 2015-01-22 22:29:11 +0100 | [diff] [blame] | 7 | * Authors: Adrian Hunter |
| 8 | * Artem Bityutskiy (Битюцкий Артём) |
| 9 | */ |
| 10 | |
| 11 | /* |
| 12 | * This file implements garbage collection. The procedure for garbage collection |
| 13 | * is different depending on whether a LEB as an index LEB (contains index |
| 14 | * nodes) or not. For non-index LEBs, garbage collection finds a LEB which |
| 15 | * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete |
| 16 | * nodes to the journal, at which point the garbage-collected LEB is free to be |
| 17 | * reused. For index LEBs, garbage collection marks the non-obsolete index nodes |
| 18 | * dirty in the TNC, and after the next commit, the garbage-collected LEB is |
| 19 | * to be reused. Garbage collection will cause the number of dirty index nodes |
| 20 | * to grow, however sufficient space is reserved for the index to ensure the |
| 21 | * commit will never run out of space. |
| 22 | * |
| 23 | * Notes about dead watermark. At current UBIFS implementation we assume that |
| 24 | * LEBs which have less than @c->dead_wm bytes of free + dirty space are full |
| 25 | * and not worth garbage-collecting. The dead watermark is one min. I/O unit |
| 26 | * size, or min. UBIFS node size, depending on what is greater. Indeed, UBIFS |
| 27 | * Garbage Collector has to synchronize the GC head's write buffer before |
| 28 | * returning, so this is about wasting one min. I/O unit. However, UBIFS GC can |
| 29 | * actually reclaim even very small pieces of dirty space by garbage collecting |
| 30 | * enough dirty LEBs, but we do not bother doing this at this implementation. |
| 31 | * |
| 32 | * Notes about dark watermark. The results of GC work depends on how big are |
| 33 | * the UBIFS nodes GC deals with. Large nodes make GC waste more space. Indeed, |
| 34 | * if GC move data from LEB A to LEB B and nodes in LEB A are large, GC would |
| 35 | * have to waste large pieces of free space at the end of LEB B, because nodes |
| 36 | * from LEB A would not fit. And the worst situation is when all nodes are of |
| 37 | * maximum size. So dark watermark is the amount of free + dirty space in LEB |
| 38 | * which are guaranteed to be reclaimable. If LEB has less space, the GC might |
| 39 | * be unable to reclaim it. So, LEBs with free + dirty greater than dark |
| 40 | * watermark are "good" LEBs from GC's point of few. The other LEBs are not so |
| 41 | * good, and GC takes extra care when moving them. |
| 42 | */ |
| 43 | #ifndef __UBOOT__ |
Simon Glass | 61b29b8 | 2020-02-03 07:36:15 -0700 | [diff] [blame] | 44 | #include <dm/devres.h> |
Anton Habegger | 040cc7b | 2015-01-22 22:29:11 +0100 | [diff] [blame] | 45 | #include <linux/slab.h> |
| 46 | #include <linux/pagemap.h> |
| 47 | #include <linux/list_sort.h> |
| 48 | #endif |
| 49 | #include "ubifs.h" |
| 50 | |
| 51 | #ifndef __UBOOT__ |
| 52 | /* |
| 53 | * GC may need to move more than one LEB to make progress. The below constants |
| 54 | * define "soft" and "hard" limits on the number of LEBs the garbage collector |
| 55 | * may move. |
| 56 | */ |
| 57 | #define SOFT_LEBS_LIMIT 4 |
| 58 | #define HARD_LEBS_LIMIT 32 |
| 59 | |
| 60 | /** |
| 61 | * switch_gc_head - switch the garbage collection journal head. |
| 62 | * @c: UBIFS file-system description object |
| 63 | * @buf: buffer to write |
| 64 | * @len: length of the buffer to write |
| 65 | * @lnum: LEB number written is returned here |
| 66 | * @offs: offset written is returned here |
| 67 | * |
| 68 | * This function switch the GC head to the next LEB which is reserved in |
| 69 | * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required, |
| 70 | * and other negative error code in case of failures. |
| 71 | */ |
| 72 | static int switch_gc_head(struct ubifs_info *c) |
| 73 | { |
| 74 | int err, gc_lnum = c->gc_lnum; |
| 75 | struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; |
| 76 | |
| 77 | ubifs_assert(gc_lnum != -1); |
| 78 | dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)", |
| 79 | wbuf->lnum, wbuf->offs + wbuf->used, gc_lnum, |
| 80 | c->leb_size - wbuf->offs - wbuf->used); |
| 81 | |
| 82 | err = ubifs_wbuf_sync_nolock(wbuf); |
| 83 | if (err) |
| 84 | return err; |
| 85 | |
| 86 | /* |
| 87 | * The GC write-buffer was synchronized, we may safely unmap |
| 88 | * 'c->gc_lnum'. |
| 89 | */ |
| 90 | err = ubifs_leb_unmap(c, gc_lnum); |
| 91 | if (err) |
| 92 | return err; |
| 93 | |
| 94 | err = ubifs_wbuf_sync_nolock(wbuf); |
| 95 | if (err) |
| 96 | return err; |
| 97 | |
| 98 | err = ubifs_add_bud_to_log(c, GCHD, gc_lnum, 0); |
| 99 | if (err) |
| 100 | return err; |
| 101 | |
| 102 | c->gc_lnum = -1; |
| 103 | err = ubifs_wbuf_seek_nolock(wbuf, gc_lnum, 0); |
| 104 | return err; |
| 105 | } |
| 106 | |
| 107 | /** |
| 108 | * data_nodes_cmp - compare 2 data nodes. |
| 109 | * @priv: UBIFS file-system description object |
| 110 | * @a: first data node |
| 111 | * @a: second data node |
| 112 | * |
| 113 | * This function compares data nodes @a and @b. Returns %1 if @a has greater |
| 114 | * inode or block number, and %-1 otherwise. |
| 115 | */ |
| 116 | static int data_nodes_cmp(void *priv, struct list_head *a, struct list_head *b) |
| 117 | { |
| 118 | ino_t inuma, inumb; |
| 119 | struct ubifs_info *c = priv; |
| 120 | struct ubifs_scan_node *sa, *sb; |
| 121 | |
| 122 | cond_resched(); |
| 123 | if (a == b) |
| 124 | return 0; |
| 125 | |
| 126 | sa = list_entry(a, struct ubifs_scan_node, list); |
| 127 | sb = list_entry(b, struct ubifs_scan_node, list); |
| 128 | |
| 129 | ubifs_assert(key_type(c, &sa->key) == UBIFS_DATA_KEY); |
| 130 | ubifs_assert(key_type(c, &sb->key) == UBIFS_DATA_KEY); |
| 131 | ubifs_assert(sa->type == UBIFS_DATA_NODE); |
| 132 | ubifs_assert(sb->type == UBIFS_DATA_NODE); |
| 133 | |
| 134 | inuma = key_inum(c, &sa->key); |
| 135 | inumb = key_inum(c, &sb->key); |
| 136 | |
| 137 | if (inuma == inumb) { |
| 138 | unsigned int blka = key_block(c, &sa->key); |
| 139 | unsigned int blkb = key_block(c, &sb->key); |
| 140 | |
| 141 | if (blka <= blkb) |
| 142 | return -1; |
| 143 | } else if (inuma <= inumb) |
| 144 | return -1; |
| 145 | |
| 146 | return 1; |
| 147 | } |
| 148 | |
| 149 | /* |
| 150 | * nondata_nodes_cmp - compare 2 non-data nodes. |
| 151 | * @priv: UBIFS file-system description object |
| 152 | * @a: first node |
| 153 | * @a: second node |
| 154 | * |
| 155 | * This function compares nodes @a and @b. It makes sure that inode nodes go |
| 156 | * first and sorted by length in descending order. Directory entry nodes go |
| 157 | * after inode nodes and are sorted in ascending hash valuer order. |
| 158 | */ |
| 159 | static int nondata_nodes_cmp(void *priv, struct list_head *a, |
| 160 | struct list_head *b) |
| 161 | { |
| 162 | ino_t inuma, inumb; |
| 163 | struct ubifs_info *c = priv; |
| 164 | struct ubifs_scan_node *sa, *sb; |
| 165 | |
| 166 | cond_resched(); |
| 167 | if (a == b) |
| 168 | return 0; |
| 169 | |
| 170 | sa = list_entry(a, struct ubifs_scan_node, list); |
| 171 | sb = list_entry(b, struct ubifs_scan_node, list); |
| 172 | |
| 173 | ubifs_assert(key_type(c, &sa->key) != UBIFS_DATA_KEY && |
| 174 | key_type(c, &sb->key) != UBIFS_DATA_KEY); |
| 175 | ubifs_assert(sa->type != UBIFS_DATA_NODE && |
| 176 | sb->type != UBIFS_DATA_NODE); |
| 177 | |
| 178 | /* Inodes go before directory entries */ |
| 179 | if (sa->type == UBIFS_INO_NODE) { |
| 180 | if (sb->type == UBIFS_INO_NODE) |
| 181 | return sb->len - sa->len; |
| 182 | return -1; |
| 183 | } |
| 184 | if (sb->type == UBIFS_INO_NODE) |
| 185 | return 1; |
| 186 | |
| 187 | ubifs_assert(key_type(c, &sa->key) == UBIFS_DENT_KEY || |
| 188 | key_type(c, &sa->key) == UBIFS_XENT_KEY); |
| 189 | ubifs_assert(key_type(c, &sb->key) == UBIFS_DENT_KEY || |
| 190 | key_type(c, &sb->key) == UBIFS_XENT_KEY); |
| 191 | ubifs_assert(sa->type == UBIFS_DENT_NODE || |
| 192 | sa->type == UBIFS_XENT_NODE); |
| 193 | ubifs_assert(sb->type == UBIFS_DENT_NODE || |
| 194 | sb->type == UBIFS_XENT_NODE); |
| 195 | |
| 196 | inuma = key_inum(c, &sa->key); |
| 197 | inumb = key_inum(c, &sb->key); |
| 198 | |
| 199 | if (inuma == inumb) { |
| 200 | uint32_t hasha = key_hash(c, &sa->key); |
| 201 | uint32_t hashb = key_hash(c, &sb->key); |
| 202 | |
| 203 | if (hasha <= hashb) |
| 204 | return -1; |
| 205 | } else if (inuma <= inumb) |
| 206 | return -1; |
| 207 | |
| 208 | return 1; |
| 209 | } |
| 210 | |
| 211 | /** |
| 212 | * sort_nodes - sort nodes for GC. |
| 213 | * @c: UBIFS file-system description object |
| 214 | * @sleb: describes nodes to sort and contains the result on exit |
| 215 | * @nondata: contains non-data nodes on exit |
| 216 | * @min: minimum node size is returned here |
| 217 | * |
| 218 | * This function sorts the list of inodes to garbage collect. First of all, it |
| 219 | * kills obsolete nodes and separates data and non-data nodes to the |
| 220 | * @sleb->nodes and @nondata lists correspondingly. |
| 221 | * |
| 222 | * Data nodes are then sorted in block number order - this is important for |
| 223 | * bulk-read; data nodes with lower inode number go before data nodes with |
| 224 | * higher inode number, and data nodes with lower block number go before data |
| 225 | * nodes with higher block number; |
| 226 | * |
| 227 | * Non-data nodes are sorted as follows. |
| 228 | * o First go inode nodes - they are sorted in descending length order. |
| 229 | * o Then go directory entry nodes - they are sorted in hash order, which |
| 230 | * should supposedly optimize 'readdir()'. Direntry nodes with lower parent |
| 231 | * inode number go before direntry nodes with higher parent inode number, |
| 232 | * and direntry nodes with lower name hash values go before direntry nodes |
| 233 | * with higher name hash values. |
| 234 | * |
| 235 | * This function returns zero in case of success and a negative error code in |
| 236 | * case of failure. |
| 237 | */ |
| 238 | static int sort_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb, |
| 239 | struct list_head *nondata, int *min) |
| 240 | { |
| 241 | int err; |
| 242 | struct ubifs_scan_node *snod, *tmp; |
| 243 | |
| 244 | *min = INT_MAX; |
| 245 | |
| 246 | /* Separate data nodes and non-data nodes */ |
| 247 | list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) { |
| 248 | ubifs_assert(snod->type == UBIFS_INO_NODE || |
| 249 | snod->type == UBIFS_DATA_NODE || |
| 250 | snod->type == UBIFS_DENT_NODE || |
| 251 | snod->type == UBIFS_XENT_NODE || |
| 252 | snod->type == UBIFS_TRUN_NODE); |
| 253 | |
| 254 | if (snod->type != UBIFS_INO_NODE && |
| 255 | snod->type != UBIFS_DATA_NODE && |
| 256 | snod->type != UBIFS_DENT_NODE && |
| 257 | snod->type != UBIFS_XENT_NODE) { |
| 258 | /* Probably truncation node, zap it */ |
| 259 | list_del(&snod->list); |
| 260 | kfree(snod); |
| 261 | continue; |
| 262 | } |
| 263 | |
| 264 | ubifs_assert(key_type(c, &snod->key) == UBIFS_DATA_KEY || |
| 265 | key_type(c, &snod->key) == UBIFS_INO_KEY || |
| 266 | key_type(c, &snod->key) == UBIFS_DENT_KEY || |
| 267 | key_type(c, &snod->key) == UBIFS_XENT_KEY); |
| 268 | |
| 269 | err = ubifs_tnc_has_node(c, &snod->key, 0, sleb->lnum, |
| 270 | snod->offs, 0); |
| 271 | if (err < 0) |
| 272 | return err; |
| 273 | |
| 274 | if (!err) { |
| 275 | /* The node is obsolete, remove it from the list */ |
| 276 | list_del(&snod->list); |
| 277 | kfree(snod); |
| 278 | continue; |
| 279 | } |
| 280 | |
| 281 | if (snod->len < *min) |
| 282 | *min = snod->len; |
| 283 | |
| 284 | if (key_type(c, &snod->key) != UBIFS_DATA_KEY) |
| 285 | list_move_tail(&snod->list, nondata); |
| 286 | } |
| 287 | |
| 288 | /* Sort data and non-data nodes */ |
| 289 | list_sort(c, &sleb->nodes, &data_nodes_cmp); |
| 290 | list_sort(c, nondata, &nondata_nodes_cmp); |
| 291 | |
| 292 | err = dbg_check_data_nodes_order(c, &sleb->nodes); |
| 293 | if (err) |
| 294 | return err; |
| 295 | err = dbg_check_nondata_nodes_order(c, nondata); |
| 296 | if (err) |
| 297 | return err; |
| 298 | return 0; |
| 299 | } |
| 300 | |
| 301 | /** |
| 302 | * move_node - move a node. |
| 303 | * @c: UBIFS file-system description object |
| 304 | * @sleb: describes the LEB to move nodes from |
| 305 | * @snod: the mode to move |
| 306 | * @wbuf: write-buffer to move node to |
| 307 | * |
| 308 | * This function moves node @snod to @wbuf, changes TNC correspondingly, and |
| 309 | * destroys @snod. Returns zero in case of success and a negative error code in |
| 310 | * case of failure. |
| 311 | */ |
| 312 | static int move_node(struct ubifs_info *c, struct ubifs_scan_leb *sleb, |
| 313 | struct ubifs_scan_node *snod, struct ubifs_wbuf *wbuf) |
| 314 | { |
| 315 | int err, new_lnum = wbuf->lnum, new_offs = wbuf->offs + wbuf->used; |
| 316 | |
| 317 | cond_resched(); |
| 318 | err = ubifs_wbuf_write_nolock(wbuf, snod->node, snod->len); |
| 319 | if (err) |
| 320 | return err; |
| 321 | |
| 322 | err = ubifs_tnc_replace(c, &snod->key, sleb->lnum, |
| 323 | snod->offs, new_lnum, new_offs, |
| 324 | snod->len); |
| 325 | list_del(&snod->list); |
| 326 | kfree(snod); |
| 327 | return err; |
| 328 | } |
| 329 | |
| 330 | /** |
| 331 | * move_nodes - move nodes. |
| 332 | * @c: UBIFS file-system description object |
| 333 | * @sleb: describes the LEB to move nodes from |
| 334 | * |
| 335 | * This function moves valid nodes from data LEB described by @sleb to the GC |
| 336 | * journal head. This function returns zero in case of success, %-EAGAIN if |
| 337 | * commit is required, and other negative error codes in case of other |
| 338 | * failures. |
| 339 | */ |
| 340 | static int move_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb) |
| 341 | { |
| 342 | int err, min; |
| 343 | LIST_HEAD(nondata); |
| 344 | struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; |
| 345 | |
| 346 | if (wbuf->lnum == -1) { |
| 347 | /* |
| 348 | * The GC journal head is not set, because it is the first GC |
| 349 | * invocation since mount. |
| 350 | */ |
| 351 | err = switch_gc_head(c); |
| 352 | if (err) |
| 353 | return err; |
| 354 | } |
| 355 | |
| 356 | err = sort_nodes(c, sleb, &nondata, &min); |
| 357 | if (err) |
| 358 | goto out; |
| 359 | |
| 360 | /* Write nodes to their new location. Use the first-fit strategy */ |
| 361 | while (1) { |
| 362 | int avail; |
| 363 | struct ubifs_scan_node *snod, *tmp; |
| 364 | |
| 365 | /* Move data nodes */ |
| 366 | list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) { |
| 367 | avail = c->leb_size - wbuf->offs - wbuf->used; |
| 368 | if (snod->len > avail) |
| 369 | /* |
| 370 | * Do not skip data nodes in order to optimize |
| 371 | * bulk-read. |
| 372 | */ |
| 373 | break; |
| 374 | |
| 375 | err = move_node(c, sleb, snod, wbuf); |
| 376 | if (err) |
| 377 | goto out; |
| 378 | } |
| 379 | |
| 380 | /* Move non-data nodes */ |
| 381 | list_for_each_entry_safe(snod, tmp, &nondata, list) { |
| 382 | avail = c->leb_size - wbuf->offs - wbuf->used; |
| 383 | if (avail < min) |
| 384 | break; |
| 385 | |
| 386 | if (snod->len > avail) { |
| 387 | /* |
| 388 | * Keep going only if this is an inode with |
| 389 | * some data. Otherwise stop and switch the GC |
| 390 | * head. IOW, we assume that data-less inode |
| 391 | * nodes and direntry nodes are roughly of the |
| 392 | * same size. |
| 393 | */ |
| 394 | if (key_type(c, &snod->key) == UBIFS_DENT_KEY || |
| 395 | snod->len == UBIFS_INO_NODE_SZ) |
| 396 | break; |
| 397 | continue; |
| 398 | } |
| 399 | |
| 400 | err = move_node(c, sleb, snod, wbuf); |
| 401 | if (err) |
| 402 | goto out; |
| 403 | } |
| 404 | |
| 405 | if (list_empty(&sleb->nodes) && list_empty(&nondata)) |
| 406 | break; |
| 407 | |
| 408 | /* |
| 409 | * Waste the rest of the space in the LEB and switch to the |
| 410 | * next LEB. |
| 411 | */ |
| 412 | err = switch_gc_head(c); |
| 413 | if (err) |
| 414 | goto out; |
| 415 | } |
| 416 | |
| 417 | return 0; |
| 418 | |
| 419 | out: |
| 420 | list_splice_tail(&nondata, &sleb->nodes); |
| 421 | return err; |
| 422 | } |
| 423 | |
| 424 | /** |
| 425 | * gc_sync_wbufs - sync write-buffers for GC. |
| 426 | * @c: UBIFS file-system description object |
| 427 | * |
| 428 | * We must guarantee that obsoleting nodes are on flash. Unfortunately they may |
| 429 | * be in a write-buffer instead. That is, a node could be written to a |
| 430 | * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is |
| 431 | * erased before the write-buffer is sync'd and then there is an unclean |
| 432 | * unmount, then an existing node is lost. To avoid this, we sync all |
| 433 | * write-buffers. |
| 434 | * |
| 435 | * This function returns %0 on success or a negative error code on failure. |
| 436 | */ |
| 437 | static int gc_sync_wbufs(struct ubifs_info *c) |
| 438 | { |
| 439 | int err, i; |
| 440 | |
| 441 | for (i = 0; i < c->jhead_cnt; i++) { |
| 442 | if (i == GCHD) |
| 443 | continue; |
| 444 | err = ubifs_wbuf_sync(&c->jheads[i].wbuf); |
| 445 | if (err) |
| 446 | return err; |
| 447 | } |
| 448 | return 0; |
| 449 | } |
| 450 | |
| 451 | /** |
| 452 | * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock. |
| 453 | * @c: UBIFS file-system description object |
| 454 | * @lp: describes the LEB to garbage collect |
| 455 | * |
| 456 | * This function garbage-collects an LEB and returns one of the @LEB_FREED, |
| 457 | * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is |
| 458 | * required, and other negative error codes in case of failures. |
| 459 | */ |
| 460 | int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp) |
| 461 | { |
| 462 | struct ubifs_scan_leb *sleb; |
| 463 | struct ubifs_scan_node *snod; |
| 464 | struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; |
| 465 | int err = 0, lnum = lp->lnum; |
| 466 | |
| 467 | ubifs_assert(c->gc_lnum != -1 || wbuf->offs + wbuf->used == 0 || |
| 468 | c->need_recovery); |
| 469 | ubifs_assert(c->gc_lnum != lnum); |
| 470 | ubifs_assert(wbuf->lnum != lnum); |
| 471 | |
| 472 | if (lp->free + lp->dirty == c->leb_size) { |
| 473 | /* Special case - a free LEB */ |
| 474 | dbg_gc("LEB %d is free, return it", lp->lnum); |
| 475 | ubifs_assert(!(lp->flags & LPROPS_INDEX)); |
| 476 | |
| 477 | if (lp->free != c->leb_size) { |
| 478 | /* |
| 479 | * Write buffers must be sync'd before unmapping |
| 480 | * freeable LEBs, because one of them may contain data |
| 481 | * which obsoletes something in 'lp->pnum'. |
| 482 | */ |
| 483 | err = gc_sync_wbufs(c); |
| 484 | if (err) |
| 485 | return err; |
| 486 | err = ubifs_change_one_lp(c, lp->lnum, c->leb_size, |
| 487 | 0, 0, 0, 0); |
| 488 | if (err) |
| 489 | return err; |
| 490 | } |
| 491 | err = ubifs_leb_unmap(c, lp->lnum); |
| 492 | if (err) |
| 493 | return err; |
| 494 | |
| 495 | if (c->gc_lnum == -1) { |
| 496 | c->gc_lnum = lnum; |
| 497 | return LEB_RETAINED; |
| 498 | } |
| 499 | |
| 500 | return LEB_FREED; |
| 501 | } |
| 502 | |
| 503 | /* |
| 504 | * We scan the entire LEB even though we only really need to scan up to |
| 505 | * (c->leb_size - lp->free). |
| 506 | */ |
| 507 | sleb = ubifs_scan(c, lnum, 0, c->sbuf, 0); |
| 508 | if (IS_ERR(sleb)) |
| 509 | return PTR_ERR(sleb); |
| 510 | |
| 511 | ubifs_assert(!list_empty(&sleb->nodes)); |
| 512 | snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list); |
| 513 | |
| 514 | if (snod->type == UBIFS_IDX_NODE) { |
| 515 | struct ubifs_gced_idx_leb *idx_gc; |
| 516 | |
| 517 | dbg_gc("indexing LEB %d (free %d, dirty %d)", |
| 518 | lnum, lp->free, lp->dirty); |
| 519 | list_for_each_entry(snod, &sleb->nodes, list) { |
| 520 | struct ubifs_idx_node *idx = snod->node; |
| 521 | int level = le16_to_cpu(idx->level); |
| 522 | |
| 523 | ubifs_assert(snod->type == UBIFS_IDX_NODE); |
| 524 | key_read(c, ubifs_idx_key(c, idx), &snod->key); |
| 525 | err = ubifs_dirty_idx_node(c, &snod->key, level, lnum, |
| 526 | snod->offs); |
| 527 | if (err) |
| 528 | goto out; |
| 529 | } |
| 530 | |
| 531 | idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS); |
| 532 | if (!idx_gc) { |
| 533 | err = -ENOMEM; |
| 534 | goto out; |
| 535 | } |
| 536 | |
| 537 | idx_gc->lnum = lnum; |
| 538 | idx_gc->unmap = 0; |
| 539 | list_add(&idx_gc->list, &c->idx_gc); |
| 540 | |
| 541 | /* |
| 542 | * Don't release the LEB until after the next commit, because |
| 543 | * it may contain data which is needed for recovery. So |
| 544 | * although we freed this LEB, it will become usable only after |
| 545 | * the commit. |
| 546 | */ |
| 547 | err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, |
| 548 | LPROPS_INDEX, 1); |
| 549 | if (err) |
| 550 | goto out; |
| 551 | err = LEB_FREED_IDX; |
| 552 | } else { |
| 553 | dbg_gc("data LEB %d (free %d, dirty %d)", |
| 554 | lnum, lp->free, lp->dirty); |
| 555 | |
| 556 | err = move_nodes(c, sleb); |
| 557 | if (err) |
| 558 | goto out_inc_seq; |
| 559 | |
| 560 | err = gc_sync_wbufs(c); |
| 561 | if (err) |
| 562 | goto out_inc_seq; |
| 563 | |
| 564 | err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 0, 0); |
| 565 | if (err) |
| 566 | goto out_inc_seq; |
| 567 | |
| 568 | /* Allow for races with TNC */ |
| 569 | c->gced_lnum = lnum; |
| 570 | smp_wmb(); |
| 571 | c->gc_seq += 1; |
| 572 | smp_wmb(); |
| 573 | |
| 574 | if (c->gc_lnum == -1) { |
| 575 | c->gc_lnum = lnum; |
| 576 | err = LEB_RETAINED; |
| 577 | } else { |
| 578 | err = ubifs_wbuf_sync_nolock(wbuf); |
| 579 | if (err) |
| 580 | goto out; |
| 581 | |
| 582 | err = ubifs_leb_unmap(c, lnum); |
| 583 | if (err) |
| 584 | goto out; |
| 585 | |
| 586 | err = LEB_FREED; |
| 587 | } |
| 588 | } |
| 589 | |
| 590 | out: |
| 591 | ubifs_scan_destroy(sleb); |
| 592 | return err; |
| 593 | |
| 594 | out_inc_seq: |
| 595 | /* We may have moved at least some nodes so allow for races with TNC */ |
| 596 | c->gced_lnum = lnum; |
| 597 | smp_wmb(); |
| 598 | c->gc_seq += 1; |
| 599 | smp_wmb(); |
| 600 | goto out; |
| 601 | } |
| 602 | |
| 603 | /** |
| 604 | * ubifs_garbage_collect - UBIFS garbage collector. |
| 605 | * @c: UBIFS file-system description object |
| 606 | * @anyway: do GC even if there are free LEBs |
| 607 | * |
| 608 | * This function does out-of-place garbage collection. The return codes are: |
| 609 | * o positive LEB number if the LEB has been freed and may be used; |
| 610 | * o %-EAGAIN if the caller has to run commit; |
| 611 | * o %-ENOSPC if GC failed to make any progress; |
| 612 | * o other negative error codes in case of other errors. |
| 613 | * |
| 614 | * Garbage collector writes data to the journal when GC'ing data LEBs, and just |
| 615 | * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point |
| 616 | * commit may be required. But commit cannot be run from inside GC, because the |
| 617 | * caller might be holding the commit lock, so %-EAGAIN is returned instead; |
| 618 | * And this error code means that the caller has to run commit, and re-run GC |
| 619 | * if there is still no free space. |
| 620 | * |
| 621 | * There are many reasons why this function may return %-EAGAIN: |
| 622 | * o the log is full and there is no space to write an LEB reference for |
| 623 | * @c->gc_lnum; |
| 624 | * o the journal is too large and exceeds size limitations; |
| 625 | * o GC moved indexing LEBs, but they can be used only after the commit; |
| 626 | * o the shrinker fails to find clean znodes to free and requests the commit; |
| 627 | * o etc. |
| 628 | * |
| 629 | * Note, if the file-system is close to be full, this function may return |
| 630 | * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of |
| 631 | * the function. E.g., this happens if the limits on the journal size are too |
| 632 | * tough and GC writes too much to the journal before an LEB is freed. This |
| 633 | * might also mean that the journal is too large, and the TNC becomes to big, |
| 634 | * so that the shrinker is constantly called, finds not clean znodes to free, |
| 635 | * and requests commit. Well, this may also happen if the journal is all right, |
| 636 | * but another kernel process consumes too much memory. Anyway, infinite |
| 637 | * %-EAGAIN may happen, but in some extreme/misconfiguration cases. |
| 638 | */ |
| 639 | int ubifs_garbage_collect(struct ubifs_info *c, int anyway) |
| 640 | { |
| 641 | int i, err, ret, min_space = c->dead_wm; |
| 642 | struct ubifs_lprops lp; |
| 643 | struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; |
| 644 | |
| 645 | ubifs_assert_cmt_locked(c); |
| 646 | ubifs_assert(!c->ro_media && !c->ro_mount); |
| 647 | |
| 648 | if (ubifs_gc_should_commit(c)) |
| 649 | return -EAGAIN; |
| 650 | |
| 651 | mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); |
| 652 | |
| 653 | if (c->ro_error) { |
| 654 | ret = -EROFS; |
| 655 | goto out_unlock; |
| 656 | } |
| 657 | |
| 658 | /* We expect the write-buffer to be empty on entry */ |
| 659 | ubifs_assert(!wbuf->used); |
| 660 | |
| 661 | for (i = 0; ; i++) { |
| 662 | int space_before, space_after; |
| 663 | |
| 664 | cond_resched(); |
| 665 | |
| 666 | /* Give the commit an opportunity to run */ |
| 667 | if (ubifs_gc_should_commit(c)) { |
| 668 | ret = -EAGAIN; |
| 669 | break; |
| 670 | } |
| 671 | |
| 672 | if (i > SOFT_LEBS_LIMIT && !list_empty(&c->idx_gc)) { |
| 673 | /* |
| 674 | * We've done enough iterations. Indexing LEBs were |
| 675 | * moved and will be available after the commit. |
| 676 | */ |
| 677 | dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN"); |
| 678 | ubifs_commit_required(c); |
| 679 | ret = -EAGAIN; |
| 680 | break; |
| 681 | } |
| 682 | |
| 683 | if (i > HARD_LEBS_LIMIT) { |
| 684 | /* |
| 685 | * We've moved too many LEBs and have not made |
| 686 | * progress, give up. |
| 687 | */ |
| 688 | dbg_gc("hard limit, -ENOSPC"); |
| 689 | ret = -ENOSPC; |
| 690 | break; |
| 691 | } |
| 692 | |
| 693 | /* |
| 694 | * Empty and freeable LEBs can turn up while we waited for |
| 695 | * the wbuf lock, or while we have been running GC. In that |
| 696 | * case, we should just return one of those instead of |
| 697 | * continuing to GC dirty LEBs. Hence we request |
| 698 | * 'ubifs_find_dirty_leb()' to return an empty LEB if it can. |
| 699 | */ |
| 700 | ret = ubifs_find_dirty_leb(c, &lp, min_space, anyway ? 0 : 1); |
| 701 | if (ret) { |
| 702 | if (ret == -ENOSPC) |
| 703 | dbg_gc("no more dirty LEBs"); |
| 704 | break; |
| 705 | } |
| 706 | |
| 707 | dbg_gc("found LEB %d: free %d, dirty %d, sum %d (min. space %d)", |
| 708 | lp.lnum, lp.free, lp.dirty, lp.free + lp.dirty, |
| 709 | min_space); |
| 710 | |
| 711 | space_before = c->leb_size - wbuf->offs - wbuf->used; |
| 712 | if (wbuf->lnum == -1) |
| 713 | space_before = 0; |
| 714 | |
| 715 | ret = ubifs_garbage_collect_leb(c, &lp); |
| 716 | if (ret < 0) { |
| 717 | if (ret == -EAGAIN) { |
| 718 | /* |
| 719 | * This is not error, so we have to return the |
| 720 | * LEB to lprops. But if 'ubifs_return_leb()' |
| 721 | * fails, its failure code is propagated to the |
| 722 | * caller instead of the original '-EAGAIN'. |
| 723 | */ |
| 724 | err = ubifs_return_leb(c, lp.lnum); |
| 725 | if (err) |
| 726 | ret = err; |
| 727 | break; |
| 728 | } |
| 729 | goto out; |
| 730 | } |
| 731 | |
| 732 | if (ret == LEB_FREED) { |
| 733 | /* An LEB has been freed and is ready for use */ |
| 734 | dbg_gc("LEB %d freed, return", lp.lnum); |
| 735 | ret = lp.lnum; |
| 736 | break; |
| 737 | } |
| 738 | |
| 739 | if (ret == LEB_FREED_IDX) { |
| 740 | /* |
| 741 | * This was an indexing LEB and it cannot be |
| 742 | * immediately used. And instead of requesting the |
| 743 | * commit straight away, we try to garbage collect some |
| 744 | * more. |
| 745 | */ |
| 746 | dbg_gc("indexing LEB %d freed, continue", lp.lnum); |
| 747 | continue; |
| 748 | } |
| 749 | |
| 750 | ubifs_assert(ret == LEB_RETAINED); |
| 751 | space_after = c->leb_size - wbuf->offs - wbuf->used; |
| 752 | dbg_gc("LEB %d retained, freed %d bytes", lp.lnum, |
| 753 | space_after - space_before); |
| 754 | |
| 755 | if (space_after > space_before) { |
| 756 | /* GC makes progress, keep working */ |
| 757 | min_space >>= 1; |
| 758 | if (min_space < c->dead_wm) |
| 759 | min_space = c->dead_wm; |
| 760 | continue; |
| 761 | } |
| 762 | |
| 763 | dbg_gc("did not make progress"); |
| 764 | |
| 765 | /* |
| 766 | * GC moved an LEB bud have not done any progress. This means |
| 767 | * that the previous GC head LEB contained too few free space |
| 768 | * and the LEB which was GC'ed contained only large nodes which |
| 769 | * did not fit that space. |
| 770 | * |
| 771 | * We can do 2 things: |
| 772 | * 1. pick another LEB in a hope it'll contain a small node |
| 773 | * which will fit the space we have at the end of current GC |
| 774 | * head LEB, but there is no guarantee, so we try this out |
| 775 | * unless we have already been working for too long; |
| 776 | * 2. request an LEB with more dirty space, which will force |
| 777 | * 'ubifs_find_dirty_leb()' to start scanning the lprops |
| 778 | * table, instead of just picking one from the heap |
| 779 | * (previously it already picked the dirtiest LEB). |
| 780 | */ |
| 781 | if (i < SOFT_LEBS_LIMIT) { |
| 782 | dbg_gc("try again"); |
| 783 | continue; |
| 784 | } |
| 785 | |
| 786 | min_space <<= 1; |
| 787 | if (min_space > c->dark_wm) |
| 788 | min_space = c->dark_wm; |
| 789 | dbg_gc("set min. space to %d", min_space); |
| 790 | } |
| 791 | |
| 792 | if (ret == -ENOSPC && !list_empty(&c->idx_gc)) { |
| 793 | dbg_gc("no space, some index LEBs GC'ed, -EAGAIN"); |
| 794 | ubifs_commit_required(c); |
| 795 | ret = -EAGAIN; |
| 796 | } |
| 797 | |
| 798 | err = ubifs_wbuf_sync_nolock(wbuf); |
| 799 | if (!err) |
| 800 | err = ubifs_leb_unmap(c, c->gc_lnum); |
| 801 | if (err) { |
| 802 | ret = err; |
| 803 | goto out; |
| 804 | } |
| 805 | out_unlock: |
| 806 | mutex_unlock(&wbuf->io_mutex); |
| 807 | return ret; |
| 808 | |
| 809 | out: |
| 810 | ubifs_assert(ret < 0); |
| 811 | ubifs_assert(ret != -ENOSPC && ret != -EAGAIN); |
| 812 | ubifs_wbuf_sync_nolock(wbuf); |
| 813 | ubifs_ro_mode(c, ret); |
| 814 | mutex_unlock(&wbuf->io_mutex); |
| 815 | ubifs_return_leb(c, lp.lnum); |
| 816 | return ret; |
| 817 | } |
| 818 | |
| 819 | /** |
| 820 | * ubifs_gc_start_commit - garbage collection at start of commit. |
| 821 | * @c: UBIFS file-system description object |
| 822 | * |
| 823 | * If a LEB has only dirty and free space, then we may safely unmap it and make |
| 824 | * it free. Note, we cannot do this with indexing LEBs because dirty space may |
| 825 | * correspond index nodes that are required for recovery. In that case, the |
| 826 | * LEB cannot be unmapped until after the next commit. |
| 827 | * |
| 828 | * This function returns %0 upon success and a negative error code upon failure. |
| 829 | */ |
| 830 | int ubifs_gc_start_commit(struct ubifs_info *c) |
| 831 | { |
| 832 | struct ubifs_gced_idx_leb *idx_gc; |
| 833 | const struct ubifs_lprops *lp; |
| 834 | int err = 0, flags; |
| 835 | |
| 836 | ubifs_get_lprops(c); |
| 837 | |
| 838 | /* |
| 839 | * Unmap (non-index) freeable LEBs. Note that recovery requires that all |
| 840 | * wbufs are sync'd before this, which is done in 'do_commit()'. |
| 841 | */ |
| 842 | while (1) { |
| 843 | lp = ubifs_fast_find_freeable(c); |
| 844 | if (IS_ERR(lp)) { |
| 845 | err = PTR_ERR(lp); |
| 846 | goto out; |
| 847 | } |
| 848 | if (!lp) |
| 849 | break; |
| 850 | ubifs_assert(!(lp->flags & LPROPS_TAKEN)); |
| 851 | ubifs_assert(!(lp->flags & LPROPS_INDEX)); |
| 852 | err = ubifs_leb_unmap(c, lp->lnum); |
| 853 | if (err) |
| 854 | goto out; |
| 855 | lp = ubifs_change_lp(c, lp, c->leb_size, 0, lp->flags, 0); |
| 856 | if (IS_ERR(lp)) { |
| 857 | err = PTR_ERR(lp); |
| 858 | goto out; |
| 859 | } |
| 860 | ubifs_assert(!(lp->flags & LPROPS_TAKEN)); |
| 861 | ubifs_assert(!(lp->flags & LPROPS_INDEX)); |
| 862 | } |
| 863 | |
| 864 | /* Mark GC'd index LEBs OK to unmap after this commit finishes */ |
| 865 | list_for_each_entry(idx_gc, &c->idx_gc, list) |
| 866 | idx_gc->unmap = 1; |
| 867 | |
| 868 | /* Record index freeable LEBs for unmapping after commit */ |
| 869 | while (1) { |
| 870 | lp = ubifs_fast_find_frdi_idx(c); |
| 871 | if (IS_ERR(lp)) { |
| 872 | err = PTR_ERR(lp); |
| 873 | goto out; |
| 874 | } |
| 875 | if (!lp) |
| 876 | break; |
| 877 | idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS); |
| 878 | if (!idx_gc) { |
| 879 | err = -ENOMEM; |
| 880 | goto out; |
| 881 | } |
| 882 | ubifs_assert(!(lp->flags & LPROPS_TAKEN)); |
| 883 | ubifs_assert(lp->flags & LPROPS_INDEX); |
| 884 | /* Don't release the LEB until after the next commit */ |
| 885 | flags = (lp->flags | LPROPS_TAKEN) ^ LPROPS_INDEX; |
| 886 | lp = ubifs_change_lp(c, lp, c->leb_size, 0, flags, 1); |
| 887 | if (IS_ERR(lp)) { |
| 888 | err = PTR_ERR(lp); |
| 889 | kfree(idx_gc); |
| 890 | goto out; |
| 891 | } |
| 892 | ubifs_assert(lp->flags & LPROPS_TAKEN); |
| 893 | ubifs_assert(!(lp->flags & LPROPS_INDEX)); |
| 894 | idx_gc->lnum = lp->lnum; |
| 895 | idx_gc->unmap = 1; |
| 896 | list_add(&idx_gc->list, &c->idx_gc); |
| 897 | } |
| 898 | out: |
| 899 | ubifs_release_lprops(c); |
| 900 | return err; |
| 901 | } |
| 902 | |
| 903 | /** |
| 904 | * ubifs_gc_end_commit - garbage collection at end of commit. |
| 905 | * @c: UBIFS file-system description object |
| 906 | * |
| 907 | * This function completes out-of-place garbage collection of index LEBs. |
| 908 | */ |
| 909 | int ubifs_gc_end_commit(struct ubifs_info *c) |
| 910 | { |
| 911 | struct ubifs_gced_idx_leb *idx_gc, *tmp; |
| 912 | struct ubifs_wbuf *wbuf; |
| 913 | int err = 0; |
| 914 | |
| 915 | wbuf = &c->jheads[GCHD].wbuf; |
| 916 | mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); |
| 917 | list_for_each_entry_safe(idx_gc, tmp, &c->idx_gc, list) |
| 918 | if (idx_gc->unmap) { |
| 919 | dbg_gc("LEB %d", idx_gc->lnum); |
| 920 | err = ubifs_leb_unmap(c, idx_gc->lnum); |
| 921 | if (err) |
| 922 | goto out; |
| 923 | err = ubifs_change_one_lp(c, idx_gc->lnum, LPROPS_NC, |
| 924 | LPROPS_NC, 0, LPROPS_TAKEN, -1); |
| 925 | if (err) |
| 926 | goto out; |
| 927 | list_del(&idx_gc->list); |
| 928 | kfree(idx_gc); |
| 929 | } |
| 930 | out: |
| 931 | mutex_unlock(&wbuf->io_mutex); |
| 932 | return err; |
| 933 | } |
| 934 | #endif |
| 935 | /** |
| 936 | * ubifs_destroy_idx_gc - destroy idx_gc list. |
| 937 | * @c: UBIFS file-system description object |
| 938 | * |
| 939 | * This function destroys the @c->idx_gc list. It is called when unmounting |
| 940 | * so locks are not needed. Returns zero in case of success and a negative |
| 941 | * error code in case of failure. |
| 942 | */ |
| 943 | void ubifs_destroy_idx_gc(struct ubifs_info *c) |
| 944 | { |
| 945 | while (!list_empty(&c->idx_gc)) { |
| 946 | struct ubifs_gced_idx_leb *idx_gc; |
| 947 | |
| 948 | idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, |
| 949 | list); |
| 950 | c->idx_gc_cnt -= 1; |
| 951 | list_del(&idx_gc->list); |
| 952 | kfree(idx_gc); |
| 953 | } |
| 954 | } |
| 955 | #ifndef __UBOOT__ |
| 956 | /** |
| 957 | * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list. |
| 958 | * @c: UBIFS file-system description object |
| 959 | * |
| 960 | * Called during start commit so locks are not needed. |
| 961 | */ |
| 962 | int ubifs_get_idx_gc_leb(struct ubifs_info *c) |
| 963 | { |
| 964 | struct ubifs_gced_idx_leb *idx_gc; |
| 965 | int lnum; |
| 966 | |
| 967 | if (list_empty(&c->idx_gc)) |
| 968 | return -ENOSPC; |
| 969 | idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, list); |
| 970 | lnum = idx_gc->lnum; |
| 971 | /* c->idx_gc_cnt is updated by the caller when lprops are updated */ |
| 972 | list_del(&idx_gc->list); |
| 973 | kfree(idx_gc); |
| 974 | return lnum; |
| 975 | } |
| 976 | #endif |