blob: a6c3939db547dc9354e46e46c178411e7cab1892 [file] [log] [blame]
Tudor Ambarus24c8ff42019-06-18 08:51:50 +00001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Driver for Atmel QSPI Controller
4 *
5 * Copyright (C) 2015 Atmel Corporation
6 * Copyright (C) 2018 Cryptera A/S
7 *
8 * Author: Cyrille Pitchen <cyrille.pitchen@atmel.com>
9 * Author: Piotr Bugalski <bugalski.piotr@gmail.com>
10 */
11
Simon Glass336d4612020-02-03 07:36:16 -070012#include <malloc.h>
Tudor Ambarus24c8ff42019-06-18 08:51:50 +000013#include <asm/io.h>
14#include <clk.h>
15#include <common.h>
16#include <dm.h>
17#include <errno.h>
18#include <fdtdec.h>
Simon Glass336d4612020-02-03 07:36:16 -070019#include <dm/device_compat.h>
Simon Glass61b29b82020-02-03 07:36:15 -070020#include <linux/err.h>
Tudor Ambarus24c8ff42019-06-18 08:51:50 +000021#include <linux/io.h>
22#include <linux/iopoll.h>
23#include <linux/ioport.h>
24#include <mach/clk.h>
25#include <spi.h>
26#include <spi-mem.h>
27
28/* QSPI register offsets */
29#define QSPI_CR 0x0000 /* Control Register */
30#define QSPI_MR 0x0004 /* Mode Register */
31#define QSPI_RD 0x0008 /* Receive Data Register */
32#define QSPI_TD 0x000c /* Transmit Data Register */
33#define QSPI_SR 0x0010 /* Status Register */
34#define QSPI_IER 0x0014 /* Interrupt Enable Register */
35#define QSPI_IDR 0x0018 /* Interrupt Disable Register */
36#define QSPI_IMR 0x001c /* Interrupt Mask Register */
37#define QSPI_SCR 0x0020 /* Serial Clock Register */
38
39#define QSPI_IAR 0x0030 /* Instruction Address Register */
40#define QSPI_ICR 0x0034 /* Instruction Code Register */
41#define QSPI_WICR 0x0034 /* Write Instruction Code Register */
42#define QSPI_IFR 0x0038 /* Instruction Frame Register */
43#define QSPI_RICR 0x003C /* Read Instruction Code Register */
44
45#define QSPI_SMR 0x0040 /* Scrambling Mode Register */
46#define QSPI_SKR 0x0044 /* Scrambling Key Register */
47
48#define QSPI_WPMR 0x00E4 /* Write Protection Mode Register */
49#define QSPI_WPSR 0x00E8 /* Write Protection Status Register */
50
51#define QSPI_VERSION 0x00FC /* Version Register */
52
53/* Bitfields in QSPI_CR (Control Register) */
54#define QSPI_CR_QSPIEN BIT(0)
55#define QSPI_CR_QSPIDIS BIT(1)
56#define QSPI_CR_SWRST BIT(7)
57#define QSPI_CR_LASTXFER BIT(24)
58
59/* Bitfields in QSPI_MR (Mode Register) */
60#define QSPI_MR_SMM BIT(0)
61#define QSPI_MR_LLB BIT(1)
62#define QSPI_MR_WDRBT BIT(2)
63#define QSPI_MR_SMRM BIT(3)
64#define QSPI_MR_CSMODE_MASK GENMASK(5, 4)
65#define QSPI_MR_CSMODE_NOT_RELOADED (0 << 4)
66#define QSPI_MR_CSMODE_LASTXFER (1 << 4)
67#define QSPI_MR_CSMODE_SYSTEMATICALLY (2 << 4)
68#define QSPI_MR_NBBITS_MASK GENMASK(11, 8)
69#define QSPI_MR_NBBITS(n) ((((n) - 8) << 8) & QSPI_MR_NBBITS_MASK)
70#define QSPI_MR_DLYBCT_MASK GENMASK(23, 16)
71#define QSPI_MR_DLYBCT(n) (((n) << 16) & QSPI_MR_DLYBCT_MASK)
72#define QSPI_MR_DLYCS_MASK GENMASK(31, 24)
73#define QSPI_MR_DLYCS(n) (((n) << 24) & QSPI_MR_DLYCS_MASK)
74
75/* Bitfields in QSPI_SR/QSPI_IER/QSPI_IDR/QSPI_IMR */
76#define QSPI_SR_RDRF BIT(0)
77#define QSPI_SR_TDRE BIT(1)
78#define QSPI_SR_TXEMPTY BIT(2)
79#define QSPI_SR_OVRES BIT(3)
80#define QSPI_SR_CSR BIT(8)
81#define QSPI_SR_CSS BIT(9)
82#define QSPI_SR_INSTRE BIT(10)
83#define QSPI_SR_QSPIENS BIT(24)
84
85#define QSPI_SR_CMD_COMPLETED (QSPI_SR_INSTRE | QSPI_SR_CSR)
86
87/* Bitfields in QSPI_SCR (Serial Clock Register) */
88#define QSPI_SCR_CPOL BIT(0)
89#define QSPI_SCR_CPHA BIT(1)
90#define QSPI_SCR_SCBR_MASK GENMASK(15, 8)
91#define QSPI_SCR_SCBR(n) (((n) << 8) & QSPI_SCR_SCBR_MASK)
92#define QSPI_SCR_DLYBS_MASK GENMASK(23, 16)
93#define QSPI_SCR_DLYBS(n) (((n) << 16) & QSPI_SCR_DLYBS_MASK)
94
95/* Bitfields in QSPI_ICR (Read/Write Instruction Code Register) */
96#define QSPI_ICR_INST_MASK GENMASK(7, 0)
97#define QSPI_ICR_INST(inst) (((inst) << 0) & QSPI_ICR_INST_MASK)
98#define QSPI_ICR_OPT_MASK GENMASK(23, 16)
99#define QSPI_ICR_OPT(opt) (((opt) << 16) & QSPI_ICR_OPT_MASK)
100
101/* Bitfields in QSPI_IFR (Instruction Frame Register) */
102#define QSPI_IFR_WIDTH_MASK GENMASK(2, 0)
103#define QSPI_IFR_WIDTH_SINGLE_BIT_SPI (0 << 0)
104#define QSPI_IFR_WIDTH_DUAL_OUTPUT (1 << 0)
105#define QSPI_IFR_WIDTH_QUAD_OUTPUT (2 << 0)
106#define QSPI_IFR_WIDTH_DUAL_IO (3 << 0)
107#define QSPI_IFR_WIDTH_QUAD_IO (4 << 0)
108#define QSPI_IFR_WIDTH_DUAL_CMD (5 << 0)
109#define QSPI_IFR_WIDTH_QUAD_CMD (6 << 0)
110#define QSPI_IFR_INSTEN BIT(4)
111#define QSPI_IFR_ADDREN BIT(5)
112#define QSPI_IFR_OPTEN BIT(6)
113#define QSPI_IFR_DATAEN BIT(7)
114#define QSPI_IFR_OPTL_MASK GENMASK(9, 8)
115#define QSPI_IFR_OPTL_1BIT (0 << 8)
116#define QSPI_IFR_OPTL_2BIT (1 << 8)
117#define QSPI_IFR_OPTL_4BIT (2 << 8)
118#define QSPI_IFR_OPTL_8BIT (3 << 8)
119#define QSPI_IFR_ADDRL BIT(10)
120#define QSPI_IFR_TFRTYP_MEM BIT(12)
121#define QSPI_IFR_SAMA5D2_WRITE_TRSFR BIT(13)
122#define QSPI_IFR_CRM BIT(14)
123#define QSPI_IFR_NBDUM_MASK GENMASK(20, 16)
124#define QSPI_IFR_NBDUM(n) (((n) << 16) & QSPI_IFR_NBDUM_MASK)
125#define QSPI_IFR_APBTFRTYP_READ BIT(24) /* Defined in SAM9X60 */
126
127/* Bitfields in QSPI_SMR (Scrambling Mode Register) */
128#define QSPI_SMR_SCREN BIT(0)
129#define QSPI_SMR_RVDIS BIT(1)
130
131/* Bitfields in QSPI_WPMR (Write Protection Mode Register) */
132#define QSPI_WPMR_WPEN BIT(0)
133#define QSPI_WPMR_WPKEY_MASK GENMASK(31, 8)
134#define QSPI_WPMR_WPKEY(wpkey) (((wpkey) << 8) & QSPI_WPMR_WPKEY_MASK)
135
136/* Bitfields in QSPI_WPSR (Write Protection Status Register) */
137#define QSPI_WPSR_WPVS BIT(0)
138#define QSPI_WPSR_WPVSRC_MASK GENMASK(15, 8)
139#define QSPI_WPSR_WPVSRC(src) (((src) << 8) & QSPI_WPSR_WPVSRC)
140
141struct atmel_qspi_caps {
142 bool has_qspick;
143 bool has_ricr;
144};
145
146struct atmel_qspi {
147 void __iomem *regs;
148 void __iomem *mem;
Tudor Ambarusba03a6c2020-03-20 09:37:59 +0000149 resource_size_t mmap_size;
Tudor Ambarus24c8ff42019-06-18 08:51:50 +0000150 const struct atmel_qspi_caps *caps;
Tudor Ambarus52e25652020-03-20 09:37:59 +0000151 struct udevice *dev;
Tudor Ambarus24c8ff42019-06-18 08:51:50 +0000152 ulong bus_clk_rate;
153 u32 mr;
154};
155
156struct atmel_qspi_mode {
157 u8 cmd_buswidth;
158 u8 addr_buswidth;
159 u8 data_buswidth;
160 u32 config;
161};
162
163static const struct atmel_qspi_mode atmel_qspi_modes[] = {
164 { 1, 1, 1, QSPI_IFR_WIDTH_SINGLE_BIT_SPI },
165 { 1, 1, 2, QSPI_IFR_WIDTH_DUAL_OUTPUT },
166 { 1, 1, 4, QSPI_IFR_WIDTH_QUAD_OUTPUT },
167 { 1, 2, 2, QSPI_IFR_WIDTH_DUAL_IO },
168 { 1, 4, 4, QSPI_IFR_WIDTH_QUAD_IO },
169 { 2, 2, 2, QSPI_IFR_WIDTH_DUAL_CMD },
170 { 4, 4, 4, QSPI_IFR_WIDTH_QUAD_CMD },
171};
172
Tudor Ambarus52e25652020-03-20 09:37:59 +0000173#ifdef VERBOSE_DEBUG
174static const char *atmel_qspi_reg_name(u32 offset, char *tmp, size_t sz)
175{
176 switch (offset) {
177 case QSPI_CR:
178 return "CR";
179 case QSPI_MR:
180 return "MR";
181 case QSPI_RD:
182 return "MR";
183 case QSPI_TD:
184 return "TD";
185 case QSPI_SR:
186 return "SR";
187 case QSPI_IER:
188 return "IER";
189 case QSPI_IDR:
190 return "IDR";
191 case QSPI_IMR:
192 return "IMR";
193 case QSPI_SCR:
194 return "SCR";
195 case QSPI_IAR:
196 return "IAR";
197 case QSPI_ICR:
198 return "ICR/WICR";
199 case QSPI_IFR:
200 return "IFR";
201 case QSPI_RICR:
202 return "RICR";
203 case QSPI_SMR:
204 return "SMR";
205 case QSPI_SKR:
206 return "SKR";
207 case QSPI_WPMR:
208 return "WPMR";
209 case QSPI_WPSR:
210 return "WPSR";
211 case QSPI_VERSION:
212 return "VERSION";
213 default:
214 snprintf(tmp, sz, "0x%02x", offset);
215 break;
216 }
217
218 return tmp;
219}
220#endif /* VERBOSE_DEBUG */
221
222static u32 atmel_qspi_read(struct atmel_qspi *aq, u32 offset)
223{
224 u32 value = readl(aq->regs + offset);
225
226#ifdef VERBOSE_DEBUG
227 char tmp[16];
228
229 dev_vdbg(aq->dev, "read 0x%08x from %s\n", value,
230 atmel_qspi_reg_name(offset, tmp, sizeof(tmp)));
231#endif /* VERBOSE_DEBUG */
232
233 return value;
234}
235
236static void atmel_qspi_write(u32 value, struct atmel_qspi *aq, u32 offset)
237{
238#ifdef VERBOSE_DEBUG
239 char tmp[16];
240
241 dev_vdbg(aq->dev, "write 0x%08x into %s\n", value,
242 atmel_qspi_reg_name(offset, tmp, sizeof(tmp)));
243#endif /* VERBOSE_DEBUG */
244
245 writel(value, aq->regs + offset);
246}
247
Tudor Ambarus24c8ff42019-06-18 08:51:50 +0000248static inline bool atmel_qspi_is_compatible(const struct spi_mem_op *op,
249 const struct atmel_qspi_mode *mode)
250{
251 if (op->cmd.buswidth != mode->cmd_buswidth)
252 return false;
253
254 if (op->addr.nbytes && op->addr.buswidth != mode->addr_buswidth)
255 return false;
256
257 if (op->data.nbytes && op->data.buswidth != mode->data_buswidth)
258 return false;
259
260 return true;
261}
262
263static int atmel_qspi_find_mode(const struct spi_mem_op *op)
264{
265 u32 i;
266
267 for (i = 0; i < ARRAY_SIZE(atmel_qspi_modes); i++)
268 if (atmel_qspi_is_compatible(op, &atmel_qspi_modes[i]))
269 return i;
270
271 return -ENOTSUPP;
272}
273
274static bool atmel_qspi_supports_op(struct spi_slave *slave,
275 const struct spi_mem_op *op)
276{
277 if (atmel_qspi_find_mode(op) < 0)
278 return false;
279
280 /* special case not supported by hardware */
281 if (op->addr.nbytes == 2 && op->cmd.buswidth != op->addr.buswidth &&
282 op->dummy.nbytes == 0)
283 return false;
284
285 return true;
286}
287
288static int atmel_qspi_set_cfg(struct atmel_qspi *aq,
289 const struct spi_mem_op *op, u32 *offset)
290{
291 u32 iar, icr, ifr;
292 u32 dummy_cycles = 0;
293 int mode;
294
295 iar = 0;
296 icr = QSPI_ICR_INST(op->cmd.opcode);
297 ifr = QSPI_IFR_INSTEN;
298
299 mode = atmel_qspi_find_mode(op);
300 if (mode < 0)
301 return mode;
302 ifr |= atmel_qspi_modes[mode].config;
303
304 if (op->dummy.buswidth && op->dummy.nbytes)
305 dummy_cycles = op->dummy.nbytes * 8 / op->dummy.buswidth;
306
307 /*
308 * The controller allows 24 and 32-bit addressing while NAND-flash
309 * requires 16-bit long. Handling 8-bit long addresses is done using
310 * the option field. For the 16-bit addresses, the workaround depends
311 * of the number of requested dummy bits. If there are 8 or more dummy
312 * cycles, the address is shifted and sent with the first dummy byte.
313 * Otherwise opcode is disabled and the first byte of the address
314 * contains the command opcode (works only if the opcode and address
315 * use the same buswidth). The limitation is when the 16-bit address is
316 * used without enough dummy cycles and the opcode is using a different
317 * buswidth than the address.
318 */
319 if (op->addr.buswidth) {
320 switch (op->addr.nbytes) {
321 case 0:
322 break;
323 case 1:
324 ifr |= QSPI_IFR_OPTEN | QSPI_IFR_OPTL_8BIT;
325 icr |= QSPI_ICR_OPT(op->addr.val & 0xff);
326 break;
327 case 2:
328 if (dummy_cycles < 8 / op->addr.buswidth) {
329 ifr &= ~QSPI_IFR_INSTEN;
330 ifr |= QSPI_IFR_ADDREN;
331 iar = (op->cmd.opcode << 16) |
332 (op->addr.val & 0xffff);
333 } else {
334 ifr |= QSPI_IFR_ADDREN;
335 iar = (op->addr.val << 8) & 0xffffff;
336 dummy_cycles -= 8 / op->addr.buswidth;
337 }
338 break;
339 case 3:
340 ifr |= QSPI_IFR_ADDREN;
341 iar = op->addr.val & 0xffffff;
342 break;
343 case 4:
344 ifr |= QSPI_IFR_ADDREN | QSPI_IFR_ADDRL;
345 iar = op->addr.val & 0x7ffffff;
346 break;
347 default:
348 return -ENOTSUPP;
349 }
350 }
351
352 /* offset of the data access in the QSPI memory space */
353 *offset = iar;
354
355 /* Set number of dummy cycles */
356 if (dummy_cycles)
357 ifr |= QSPI_IFR_NBDUM(dummy_cycles);
358
359 /* Set data enable */
360 if (op->data.nbytes)
361 ifr |= QSPI_IFR_DATAEN;
362
363 /*
364 * If the QSPI controller is set in regular SPI mode, set it in
365 * Serial Memory Mode (SMM).
366 */
367 if (aq->mr != QSPI_MR_SMM) {
Tudor Ambarus52e25652020-03-20 09:37:59 +0000368 atmel_qspi_write(QSPI_MR_SMM, aq, QSPI_MR);
Tudor Ambarus24c8ff42019-06-18 08:51:50 +0000369 aq->mr = QSPI_MR_SMM;
370 }
371
372 /* Clear pending interrupts */
Tudor Ambarus52e25652020-03-20 09:37:59 +0000373 (void)atmel_qspi_read(aq, QSPI_SR);
Tudor Ambarus24c8ff42019-06-18 08:51:50 +0000374
375 if (aq->caps->has_ricr) {
376 if (!op->addr.nbytes && op->data.dir == SPI_MEM_DATA_IN)
377 ifr |= QSPI_IFR_APBTFRTYP_READ;
378
379 /* Set QSPI Instruction Frame registers */
Tudor Ambarus52e25652020-03-20 09:37:59 +0000380 atmel_qspi_write(iar, aq, QSPI_IAR);
Tudor Ambarus24c8ff42019-06-18 08:51:50 +0000381 if (op->data.dir == SPI_MEM_DATA_IN)
Tudor Ambarus52e25652020-03-20 09:37:59 +0000382 atmel_qspi_write(icr, aq, QSPI_RICR);
Tudor Ambarus24c8ff42019-06-18 08:51:50 +0000383 else
Tudor Ambarus52e25652020-03-20 09:37:59 +0000384 atmel_qspi_write(icr, aq, QSPI_WICR);
385 atmel_qspi_write(ifr, aq, QSPI_IFR);
Tudor Ambarus24c8ff42019-06-18 08:51:50 +0000386 } else {
387 if (op->data.dir == SPI_MEM_DATA_OUT)
388 ifr |= QSPI_IFR_SAMA5D2_WRITE_TRSFR;
389
390 /* Set QSPI Instruction Frame registers */
Tudor Ambarus52e25652020-03-20 09:37:59 +0000391 atmel_qspi_write(iar, aq, QSPI_IAR);
392 atmel_qspi_write(icr, aq, QSPI_ICR);
393 atmel_qspi_write(ifr, aq, QSPI_IFR);
Tudor Ambarus24c8ff42019-06-18 08:51:50 +0000394 }
395
396 return 0;
397}
398
399static int atmel_qspi_exec_op(struct spi_slave *slave,
400 const struct spi_mem_op *op)
401{
402 struct atmel_qspi *aq = dev_get_priv(slave->dev->parent);
403 u32 sr, imr, offset;
404 int err;
405
Tudor Ambarusba03a6c2020-03-20 09:37:59 +0000406 /*
407 * Check if the address exceeds the MMIO window size. An improvement
408 * would be to add support for regular SPI mode and fall back to it
409 * when the flash memories overrun the controller's memory space.
410 */
411 if (op->addr.val + op->data.nbytes > aq->mmap_size)
412 return -ENOTSUPP;
413
Tudor Ambarus24c8ff42019-06-18 08:51:50 +0000414 err = atmel_qspi_set_cfg(aq, op, &offset);
415 if (err)
416 return err;
417
418 /* Skip to the final steps if there is no data */
419 if (op->data.nbytes) {
420 /* Dummy read of QSPI_IFR to synchronize APB and AHB accesses */
Tudor Ambarus52e25652020-03-20 09:37:59 +0000421 (void)atmel_qspi_read(aq, QSPI_IFR);
Tudor Ambarus24c8ff42019-06-18 08:51:50 +0000422
423 /* Send/Receive data */
424 if (op->data.dir == SPI_MEM_DATA_IN)
425 memcpy_fromio(op->data.buf.in, aq->mem + offset,
426 op->data.nbytes);
427 else
428 memcpy_toio(aq->mem + offset, op->data.buf.out,
429 op->data.nbytes);
430
431 /* Release the chip-select */
Tudor Ambarus52e25652020-03-20 09:37:59 +0000432 atmel_qspi_write(QSPI_CR_LASTXFER, aq, QSPI_CR);
Tudor Ambarus24c8ff42019-06-18 08:51:50 +0000433 }
434
435 /* Poll INSTruction End and Chip Select Rise flags. */
436 imr = QSPI_SR_INSTRE | QSPI_SR_CSR;
437 return readl_poll_timeout(aq->regs + QSPI_SR, sr, (sr & imr) == imr,
438 1000000);
439}
440
441static int atmel_qspi_set_speed(struct udevice *bus, uint hz)
442{
443 struct atmel_qspi *aq = dev_get_priv(bus);
444 u32 scr, scbr, mask, new_value;
445
446 /* Compute the QSPI baudrate */
447 scbr = DIV_ROUND_UP(aq->bus_clk_rate, hz);
448 if (scbr > 0)
449 scbr--;
450
451 new_value = QSPI_SCR_SCBR(scbr);
452 mask = QSPI_SCR_SCBR_MASK;
453
Tudor Ambarus52e25652020-03-20 09:37:59 +0000454 scr = atmel_qspi_read(aq, QSPI_SCR);
Tudor Ambarus24c8ff42019-06-18 08:51:50 +0000455 if ((scr & mask) == new_value)
456 return 0;
457
458 scr = (scr & ~mask) | new_value;
Tudor Ambarus52e25652020-03-20 09:37:59 +0000459 atmel_qspi_write(scr, aq, QSPI_SCR);
Tudor Ambarus24c8ff42019-06-18 08:51:50 +0000460
461 return 0;
462}
463
464static int atmel_qspi_set_mode(struct udevice *bus, uint mode)
465{
466 struct atmel_qspi *aq = dev_get_priv(bus);
467 u32 scr, mask, new_value = 0;
468
469 if (mode & SPI_CPOL)
470 new_value = QSPI_SCR_CPOL;
471 if (mode & SPI_CPHA)
472 new_value = QSPI_SCR_CPHA;
473
474 mask = QSPI_SCR_CPOL | QSPI_SCR_CPHA;
475
Tudor Ambarus52e25652020-03-20 09:37:59 +0000476 scr = atmel_qspi_read(aq, QSPI_SCR);
Tudor Ambarus24c8ff42019-06-18 08:51:50 +0000477 if ((scr & mask) == new_value)
478 return 0;
479
480 scr = (scr & ~mask) | new_value;
Tudor Ambarus52e25652020-03-20 09:37:59 +0000481 atmel_qspi_write(scr, aq, QSPI_SCR);
Tudor Ambarus24c8ff42019-06-18 08:51:50 +0000482
483 return 0;
484}
485
486static int atmel_qspi_enable_clk(struct udevice *dev)
487{
488 struct atmel_qspi *aq = dev_get_priv(dev);
489 struct clk pclk, qspick;
490 int ret;
491
492 ret = clk_get_by_name(dev, "pclk", &pclk);
493 if (ret)
494 ret = clk_get_by_index(dev, 0, &pclk);
495
496 if (ret) {
497 dev_err(dev, "Missing QSPI peripheral clock\n");
498 return ret;
499 }
500
501 ret = clk_enable(&pclk);
502 if (ret) {
503 dev_err(dev, "Failed to enable QSPI peripheral clock\n");
504 goto free_pclk;
505 }
506
507 if (aq->caps->has_qspick) {
508 /* Get the QSPI system clock */
509 ret = clk_get_by_name(dev, "qspick", &qspick);
510 if (ret) {
511 dev_err(dev, "Missing QSPI peripheral clock\n");
512 goto free_pclk;
513 }
514
515 ret = clk_enable(&qspick);
516 if (ret)
517 dev_err(dev, "Failed to enable QSPI system clock\n");
518 clk_free(&qspick);
519 }
520
521 aq->bus_clk_rate = clk_get_rate(&pclk);
522 if (!aq->bus_clk_rate)
523 ret = -EINVAL;
524
525free_pclk:
526 clk_free(&pclk);
527
528 return ret;
529}
530
531static void atmel_qspi_init(struct atmel_qspi *aq)
532{
533 /* Reset the QSPI controller */
Tudor Ambarus52e25652020-03-20 09:37:59 +0000534 atmel_qspi_write(QSPI_CR_SWRST, aq, QSPI_CR);
Tudor Ambarus24c8ff42019-06-18 08:51:50 +0000535
536 /* Set the QSPI controller by default in Serial Memory Mode */
Tudor Ambarus52e25652020-03-20 09:37:59 +0000537 atmel_qspi_write(QSPI_MR_SMM, aq, QSPI_MR);
Tudor Ambarus24c8ff42019-06-18 08:51:50 +0000538 aq->mr = QSPI_MR_SMM;
539
540 /* Enable the QSPI controller */
Tudor Ambarus52e25652020-03-20 09:37:59 +0000541 atmel_qspi_write(QSPI_CR_QSPIEN, aq, QSPI_CR);
Tudor Ambarus24c8ff42019-06-18 08:51:50 +0000542}
543
544static int atmel_qspi_probe(struct udevice *dev)
545{
546 struct atmel_qspi *aq = dev_get_priv(dev);
547 struct resource res;
548 int ret;
549
550 aq->caps = (struct atmel_qspi_caps *)dev_get_driver_data(dev);
551 if (!aq->caps) {
552 dev_err(dev, "Could not retrieve QSPI caps\n");
553 return -EINVAL;
554 };
555
556 /* Map the registers */
557 ret = dev_read_resource_byname(dev, "qspi_base", &res);
558 if (ret) {
559 dev_err(dev, "missing registers\n");
560 return ret;
561 }
562
563 aq->regs = devm_ioremap(dev, res.start, resource_size(&res));
564 if (IS_ERR(aq->regs))
565 return PTR_ERR(aq->regs);
566
567 /* Map the AHB memory */
568 ret = dev_read_resource_byname(dev, "qspi_mmap", &res);
569 if (ret) {
570 dev_err(dev, "missing AHB memory\n");
571 return ret;
572 }
573
574 aq->mem = devm_ioremap(dev, res.start, resource_size(&res));
575 if (IS_ERR(aq->mem))
576 return PTR_ERR(aq->mem);
577
Tudor Ambarusba03a6c2020-03-20 09:37:59 +0000578 aq->mmap_size = resource_size(&res);
579
Tudor Ambarus24c8ff42019-06-18 08:51:50 +0000580 ret = atmel_qspi_enable_clk(dev);
581 if (ret)
582 return ret;
583
Tudor Ambarus52e25652020-03-20 09:37:59 +0000584 aq->dev = dev;
585
Tudor Ambarus24c8ff42019-06-18 08:51:50 +0000586 atmel_qspi_init(aq);
587
588 return 0;
589}
590
591static const struct spi_controller_mem_ops atmel_qspi_mem_ops = {
592 .supports_op = atmel_qspi_supports_op,
593 .exec_op = atmel_qspi_exec_op,
594};
595
596static const struct dm_spi_ops atmel_qspi_ops = {
597 .set_speed = atmel_qspi_set_speed,
598 .set_mode = atmel_qspi_set_mode,
599 .mem_ops = &atmel_qspi_mem_ops,
600};
601
602static const struct atmel_qspi_caps atmel_sama5d2_qspi_caps = {};
603
604static const struct atmel_qspi_caps atmel_sam9x60_qspi_caps = {
605 .has_qspick = true,
606 .has_ricr = true,
607};
608
609static const struct udevice_id atmel_qspi_ids[] = {
610 {
611 .compatible = "atmel,sama5d2-qspi",
612 .data = (ulong)&atmel_sama5d2_qspi_caps,
613 },
614 {
615 .compatible = "microchip,sam9x60-qspi",
616 .data = (ulong)&atmel_sam9x60_qspi_caps,
617 },
618 { /* sentinel */ }
619};
620
621U_BOOT_DRIVER(atmel_qspi) = {
622 .name = "atmel_qspi",
623 .id = UCLASS_SPI,
624 .of_match = atmel_qspi_ids,
625 .ops = &atmel_qspi_ops,
626 .priv_auto_alloc_size = sizeof(struct atmel_qspi),
627 .probe = atmel_qspi_probe,
628};