blob: 48b9ee2f7e0bacb516ae671f0ae050bf2d80c6e8 [file] [log] [blame]
Stefan Roese4037ed32007-02-20 10:43:34 +01001/*
2 * cpu/ppc4xx/44x_spd_ddr2.c
3 * This SPD SDRAM detection code supports AMCC PPC44x cpu's with a
4 * DDR2 controller (non Denali Core). Those are 440SP/SPe.
5 *
6 * (C) Copyright 2007
7 * Stefan Roese, DENX Software Engineering, sr@denx.de.
8 *
9 * COPYRIGHT AMCC CORPORATION 2004
10 *
11 * See file CREDITS for list of people who contributed to this
12 * project.
13 *
14 * This program is free software; you can redistribute it and/or
15 * modify it under the terms of the GNU General Public License as
16 * published by the Free Software Foundation; either version 2 of
17 * the License, or (at your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with this program; if not, write to the Free Software
26 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
27 * MA 02111-1307 USA
28 *
29 */
30
31/* define DEBUG for debugging output (obviously ;-)) */
32#if 0
33#define DEBUG
34#endif
35
36#include <common.h>
Stefan Roeseba58e4c2007-03-01 21:11:36 +010037#include <command.h>
Stefan Roese4037ed32007-02-20 10:43:34 +010038#include <ppc4xx.h>
39#include <i2c.h>
40#include <asm/io.h>
41#include <asm/processor.h>
42#include <asm/mmu.h>
43
44#if defined(CONFIG_SPD_EEPROM) && \
45 (defined(CONFIG_440SP) || defined(CONFIG_440SPE))
46
Stefan Roeseba58e4c2007-03-01 21:11:36 +010047/*-----------------------------------------------------------------------------+
48 * Defines
49 *-----------------------------------------------------------------------------*/
Stefan Roese4037ed32007-02-20 10:43:34 +010050#ifndef TRUE
Wolfgang Denk74357112007-02-27 14:26:04 +010051#define TRUE 1
Stefan Roese4037ed32007-02-20 10:43:34 +010052#endif
53#ifndef FALSE
Wolfgang Denk74357112007-02-27 14:26:04 +010054#define FALSE 0
Stefan Roese4037ed32007-02-20 10:43:34 +010055#endif
56
57#define SDRAM_DDR1 1
58#define SDRAM_DDR2 2
59#define SDRAM_NONE 0
60
61#define MAXDIMMS 2
62#define MAXRANKS 4
63#define MAXBXCF 4
64#define MAX_SPD_BYTES 256 /* Max number of bytes on the DIMM's SPD EEPROM */
65
66#define ONE_BILLION 1000000000
67
68#define MULDIV64(m1, m2, d) (u32)(((u64)(m1) * (u64)(m2)) / (u64)(d))
69
Stefan Roeseba58e4c2007-03-01 21:11:36 +010070#define CMD_NOP (7 << 19)
71#define CMD_PRECHARGE (2 << 19)
72#define CMD_REFRESH (1 << 19)
73#define CMD_EMR (0 << 19)
74#define CMD_READ (5 << 19)
75#define CMD_WRITE (4 << 19)
Stefan Roese4037ed32007-02-20 10:43:34 +010076
Stefan Roeseba58e4c2007-03-01 21:11:36 +010077#define SELECT_MR (0 << 16)
78#define SELECT_EMR (1 << 16)
79#define SELECT_EMR2 (2 << 16)
80#define SELECT_EMR3 (3 << 16)
81
82/* MR */
83#define DLL_RESET 0x00000100
84
85#define WRITE_RECOV_2 (1 << 9)
86#define WRITE_RECOV_3 (2 << 9)
87#define WRITE_RECOV_4 (3 << 9)
88#define WRITE_RECOV_5 (4 << 9)
89#define WRITE_RECOV_6 (5 << 9)
90
91#define BURST_LEN_4 0x00000002
92
93/* EMR */
94#define ODT_0_OHM 0x00000000
95#define ODT_50_OHM 0x00000044
96#define ODT_75_OHM 0x00000004
97#define ODT_150_OHM 0x00000040
98
99#define ODS_FULL 0x00000000
100#define ODS_REDUCED 0x00000002
101
102/* defines for ODT (On Die Termination) of the 440SP(e) DDR2 controller */
103#define ODT_EB0R (0x80000000 >> 8)
104#define ODT_EB0W (0x80000000 >> 7)
105#define CALC_ODT_R(n) (ODT_EB0R << (n << 1))
106#define CALC_ODT_W(n) (ODT_EB0W << (n << 1))
107#define CALC_ODT_RW(n) (CALC_ODT_R(n) | CALC_ODT_W(n))
108
Stefan Roese4037ed32007-02-20 10:43:34 +0100109/* Defines for the Read Cycle Delay test */
Stefan Roese94f54702007-03-31 08:46:08 +0200110#define NUMMEMTESTS 8
111#define NUMMEMWORDS 8
112#define NUMLOOPS 256 /* memory test loops */
Stefan Roese4037ed32007-02-20 10:43:34 +0100113
Stefan Roese94f54702007-03-31 08:46:08 +0200114#undef CONFIG_ECC_ERROR_RESET /* test-only: see description below, at check_ecc() */
Stefan Roeseba58e4c2007-03-01 21:11:36 +0100115
116/*
117 * This DDR2 setup code can dynamically setup the TLB entries for the DDR2 memory
118 * region. Right now the cache should still be disabled in U-Boot because of the
119 * EMAC driver, that need it's buffer descriptor to be located in non cached
120 * memory.
121 *
122 * If at some time this restriction doesn't apply anymore, just define
123 * CFG_ENABLE_SDRAM_CACHE in the board config file and this code should setup
124 * everything correctly.
125 */
126#ifdef CFG_ENABLE_SDRAM_CACHE
127#define MY_TLB_WORD2_I_ENABLE 0 /* enable caching on SDRAM */
128#else
129#define MY_TLB_WORD2_I_ENABLE TLB_WORD2_I_ENABLE /* disable caching on SDRAM */
130#endif
131
Stefan Roese4037ed32007-02-20 10:43:34 +0100132/* Private Structure Definitions */
133
134/* enum only to ease code for cas latency setting */
135typedef enum ddr_cas_id {
136 DDR_CAS_2 = 20,
137 DDR_CAS_2_5 = 25,
138 DDR_CAS_3 = 30,
139 DDR_CAS_4 = 40,
140 DDR_CAS_5 = 50
141} ddr_cas_id_t;
142
143/*-----------------------------------------------------------------------------+
144 * Prototypes
145 *-----------------------------------------------------------------------------*/
146static unsigned long sdram_memsize(void);
Stefan Roeseba58e4c2007-03-01 21:11:36 +0100147void program_tlb(u32 start, u32 size, u32 tlb_word2_i_value);
Stefan Roese4037ed32007-02-20 10:43:34 +0100148static void get_spd_info(unsigned long *dimm_populated,
149 unsigned char *iic0_dimm_addr,
150 unsigned long num_dimm_banks);
151static void check_mem_type(unsigned long *dimm_populated,
152 unsigned char *iic0_dimm_addr,
153 unsigned long num_dimm_banks);
154static void check_frequency(unsigned long *dimm_populated,
155 unsigned char *iic0_dimm_addr,
156 unsigned long num_dimm_banks);
157static void check_rank_number(unsigned long *dimm_populated,
158 unsigned char *iic0_dimm_addr,
159 unsigned long num_dimm_banks);
160static void check_voltage_type(unsigned long *dimm_populated,
161 unsigned char *iic0_dimm_addr,
162 unsigned long num_dimm_banks);
163static void program_memory_queue(unsigned long *dimm_populated,
164 unsigned char *iic0_dimm_addr,
165 unsigned long num_dimm_banks);
166static void program_codt(unsigned long *dimm_populated,
167 unsigned char *iic0_dimm_addr,
168 unsigned long num_dimm_banks);
169static void program_mode(unsigned long *dimm_populated,
170 unsigned char *iic0_dimm_addr,
171 unsigned long num_dimm_banks,
Wolfgang Denkad5bb452007-03-06 18:08:43 +0100172 ddr_cas_id_t *selected_cas,
173 int *write_recovery);
Stefan Roese4037ed32007-02-20 10:43:34 +0100174static void program_tr(unsigned long *dimm_populated,
175 unsigned char *iic0_dimm_addr,
176 unsigned long num_dimm_banks);
177static void program_rtr(unsigned long *dimm_populated,
178 unsigned char *iic0_dimm_addr,
179 unsigned long num_dimm_banks);
180static void program_bxcf(unsigned long *dimm_populated,
181 unsigned char *iic0_dimm_addr,
182 unsigned long num_dimm_banks);
183static void program_copt1(unsigned long *dimm_populated,
184 unsigned char *iic0_dimm_addr,
185 unsigned long num_dimm_banks);
186static void program_initplr(unsigned long *dimm_populated,
187 unsigned char *iic0_dimm_addr,
188 unsigned long num_dimm_banks,
Wolfgang Denkad5bb452007-03-06 18:08:43 +0100189 ddr_cas_id_t selected_cas,
Stefan Roeseba58e4c2007-03-01 21:11:36 +0100190 int write_recovery);
Stefan Roese4037ed32007-02-20 10:43:34 +0100191static unsigned long is_ecc_enabled(void);
Stefan Roesedf294492007-03-08 10:06:09 +0100192#ifdef CONFIG_DDR_ECC
Stefan Roese4037ed32007-02-20 10:43:34 +0100193static void program_ecc(unsigned long *dimm_populated,
194 unsigned char *iic0_dimm_addr,
Stefan Roeseba58e4c2007-03-01 21:11:36 +0100195 unsigned long num_dimm_banks,
196 unsigned long tlb_word2_i_value);
Stefan Roese4037ed32007-02-20 10:43:34 +0100197static void program_ecc_addr(unsigned long start_address,
Stefan Roeseba58e4c2007-03-01 21:11:36 +0100198 unsigned long num_bytes,
199 unsigned long tlb_word2_i_value);
Stefan Roesedf294492007-03-08 10:06:09 +0100200#endif
Stefan Roeseba58e4c2007-03-01 21:11:36 +0100201static void program_DQS_calibration(unsigned long *dimm_populated,
202 unsigned char *iic0_dimm_addr,
203 unsigned long num_dimm_banks);
Stefan Roese4037ed32007-02-20 10:43:34 +0100204#ifdef HARD_CODED_DQS /* calibration test with hardvalues */
Wolfgang Denk74357112007-02-27 14:26:04 +0100205static void test(void);
Stefan Roese4037ed32007-02-20 10:43:34 +0100206#else
Wolfgang Denk74357112007-02-27 14:26:04 +0100207static void DQS_calibration_process(void);
Stefan Roese4037ed32007-02-20 10:43:34 +0100208#endif
Stefan Roeseba58e4c2007-03-01 21:11:36 +0100209#if defined(DEBUG)
210static void ppc440sp_sdram_register_dump(void);
211#endif
212int do_reset (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);
213void dcbz_area(u32 start_address, u32 num_bytes);
214void dflush(void);
Stefan Roese4037ed32007-02-20 10:43:34 +0100215
216static u32 mfdcr_any(u32 dcr)
217{
218 u32 val;
219
220 switch (dcr) {
221 case SDRAM_R0BAS + 0:
222 val = mfdcr(SDRAM_R0BAS + 0);
223 break;
224 case SDRAM_R0BAS + 1:
225 val = mfdcr(SDRAM_R0BAS + 1);
226 break;
227 case SDRAM_R0BAS + 2:
228 val = mfdcr(SDRAM_R0BAS + 2);
229 break;
230 case SDRAM_R0BAS + 3:
231 val = mfdcr(SDRAM_R0BAS + 3);
232 break;
233 default:
234 printf("DCR %d not defined in case statement!!!\n", dcr);
235 val = 0; /* just to satisfy the compiler */
236 }
237
238 return val;
239}
240
241static void mtdcr_any(u32 dcr, u32 val)
242{
243 switch (dcr) {
244 case SDRAM_R0BAS + 0:
245 mtdcr(SDRAM_R0BAS + 0, val);
246 break;
247 case SDRAM_R0BAS + 1:
248 mtdcr(SDRAM_R0BAS + 1, val);
249 break;
250 case SDRAM_R0BAS + 2:
251 mtdcr(SDRAM_R0BAS + 2, val);
252 break;
253 case SDRAM_R0BAS + 3:
254 mtdcr(SDRAM_R0BAS + 3, val);
255 break;
256 default:
257 printf("DCR %d not defined in case statement!!!\n", dcr);
258 }
259}
260
Stefan Roese4037ed32007-02-20 10:43:34 +0100261static unsigned char spd_read(uchar chip, uint addr)
262{
263 unsigned char data[2];
264
265 if (i2c_probe(chip) == 0)
266 if (i2c_read(chip, addr, 1, data, 1) == 0)
267 return data[0];
268
269 return 0;
270}
271
272/*-----------------------------------------------------------------------------+
273 * sdram_memsize
274 *-----------------------------------------------------------------------------*/
275static unsigned long sdram_memsize(void)
276{
277 unsigned long mem_size;
278 unsigned long mcopt2;
279 unsigned long mcstat;
280 unsigned long mb0cf;
281 unsigned long sdsz;
282 unsigned long i;
283
284 mem_size = 0;
285
286 mfsdram(SDRAM_MCOPT2, mcopt2);
287 mfsdram(SDRAM_MCSTAT, mcstat);
288
289 /* DDR controller must be enabled and not in self-refresh. */
290 /* Otherwise memsize is zero. */
291 if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
292 && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
293 && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
294 == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
Stefan Roeseba58e4c2007-03-01 21:11:36 +0100295 for (i = 0; i < MAXBXCF; i++) {
Stefan Roese4037ed32007-02-20 10:43:34 +0100296 mfsdram(SDRAM_MB0CF + (i << 2), mb0cf);
297 /* Banks enabled */
298 if ((mb0cf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
299 sdsz = mfdcr_any(SDRAM_R0BAS + i) & SDRAM_RXBAS_SDSZ_MASK;
300
301 switch(sdsz) {
302 case SDRAM_RXBAS_SDSZ_8:
303 mem_size+=8;
304 break;
305 case SDRAM_RXBAS_SDSZ_16:
306 mem_size+=16;
307 break;
308 case SDRAM_RXBAS_SDSZ_32:
309 mem_size+=32;
310 break;
311 case SDRAM_RXBAS_SDSZ_64:
312 mem_size+=64;
313 break;
314 case SDRAM_RXBAS_SDSZ_128:
315 mem_size+=128;
316 break;
317 case SDRAM_RXBAS_SDSZ_256:
318 mem_size+=256;
319 break;
320 case SDRAM_RXBAS_SDSZ_512:
321 mem_size+=512;
322 break;
323 case SDRAM_RXBAS_SDSZ_1024:
324 mem_size+=1024;
325 break;
326 case SDRAM_RXBAS_SDSZ_2048:
327 mem_size+=2048;
328 break;
329 case SDRAM_RXBAS_SDSZ_4096:
330 mem_size+=4096;
331 break;
332 default:
333 mem_size=0;
334 break;
335 }
336 }
337 }
338 }
339
340 mem_size *= 1024 * 1024;
341 return(mem_size);
342}
343
344/*-----------------------------------------------------------------------------+
345 * initdram. Initializes the 440SP Memory Queue and DDR SDRAM controller.
346 * Note: This routine runs from flash with a stack set up in the chip's
347 * sram space. It is important that the routine does not require .sbss, .bss or
348 * .data sections. It also cannot call routines that require these sections.
349 *-----------------------------------------------------------------------------*/
350/*-----------------------------------------------------------------------------
Wolfgang Denk74357112007-02-27 14:26:04 +0100351 * Function: initdram
Stefan Roese4037ed32007-02-20 10:43:34 +0100352 * Description: Configures SDRAM memory banks for DDR operation.
Wolfgang Denk74357112007-02-27 14:26:04 +0100353 * Auto Memory Configuration option reads the DDR SDRAM EEPROMs
354 * via the IIC bus and then configures the DDR SDRAM memory
355 * banks appropriately. If Auto Memory Configuration is
356 * not used, it is assumed that no DIMM is plugged
Stefan Roese4037ed32007-02-20 10:43:34 +0100357 *-----------------------------------------------------------------------------*/
358long int initdram(int board_type)
359{
Stefan Roeseba58e4c2007-03-01 21:11:36 +0100360 unsigned char iic0_dimm_addr[] = SPD_EEPROM_ADDRESS;
Stefan Roese4037ed32007-02-20 10:43:34 +0100361 unsigned char spd0[MAX_SPD_BYTES];
362 unsigned char spd1[MAX_SPD_BYTES];
363 unsigned char *dimm_spd[MAXDIMMS];
364 unsigned long dimm_populated[MAXDIMMS];
Stefan Roese4037ed32007-02-20 10:43:34 +0100365 unsigned long num_dimm_banks; /* on board dimm banks */
366 unsigned long val;
367 ddr_cas_id_t selected_cas;
Stefan Roeseba58e4c2007-03-01 21:11:36 +0100368 int write_recovery;
Stefan Roese4037ed32007-02-20 10:43:34 +0100369 unsigned long dram_size = 0;
370
371 num_dimm_banks = sizeof(iic0_dimm_addr);
372
373 /*------------------------------------------------------------------
374 * Set up an array of SPD matrixes.
375 *-----------------------------------------------------------------*/
376 dimm_spd[0] = spd0;
377 dimm_spd[1] = spd1;
378
379 /*------------------------------------------------------------------
Stefan Roese4037ed32007-02-20 10:43:34 +0100380 * Reset the DDR-SDRAM controller.
381 *-----------------------------------------------------------------*/
Stefan Roeseba58e4c2007-03-01 21:11:36 +0100382 mtsdr(SDR0_SRST, (0x80000000 >> 10));
Stefan Roese4037ed32007-02-20 10:43:34 +0100383 mtsdr(SDR0_SRST, 0x00000000);
384
385 /*
386 * Make sure I2C controller is initialized
387 * before continuing.
388 */
389
390 /* switch to correct I2C bus */
391 I2C_SET_BUS(CFG_SPD_BUS_NUM);
392 i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);
393
394 /*------------------------------------------------------------------
395 * Clear out the serial presence detect buffers.
396 * Perform IIC reads from the dimm. Fill in the spds.
397 * Check to see if the dimm slots are populated
398 *-----------------------------------------------------------------*/
399 get_spd_info(dimm_populated, iic0_dimm_addr, num_dimm_banks);
400
401 /*------------------------------------------------------------------
402 * Check the memory type for the dimms plugged.
403 *-----------------------------------------------------------------*/
404 check_mem_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
405
406 /*------------------------------------------------------------------
407 * Check the frequency supported for the dimms plugged.
408 *-----------------------------------------------------------------*/
409 check_frequency(dimm_populated, iic0_dimm_addr, num_dimm_banks);
410
411 /*------------------------------------------------------------------
412 * Check the total rank number.
413 *-----------------------------------------------------------------*/
414 check_rank_number(dimm_populated, iic0_dimm_addr, num_dimm_banks);
415
416 /*------------------------------------------------------------------
417 * Check the voltage type for the dimms plugged.
418 *-----------------------------------------------------------------*/
419 check_voltage_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
420
421 /*------------------------------------------------------------------
422 * Program SDRAM controller options 2 register
423 * Except Enabling of the memory controller.
424 *-----------------------------------------------------------------*/
425 mfsdram(SDRAM_MCOPT2, val);
426 mtsdram(SDRAM_MCOPT2,
427 (val &
428 ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_PMEN_MASK |
429 SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_XSRP_MASK |
430 SDRAM_MCOPT2_ISIE_MASK))
431 | (SDRAM_MCOPT2_SREN_ENTER | SDRAM_MCOPT2_PMEN_DISABLE |
432 SDRAM_MCOPT2_IPTR_IDLE | SDRAM_MCOPT2_XSRP_ALLOW |
433 SDRAM_MCOPT2_ISIE_ENABLE));
434
435 /*------------------------------------------------------------------
436 * Program SDRAM controller options 1 register
437 * Note: Does not enable the memory controller.
438 *-----------------------------------------------------------------*/
439 program_copt1(dimm_populated, iic0_dimm_addr, num_dimm_banks);
440
441 /*------------------------------------------------------------------
442 * Set the SDRAM Controller On Die Termination Register
443 *-----------------------------------------------------------------*/
444 program_codt(dimm_populated, iic0_dimm_addr, num_dimm_banks);
445
446 /*------------------------------------------------------------------
447 * Program SDRAM refresh register.
448 *-----------------------------------------------------------------*/
449 program_rtr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
450
451 /*------------------------------------------------------------------
452 * Program SDRAM mode register.
453 *-----------------------------------------------------------------*/
Stefan Roeseba58e4c2007-03-01 21:11:36 +0100454 program_mode(dimm_populated, iic0_dimm_addr, num_dimm_banks,
455 &selected_cas, &write_recovery);
Stefan Roese4037ed32007-02-20 10:43:34 +0100456
457 /*------------------------------------------------------------------
458 * Set the SDRAM Write Data/DM/DQS Clock Timing Reg
459 *-----------------------------------------------------------------*/
460 mfsdram(SDRAM_WRDTR, val);
461 mtsdram(SDRAM_WRDTR, (val & ~(SDRAM_WRDTR_LLWP_MASK | SDRAM_WRDTR_WTR_MASK)) |
462 (SDRAM_WRDTR_LLWP_1_CYC | SDRAM_WRDTR_WTR_90_DEG_ADV));
463
464 /*------------------------------------------------------------------
465 * Set the SDRAM Clock Timing Register
466 *-----------------------------------------------------------------*/
467 mfsdram(SDRAM_CLKTR, val);
Stefan Roese7187db72007-06-01 13:45:00 +0200468#ifdef CFG_44x_DDR2_CKTR_180
469 mtsdram(SDRAM_CLKTR, (val & ~SDRAM_CLKTR_CLKP_MASK) | SDRAM_CLKTR_CLKP_180_DEG_ADV);
470#else
Stefan Roese4037ed32007-02-20 10:43:34 +0100471 mtsdram(SDRAM_CLKTR, (val & ~SDRAM_CLKTR_CLKP_MASK) | SDRAM_CLKTR_CLKP_0_DEG);
Stefan Roese7187db72007-06-01 13:45:00 +0200472#endif
Stefan Roese4037ed32007-02-20 10:43:34 +0100473
474 /*------------------------------------------------------------------
475 * Program the BxCF registers.
476 *-----------------------------------------------------------------*/
477 program_bxcf(dimm_populated, iic0_dimm_addr, num_dimm_banks);
478
479 /*------------------------------------------------------------------
480 * Program SDRAM timing registers.
481 *-----------------------------------------------------------------*/
482 program_tr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
483
484 /*------------------------------------------------------------------
485 * Set the Extended Mode register
486 *-----------------------------------------------------------------*/
487 mfsdram(SDRAM_MEMODE, val);
488 mtsdram(SDRAM_MEMODE,
489 (val & ~(SDRAM_MEMODE_DIC_MASK | SDRAM_MEMODE_DLL_MASK |
490 SDRAM_MEMODE_RTT_MASK | SDRAM_MEMODE_DQS_MASK)) |
491 (SDRAM_MEMODE_DIC_NORMAL | SDRAM_MEMODE_DLL_ENABLE
Stefan Roesedf294492007-03-08 10:06:09 +0100492 | SDRAM_MEMODE_RTT_150OHM | SDRAM_MEMODE_DQS_ENABLE));
Stefan Roese4037ed32007-02-20 10:43:34 +0100493
494 /*------------------------------------------------------------------
495 * Program Initialization preload registers.
496 *-----------------------------------------------------------------*/
497 program_initplr(dimm_populated, iic0_dimm_addr, num_dimm_banks,
Stefan Roeseba58e4c2007-03-01 21:11:36 +0100498 selected_cas, write_recovery);
Stefan Roese4037ed32007-02-20 10:43:34 +0100499
500 /*------------------------------------------------------------------
501 * Delay to ensure 200usec have elapsed since reset.
502 *-----------------------------------------------------------------*/
503 udelay(400);
504
505 /*------------------------------------------------------------------
506 * Set the memory queue core base addr.
507 *-----------------------------------------------------------------*/
508 program_memory_queue(dimm_populated, iic0_dimm_addr, num_dimm_banks);
509
510 /*------------------------------------------------------------------
511 * Program SDRAM controller options 2 register
512 * Enable the memory controller.
513 *-----------------------------------------------------------------*/
514 mfsdram(SDRAM_MCOPT2, val);
515 mtsdram(SDRAM_MCOPT2,
516 (val & ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_DCEN_MASK |
517 SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_ISIE_MASK)) |
518 (SDRAM_MCOPT2_DCEN_ENABLE | SDRAM_MCOPT2_IPTR_EXECUTE));
519
520 /*------------------------------------------------------------------
521 * Wait for SDRAM_CFG0_DC_EN to complete.
522 *-----------------------------------------------------------------*/
523 do {
524 mfsdram(SDRAM_MCSTAT, val);
525 } while ((val & SDRAM_MCSTAT_MIC_MASK) == SDRAM_MCSTAT_MIC_NOTCOMP);
526
527 /* get installed memory size */
528 dram_size = sdram_memsize();
529
530 /* and program tlb entries for this size (dynamic) */
Stefan Roeseba58e4c2007-03-01 21:11:36 +0100531 program_tlb(0, dram_size, MY_TLB_WORD2_I_ENABLE);
Stefan Roese4037ed32007-02-20 10:43:34 +0100532
533 /*------------------------------------------------------------------
534 * DQS calibration.
535 *-----------------------------------------------------------------*/
536 program_DQS_calibration(dimm_populated, iic0_dimm_addr, num_dimm_banks);
537
Stefan Roesedf294492007-03-08 10:06:09 +0100538#ifdef CONFIG_DDR_ECC
Stefan Roeseba58e4c2007-03-01 21:11:36 +0100539 /*------------------------------------------------------------------
540 * If ecc is enabled, initialize the parity bits.
541 *-----------------------------------------------------------------*/
542 program_ecc(dimm_populated, iic0_dimm_addr, num_dimm_banks, MY_TLB_WORD2_I_ENABLE);
Stefan Roesedf294492007-03-08 10:06:09 +0100543#endif
Stefan Roeseba58e4c2007-03-01 21:11:36 +0100544
Stefan Roese4037ed32007-02-20 10:43:34 +0100545#ifdef DEBUG
546 ppc440sp_sdram_register_dump();
547#endif
548
549 return dram_size;
550}
551
552static void get_spd_info(unsigned long *dimm_populated,
553 unsigned char *iic0_dimm_addr,
554 unsigned long num_dimm_banks)
555{
556 unsigned long dimm_num;
557 unsigned long dimm_found;
558 unsigned char num_of_bytes;
559 unsigned char total_size;
560
561 dimm_found = FALSE;
562 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
563 num_of_bytes = 0;
564 total_size = 0;
565
566 num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0);
567 debug("\nspd_read(0x%x) returned %d\n",
568 iic0_dimm_addr[dimm_num], num_of_bytes);
569 total_size = spd_read(iic0_dimm_addr[dimm_num], 1);
570 debug("spd_read(0x%x) returned %d\n",
571 iic0_dimm_addr[dimm_num], total_size);
572
573 if ((num_of_bytes != 0) && (total_size != 0)) {
574 dimm_populated[dimm_num] = TRUE;
575 dimm_found = TRUE;
576 debug("DIMM slot %lu: populated\n", dimm_num);
577 } else {
578 dimm_populated[dimm_num] = FALSE;
579 debug("DIMM slot %lu: Not populated\n", dimm_num);
580 }
581 }
582
583 if (dimm_found == FALSE) {
584 printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n");
585 hang();
586 }
587}
588
589#ifdef CONFIG_ADD_RAM_INFO
590void board_add_ram_info(int use_default)
591{
Stefan Roesecabee752007-03-31 13:15:06 +0200592 PPC440_SYS_INFO board_cfg;
Stefan Roese94f54702007-03-31 08:46:08 +0200593 u32 val;
594
Wolfgang Denk74357112007-02-27 14:26:04 +0100595 if (is_ecc_enabled())
Stefan Roesecabee752007-03-31 13:15:06 +0200596 puts(" (ECC");
Wolfgang Denk74357112007-02-27 14:26:04 +0100597 else
Stefan Roesecabee752007-03-31 13:15:06 +0200598 puts(" (ECC not");
599
600 get_sys_info(&board_cfg);
601
602 mfsdr(SDR0_DDR0, val);
603 val = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(val), 1);
604 printf(" enabled, %d MHz", (val * 2) / 1000000);
Stefan Roese94f54702007-03-31 08:46:08 +0200605
606 mfsdram(SDRAM_MMODE, val);
607 val = (val & SDRAM_MMODE_DCL_MASK) >> 4;
Stefan Roesecabee752007-03-31 13:15:06 +0200608 printf(", CL%d)", val);
Stefan Roese4037ed32007-02-20 10:43:34 +0100609}
610#endif
611
612/*------------------------------------------------------------------
613 * For the memory DIMMs installed, this routine verifies that they
614 * really are DDR specific DIMMs.
615 *-----------------------------------------------------------------*/
616static void check_mem_type(unsigned long *dimm_populated,
617 unsigned char *iic0_dimm_addr,
618 unsigned long num_dimm_banks)
619{
620 unsigned long dimm_num;
621 unsigned long dimm_type;
622
623 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
624 if (dimm_populated[dimm_num] == TRUE) {
625 dimm_type = spd_read(iic0_dimm_addr[dimm_num], 2);
626 switch (dimm_type) {
627 case 1:
628 printf("ERROR: Standard Fast Page Mode DRAM DIMM detected in "
629 "slot %d.\n", (unsigned int)dimm_num);
630 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
631 printf("Replace the DIMM module with a supported DIMM.\n\n");
632 hang();
633 break;
634 case 2:
635 printf("ERROR: EDO DIMM detected in slot %d.\n",
636 (unsigned int)dimm_num);
637 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
638 printf("Replace the DIMM module with a supported DIMM.\n\n");
639 hang();
640 break;
641 case 3:
642 printf("ERROR: Pipelined Nibble DIMM detected in slot %d.\n",
643 (unsigned int)dimm_num);
644 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
645 printf("Replace the DIMM module with a supported DIMM.\n\n");
646 hang();
647 break;
648 case 4:
649 printf("ERROR: SDRAM DIMM detected in slot %d.\n",
650 (unsigned int)dimm_num);
651 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
652 printf("Replace the DIMM module with a supported DIMM.\n\n");
653 hang();
654 break;
655 case 5:
656 printf("ERROR: Multiplexed ROM DIMM detected in slot %d.\n",
657 (unsigned int)dimm_num);
658 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
659 printf("Replace the DIMM module with a supported DIMM.\n\n");
660 hang();
661 break;
662 case 6:
663 printf("ERROR: SGRAM DIMM detected in slot %d.\n",
664 (unsigned int)dimm_num);
665 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
666 printf("Replace the DIMM module with a supported DIMM.\n\n");
667 hang();
668 break;
669 case 7:
670 debug("DIMM slot %d: DDR1 SDRAM detected\n", dimm_num);
671 dimm_populated[dimm_num] = SDRAM_DDR1;
672 break;
673 case 8:
674 debug("DIMM slot %d: DDR2 SDRAM detected\n", dimm_num);
675 dimm_populated[dimm_num] = SDRAM_DDR2;
676 break;
677 default:
678 printf("ERROR: Unknown DIMM detected in slot %d.\n",
679 (unsigned int)dimm_num);
680 printf("Only DDR1 and DDR2 SDRAM DIMMs are supported.\n");
681 printf("Replace the DIMM module with a supported DIMM.\n\n");
682 hang();
683 break;
684 }
685 }
686 }
687 for (dimm_num = 1; dimm_num < num_dimm_banks; dimm_num++) {
688 if ((dimm_populated[dimm_num-1] != SDRAM_NONE)
689 && (dimm_populated[dimm_num] != SDRAM_NONE)
690 && (dimm_populated[dimm_num-1] != dimm_populated[dimm_num])) {
691 printf("ERROR: DIMM's DDR1 and DDR2 type can not be mixed.\n");
692 hang();
693 }
694 }
695}
696
697/*------------------------------------------------------------------
698 * For the memory DIMMs installed, this routine verifies that
699 * frequency previously calculated is supported.
700 *-----------------------------------------------------------------*/
701static void check_frequency(unsigned long *dimm_populated,
702 unsigned char *iic0_dimm_addr,
703 unsigned long num_dimm_banks)
704{
705 unsigned long dimm_num;
706 unsigned long tcyc_reg;
707 unsigned long cycle_time;
708 unsigned long calc_cycle_time;
709 unsigned long sdram_freq;
710 unsigned long sdr_ddrpll;
711 PPC440_SYS_INFO board_cfg;
712
713 /*------------------------------------------------------------------
714 * Get the board configuration info.
715 *-----------------------------------------------------------------*/
716 get_sys_info(&board_cfg);
717
Stefan Roesedf294492007-03-08 10:06:09 +0100718 mfsdr(SDR0_DDR0, sdr_ddrpll);
Stefan Roese4037ed32007-02-20 10:43:34 +0100719 sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
720
721 /*
722 * calc_cycle_time is calculated from DDR frequency set by board/chip
723 * and is expressed in multiple of 10 picoseconds
724 * to match the way DIMM cycle time is calculated below.
725 */
726 calc_cycle_time = MULDIV64(ONE_BILLION, 100, sdram_freq);
727
728 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
729 if (dimm_populated[dimm_num] != SDRAM_NONE) {
730 tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
731 /*
732 * Byte 9, Cycle time for CAS Latency=X, is split into two nibbles:
733 * the higher order nibble (bits 4-7) designates the cycle time
734 * to a granularity of 1ns;
735 * the value presented by the lower order nibble (bits 0-3)
736 * has a granularity of .1ns and is added to the value designated
737 * by the higher nibble. In addition, four lines of the lower order
738 * nibble are assigned to support +.25,+.33, +.66 and +.75.
739 */
740 /* Convert from hex to decimal */
741 if ((tcyc_reg & 0x0F) == 0x0D)
742 cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
743 else if ((tcyc_reg & 0x0F) == 0x0C)
744 cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 66;
745 else if ((tcyc_reg & 0x0F) == 0x0B)
746 cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 33;
747 else if ((tcyc_reg & 0x0F) == 0x0A)
748 cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 25;
749 else
750 cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) +
751 ((tcyc_reg & 0x0F)*10);
Stefan Roese94f54702007-03-31 08:46:08 +0200752 debug("cycle_time=%d [10 picoseconds]\n", cycle_time);
Stefan Roese4037ed32007-02-20 10:43:34 +0100753
754 if (cycle_time > (calc_cycle_time + 10)) {
755 /*
756 * the provided sdram cycle_time is too small
757 * for the available DIMM cycle_time.
758 * The additionnal 100ps is here to accept a small incertainty.
759 */
760 printf("ERROR: DRAM DIMM detected with cycle_time %d ps in "
761 "slot %d \n while calculated cycle time is %d ps.\n",
762 (unsigned int)(cycle_time*10),
763 (unsigned int)dimm_num,
764 (unsigned int)(calc_cycle_time*10));
765 printf("Replace the DIMM, or change DDR frequency via "
766 "strapping bits.\n\n");
767 hang();
768 }
769 }
770 }
771}
772
773/*------------------------------------------------------------------
774 * For the memory DIMMs installed, this routine verifies two
775 * ranks/banks maximum are availables.
776 *-----------------------------------------------------------------*/
777static void check_rank_number(unsigned long *dimm_populated,
778 unsigned char *iic0_dimm_addr,
779 unsigned long num_dimm_banks)
780{
781 unsigned long dimm_num;
782 unsigned long dimm_rank;
783 unsigned long total_rank = 0;
784
785 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
786 if (dimm_populated[dimm_num] != SDRAM_NONE) {
787 dimm_rank = spd_read(iic0_dimm_addr[dimm_num], 5);
788 if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
789 dimm_rank = (dimm_rank & 0x0F) +1;
790 else
791 dimm_rank = dimm_rank & 0x0F;
792
793
794 if (dimm_rank > MAXRANKS) {
795 printf("ERROR: DRAM DIMM detected with %d ranks in "
796 "slot %d is not supported.\n", dimm_rank, dimm_num);
797 printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
798 printf("Replace the DIMM module with a supported DIMM.\n\n");
799 hang();
800 } else
801 total_rank += dimm_rank;
802 }
803 if (total_rank > MAXRANKS) {
804 printf("ERROR: DRAM DIMM detected with a total of %d ranks "
805 "for all slots.\n", (unsigned int)total_rank);
806 printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
807 printf("Remove one of the DIMM modules.\n\n");
808 hang();
809 }
810 }
811}
812
813/*------------------------------------------------------------------
814 * only support 2.5V modules.
815 * This routine verifies this.
816 *-----------------------------------------------------------------*/
817static void check_voltage_type(unsigned long *dimm_populated,
818 unsigned char *iic0_dimm_addr,
819 unsigned long num_dimm_banks)
820{
821 unsigned long dimm_num;
822 unsigned long voltage_type;
823
824 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
825 if (dimm_populated[dimm_num] != SDRAM_NONE) {
826 voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8);
827 switch (voltage_type) {
828 case 0x00:
829 printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
830 printf("This DIMM is 5.0 Volt/TTL.\n");
831 printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
832 (unsigned int)dimm_num);
833 hang();
834 break;
835 case 0x01:
836 printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
837 printf("This DIMM is LVTTL.\n");
838 printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
839 (unsigned int)dimm_num);
840 hang();
841 break;
842 case 0x02:
843 printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
844 printf("This DIMM is 1.5 Volt.\n");
845 printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
846 (unsigned int)dimm_num);
847 hang();
848 break;
849 case 0x03:
850 printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
851 printf("This DIMM is 3.3 Volt/TTL.\n");
852 printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
853 (unsigned int)dimm_num);
854 hang();
855 break;
856 case 0x04:
857 /* 2.5 Voltage only for DDR1 */
858 break;
859 case 0x05:
860 /* 1.8 Voltage only for DDR2 */
861 break;
862 default:
863 printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
864 printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
865 (unsigned int)dimm_num);
866 hang();
867 break;
868 }
869 }
870 }
871}
872
873/*-----------------------------------------------------------------------------+
874 * program_copt1.
875 *-----------------------------------------------------------------------------*/
876static void program_copt1(unsigned long *dimm_populated,
877 unsigned char *iic0_dimm_addr,
878 unsigned long num_dimm_banks)
879{
880 unsigned long dimm_num;
881 unsigned long mcopt1;
882 unsigned long ecc_enabled;
883 unsigned long ecc = 0;
884 unsigned long data_width = 0;
885 unsigned long dimm_32bit;
886 unsigned long dimm_64bit;
887 unsigned long registered = 0;
888 unsigned long attribute = 0;
889 unsigned long buf0, buf1; /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
890 unsigned long bankcount;
891 unsigned long ddrtype;
892 unsigned long val;
893
Stefan Roesedf294492007-03-08 10:06:09 +0100894#ifdef CONFIG_DDR_ECC
Stefan Roese4037ed32007-02-20 10:43:34 +0100895 ecc_enabled = TRUE;
Stefan Roesedf294492007-03-08 10:06:09 +0100896#else
897 ecc_enabled = FALSE;
898#endif
Stefan Roese4037ed32007-02-20 10:43:34 +0100899 dimm_32bit = FALSE;
900 dimm_64bit = FALSE;
901 buf0 = FALSE;
902 buf1 = FALSE;
903
904 /*------------------------------------------------------------------
905 * Set memory controller options reg 1, SDRAM_MCOPT1.
906 *-----------------------------------------------------------------*/
907 mfsdram(SDRAM_MCOPT1, val);
908 mcopt1 = val & ~(SDRAM_MCOPT1_MCHK_MASK | SDRAM_MCOPT1_RDEN_MASK |
909 SDRAM_MCOPT1_PMU_MASK | SDRAM_MCOPT1_DMWD_MASK |
910 SDRAM_MCOPT1_UIOS_MASK | SDRAM_MCOPT1_BCNT_MASK |
911 SDRAM_MCOPT1_DDR_TYPE_MASK | SDRAM_MCOPT1_RWOO_MASK |
912 SDRAM_MCOPT1_WOOO_MASK | SDRAM_MCOPT1_DCOO_MASK |
913 SDRAM_MCOPT1_DREF_MASK);
914
915 mcopt1 |= SDRAM_MCOPT1_QDEP;
916 mcopt1 |= SDRAM_MCOPT1_PMU_OPEN;
917 mcopt1 |= SDRAM_MCOPT1_RWOO_DISABLED;
918 mcopt1 |= SDRAM_MCOPT1_WOOO_DISABLED;
919 mcopt1 |= SDRAM_MCOPT1_DCOO_DISABLED;
920 mcopt1 |= SDRAM_MCOPT1_DREF_NORMAL;
921
922 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
923 if (dimm_populated[dimm_num] != SDRAM_NONE) {
924 /* test ecc support */
925 ecc = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 11);
926 if (ecc != 0x02) /* ecc not supported */
927 ecc_enabled = FALSE;
928
929 /* test bank count */
930 bankcount = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 17);
931 if (bankcount == 0x04) /* bank count = 4 */
932 mcopt1 |= SDRAM_MCOPT1_4_BANKS;
933 else /* bank count = 8 */
934 mcopt1 |= SDRAM_MCOPT1_8_BANKS;
935
936 /* test DDR type */
937 ddrtype = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2);
938 /* test for buffered/unbuffered, registered, differential clocks */
939 registered = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 20);
940 attribute = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 21);
941
942 /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
943 if (dimm_num == 0) {
944 if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
945 mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
946 if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
947 mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
948 if (registered == 1) { /* DDR2 always buffered */
949 /* TODO: what about above comments ? */
950 mcopt1 |= SDRAM_MCOPT1_RDEN;
951 buf0 = TRUE;
952 } else {
953 /* TODO: the mask 0x02 doesn't match Samsung def for byte 21. */
954 if ((attribute & 0x02) == 0x00) {
955 /* buffered not supported */
956 buf0 = FALSE;
957 } else {
958 mcopt1 |= SDRAM_MCOPT1_RDEN;
959 buf0 = TRUE;
960 }
961 }
962 }
963 else if (dimm_num == 1) {
964 if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
965 mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
966 if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
967 mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
968 if (registered == 1) {
969 /* DDR2 always buffered */
970 mcopt1 |= SDRAM_MCOPT1_RDEN;
971 buf1 = TRUE;
972 } else {
973 if ((attribute & 0x02) == 0x00) {
974 /* buffered not supported */
975 buf1 = FALSE;
976 } else {
977 mcopt1 |= SDRAM_MCOPT1_RDEN;
978 buf1 = TRUE;
979 }
980 }
981 }
982
983 /* Note that for DDR2 the byte 7 is reserved, but OK to keep code as is. */
984 data_width = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 6) +
985 (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 7)) << 8);
986
987 switch (data_width) {
988 case 72:
989 case 64:
990 dimm_64bit = TRUE;
991 break;
992 case 40:
993 case 32:
994 dimm_32bit = TRUE;
995 break;
996 default:
997 printf("WARNING: Detected a DIMM with a data width of %d bits.\n",
998 data_width);
999 printf("Only DIMMs with 32 or 64 bit DDR-SDRAM widths are supported.\n");
1000 break;
1001 }
1002 }
1003 }
1004
1005 /* verify matching properties */
1006 if ((dimm_populated[0] != SDRAM_NONE) && (dimm_populated[1] != SDRAM_NONE)) {
1007 if (buf0 != buf1) {
1008 printf("ERROR: DIMM's buffered/unbuffered, registered, clocking don't match.\n");
1009 hang();
1010 }
1011 }
1012
1013 if ((dimm_64bit == TRUE) && (dimm_32bit == TRUE)) {
1014 printf("ERROR: Cannot mix 32 bit and 64 bit DDR-SDRAM DIMMs together.\n");
1015 hang();
1016 }
1017 else if ((dimm_64bit == TRUE) && (dimm_32bit == FALSE)) {
1018 mcopt1 |= SDRAM_MCOPT1_DMWD_64;
1019 } else if ((dimm_64bit == FALSE) && (dimm_32bit == TRUE)) {
1020 mcopt1 |= SDRAM_MCOPT1_DMWD_32;
1021 } else {
1022 printf("ERROR: Please install only 32 or 64 bit DDR-SDRAM DIMMs.\n\n");
1023 hang();
1024 }
1025
1026 if (ecc_enabled == TRUE)
1027 mcopt1 |= SDRAM_MCOPT1_MCHK_GEN;
1028 else
1029 mcopt1 |= SDRAM_MCOPT1_MCHK_NON;
1030
1031 mtsdram(SDRAM_MCOPT1, mcopt1);
1032}
1033
1034/*-----------------------------------------------------------------------------+
1035 * program_codt.
1036 *-----------------------------------------------------------------------------*/
1037static void program_codt(unsigned long *dimm_populated,
1038 unsigned char *iic0_dimm_addr,
1039 unsigned long num_dimm_banks)
1040{
1041 unsigned long codt;
1042 unsigned long modt0 = 0;
1043 unsigned long modt1 = 0;
1044 unsigned long modt2 = 0;
1045 unsigned long modt3 = 0;
1046 unsigned char dimm_num;
1047 unsigned char dimm_rank;
1048 unsigned char total_rank = 0;
1049 unsigned char total_dimm = 0;
1050 unsigned char dimm_type = 0;
1051 unsigned char firstSlot = 0;
1052
1053 /*------------------------------------------------------------------
1054 * Set the SDRAM Controller On Die Termination Register
1055 *-----------------------------------------------------------------*/
1056 mfsdram(SDRAM_CODT, codt);
1057 codt |= (SDRAM_CODT_IO_NMODE
1058 & (~SDRAM_CODT_DQS_SINGLE_END
1059 & ~SDRAM_CODT_CKSE_SINGLE_END
1060 & ~SDRAM_CODT_FEEBBACK_RCV_SINGLE_END
1061 & ~SDRAM_CODT_FEEBBACK_DRV_SINGLE_END));
1062
1063 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1064 if (dimm_populated[dimm_num] != SDRAM_NONE) {
1065 dimm_rank = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 5);
1066 if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08) {
1067 dimm_rank = (dimm_rank & 0x0F) + 1;
1068 dimm_type = SDRAM_DDR2;
1069 } else {
1070 dimm_rank = dimm_rank & 0x0F;
1071 dimm_type = SDRAM_DDR1;
1072 }
1073
Stefan Roeseba58e4c2007-03-01 21:11:36 +01001074 total_rank += dimm_rank;
1075 total_dimm++;
Stefan Roese4037ed32007-02-20 10:43:34 +01001076 if ((dimm_num == 0) && (total_dimm == 1))
1077 firstSlot = TRUE;
1078 else
1079 firstSlot = FALSE;
1080 }
1081 }
1082 if (dimm_type == SDRAM_DDR2) {
1083 codt |= SDRAM_CODT_DQS_1_8_V_DDR2;
1084 if ((total_dimm == 1) && (firstSlot == TRUE)) {
1085 if (total_rank == 1) {
Stefan Roeseba58e4c2007-03-01 21:11:36 +01001086 codt |= CALC_ODT_R(0);
1087 modt0 = CALC_ODT_W(0);
Stefan Roese4037ed32007-02-20 10:43:34 +01001088 modt1 = 0x00000000;
1089 modt2 = 0x00000000;
1090 modt3 = 0x00000000;
1091 }
1092 if (total_rank == 2) {
Stefan Roeseba58e4c2007-03-01 21:11:36 +01001093 codt |= CALC_ODT_R(0) | CALC_ODT_R(1);
1094 modt0 = CALC_ODT_W(0);
1095 modt1 = CALC_ODT_W(0);
Stefan Roese4037ed32007-02-20 10:43:34 +01001096 modt2 = 0x00000000;
1097 modt3 = 0x00000000;
1098 }
Stefan Roeseba58e4c2007-03-01 21:11:36 +01001099 } else if ((total_dimm == 1) && (firstSlot != TRUE)) {
Stefan Roese4037ed32007-02-20 10:43:34 +01001100 if (total_rank == 1) {
Stefan Roeseba58e4c2007-03-01 21:11:36 +01001101 codt |= CALC_ODT_R(2);
1102 modt0 = 0x00000000;
Stefan Roese4037ed32007-02-20 10:43:34 +01001103 modt1 = 0x00000000;
Stefan Roeseba58e4c2007-03-01 21:11:36 +01001104 modt2 = CALC_ODT_W(2);
Stefan Roese4037ed32007-02-20 10:43:34 +01001105 modt3 = 0x00000000;
1106 }
1107 if (total_rank == 2) {
Stefan Roeseba58e4c2007-03-01 21:11:36 +01001108 codt |= CALC_ODT_R(2) | CALC_ODT_R(3);
1109 modt0 = 0x00000000;
1110 modt1 = 0x00000000;
1111 modt2 = CALC_ODT_W(2);
1112 modt3 = CALC_ODT_W(2);
Stefan Roese4037ed32007-02-20 10:43:34 +01001113 }
1114 }
1115 if (total_dimm == 2) {
1116 if (total_rank == 2) {
Stefan Roeseba58e4c2007-03-01 21:11:36 +01001117 codt |= CALC_ODT_R(0) | CALC_ODT_R(2);
1118 modt0 = CALC_ODT_RW(2);
Stefan Roese4037ed32007-02-20 10:43:34 +01001119 modt1 = 0x00000000;
Stefan Roeseba58e4c2007-03-01 21:11:36 +01001120 modt2 = CALC_ODT_RW(0);
Stefan Roese4037ed32007-02-20 10:43:34 +01001121 modt3 = 0x00000000;
1122 }
1123 if (total_rank == 4) {
Stefan Roese7187db72007-06-01 13:45:00 +02001124 codt |= CALC_ODT_R(0) | CALC_ODT_R(1) |
1125 CALC_ODT_R(2) | CALC_ODT_R(3);
Stefan Roeseba58e4c2007-03-01 21:11:36 +01001126 modt0 = CALC_ODT_RW(2);
1127 modt1 = 0x00000000;
1128 modt2 = CALC_ODT_RW(0);
1129 modt3 = 0x00000000;
Stefan Roese4037ed32007-02-20 10:43:34 +01001130 }
1131 }
Wolfgang Denk647d3c32007-03-04 01:36:05 +01001132 } else {
Stefan Roese4037ed32007-02-20 10:43:34 +01001133 codt |= SDRAM_CODT_DQS_2_5_V_DDR1;
1134 modt0 = 0x00000000;
1135 modt1 = 0x00000000;
1136 modt2 = 0x00000000;
1137 modt3 = 0x00000000;
1138
1139 if (total_dimm == 1) {
1140 if (total_rank == 1)
1141 codt |= 0x00800000;
1142 if (total_rank == 2)
1143 codt |= 0x02800000;
1144 }
1145 if (total_dimm == 2) {
1146 if (total_rank == 2)
1147 codt |= 0x08800000;
1148 if (total_rank == 4)
1149 codt |= 0x2a800000;
1150 }
1151 }
1152
1153 debug("nb of dimm %d\n", total_dimm);
1154 debug("nb of rank %d\n", total_rank);
1155 if (total_dimm == 1)
1156 debug("dimm in slot %d\n", firstSlot);
1157
1158 mtsdram(SDRAM_CODT, codt);
1159 mtsdram(SDRAM_MODT0, modt0);
1160 mtsdram(SDRAM_MODT1, modt1);
1161 mtsdram(SDRAM_MODT2, modt2);
1162 mtsdram(SDRAM_MODT3, modt3);
1163}
1164
1165/*-----------------------------------------------------------------------------+
1166 * program_initplr.
1167 *-----------------------------------------------------------------------------*/
1168static void program_initplr(unsigned long *dimm_populated,
1169 unsigned char *iic0_dimm_addr,
1170 unsigned long num_dimm_banks,
Wolfgang Denkad5bb452007-03-06 18:08:43 +01001171 ddr_cas_id_t selected_cas,
Stefan Roeseba58e4c2007-03-01 21:11:36 +01001172 int write_recovery)
Stefan Roese4037ed32007-02-20 10:43:34 +01001173{
Stefan Roeseba58e4c2007-03-01 21:11:36 +01001174 u32 cas = 0;
1175 u32 odt = 0;
1176 u32 ods = 0;
1177 u32 mr;
1178 u32 wr;
1179 u32 emr;
1180 u32 emr2;
1181 u32 emr3;
1182 int dimm_num;
1183 int total_dimm = 0;
Stefan Roese4037ed32007-02-20 10:43:34 +01001184
1185 /******************************************************
1186 ** Assumption: if more than one DIMM, all DIMMs are the same
Wolfgang Denk74357112007-02-27 14:26:04 +01001187 ** as already checked in check_memory_type
Stefan Roese4037ed32007-02-20 10:43:34 +01001188 ******************************************************/
1189
1190 if ((dimm_populated[0] == SDRAM_DDR1) || (dimm_populated[1] == SDRAM_DDR1)) {
1191 mtsdram(SDRAM_INITPLR0, 0x81B80000);
1192 mtsdram(SDRAM_INITPLR1, 0x81900400);
1193 mtsdram(SDRAM_INITPLR2, 0x81810000);
1194 mtsdram(SDRAM_INITPLR3, 0xff800162);
1195 mtsdram(SDRAM_INITPLR4, 0x81900400);
1196 mtsdram(SDRAM_INITPLR5, 0x86080000);
1197 mtsdram(SDRAM_INITPLR6, 0x86080000);
1198 mtsdram(SDRAM_INITPLR7, 0x81000062);
1199 } else if ((dimm_populated[0] == SDRAM_DDR2) || (dimm_populated[1] == SDRAM_DDR2)) {
1200 switch (selected_cas) {
Stefan Roese4037ed32007-02-20 10:43:34 +01001201 case DDR_CAS_3:
Stefan Roeseba58e4c2007-03-01 21:11:36 +01001202 cas = 3 << 4;
Stefan Roese4037ed32007-02-20 10:43:34 +01001203 break;
1204 case DDR_CAS_4:
Stefan Roeseba58e4c2007-03-01 21:11:36 +01001205 cas = 4 << 4;
Stefan Roese4037ed32007-02-20 10:43:34 +01001206 break;
1207 case DDR_CAS_5:
Stefan Roeseba58e4c2007-03-01 21:11:36 +01001208 cas = 5 << 4;
Stefan Roese4037ed32007-02-20 10:43:34 +01001209 break;
1210 default:
Stefan Roeseba58e4c2007-03-01 21:11:36 +01001211 printf("ERROR: ucode error on selected_cas value %d", selected_cas);
Stefan Roese4037ed32007-02-20 10:43:34 +01001212 hang();
1213 break;
1214 }
1215
Stefan Roeseba58e4c2007-03-01 21:11:36 +01001216#if 0
1217 /*
1218 * ToDo - Still a problem with the write recovery:
1219 * On the Corsair CM2X512-5400C4 module, setting write recovery
1220 * in the INITPLR reg to the value calculated in program_mode()
1221 * results in not correctly working DDR2 memory (crash after
1222 * relocation).
1223 *
1224 * So for now, set the write recovery to 3. This seems to work
1225 * on the Corair module too.
1226 *
1227 * 2007-03-01, sr
1228 */
1229 switch (write_recovery) {
1230 case 3:
1231 wr = WRITE_RECOV_3;
1232 break;
1233 case 4:
1234 wr = WRITE_RECOV_4;
1235 break;
1236 case 5:
1237 wr = WRITE_RECOV_5;
1238 break;
1239 case 6:
1240 wr = WRITE_RECOV_6;
1241 break;
1242 default:
1243 printf("ERROR: write recovery not support (%d)", write_recovery);
1244 hang();
1245 break;
1246 }
1247#else
1248 wr = WRITE_RECOV_3; /* test-only, see description above */
1249#endif
1250
1251 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++)
1252 if (dimm_populated[dimm_num] != SDRAM_NONE)
1253 total_dimm++;
1254 if (total_dimm == 1) {
1255 odt = ODT_150_OHM;
1256 ods = ODS_FULL;
1257 } else if (total_dimm == 2) {
1258 odt = ODT_75_OHM;
1259 ods = ODS_REDUCED;
1260 } else {
1261 printf("ERROR: Unsupported number of DIMM's (%d)", total_dimm);
1262 hang();
1263 }
1264
1265 mr = CMD_EMR | SELECT_MR | BURST_LEN_4 | wr | cas;
1266 emr = CMD_EMR | SELECT_EMR | odt | ods;
1267 emr2 = CMD_EMR | SELECT_EMR2;
1268 emr3 = CMD_EMR | SELECT_EMR3;
1269 mtsdram(SDRAM_INITPLR0, 0xB5000000 | CMD_NOP); /* NOP */
1270 udelay(1000);
1271 mtsdram(SDRAM_INITPLR1, 0x82000400 | CMD_PRECHARGE); /* precharge 8 DDR clock cycle */
1272 mtsdram(SDRAM_INITPLR2, 0x80800000 | emr2); /* EMR2 */
1273 mtsdram(SDRAM_INITPLR3, 0x80800000 | emr3); /* EMR3 */
1274 mtsdram(SDRAM_INITPLR4, 0x80800000 | emr); /* EMR DLL ENABLE */
1275 mtsdram(SDRAM_INITPLR5, 0x80800000 | mr | DLL_RESET); /* MR w/ DLL reset */
1276 udelay(1000);
1277 mtsdram(SDRAM_INITPLR6, 0x82000400 | CMD_PRECHARGE); /* precharge 8 DDR clock cycle */
1278 mtsdram(SDRAM_INITPLR7, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
1279 mtsdram(SDRAM_INITPLR8, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
1280 mtsdram(SDRAM_INITPLR9, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
1281 mtsdram(SDRAM_INITPLR10, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
1282 mtsdram(SDRAM_INITPLR11, 0x80000000 | mr); /* MR w/o DLL reset */
1283 mtsdram(SDRAM_INITPLR12, 0x80800380 | emr); /* EMR OCD Default */
1284 mtsdram(SDRAM_INITPLR13, 0x80800000 | emr); /* EMR OCD Exit */
Stefan Roese4037ed32007-02-20 10:43:34 +01001285 } else {
1286 printf("ERROR: ucode error as unknown DDR type in program_initplr");
1287 hang();
1288 }
1289}
1290
1291/*------------------------------------------------------------------
1292 * This routine programs the SDRAM_MMODE register.
1293 * the selected_cas is an output parameter, that will be passed
1294 * by caller to call the above program_initplr( )
1295 *-----------------------------------------------------------------*/
1296static void program_mode(unsigned long *dimm_populated,
1297 unsigned char *iic0_dimm_addr,
1298 unsigned long num_dimm_banks,
Stefan Roeseba58e4c2007-03-01 21:11:36 +01001299 ddr_cas_id_t *selected_cas,
1300 int *write_recovery)
Stefan Roese4037ed32007-02-20 10:43:34 +01001301{
1302 unsigned long dimm_num;
1303 unsigned long sdram_ddr1;
1304 unsigned long t_wr_ns;
1305 unsigned long t_wr_clk;
1306 unsigned long cas_bit;
1307 unsigned long cas_index;
1308 unsigned long sdram_freq;
1309 unsigned long ddr_check;
1310 unsigned long mmode;
1311 unsigned long tcyc_reg;
1312 unsigned long cycle_2_0_clk;
1313 unsigned long cycle_2_5_clk;
1314 unsigned long cycle_3_0_clk;
1315 unsigned long cycle_4_0_clk;
1316 unsigned long cycle_5_0_clk;
1317 unsigned long max_2_0_tcyc_ns_x_100;
1318 unsigned long max_2_5_tcyc_ns_x_100;
1319 unsigned long max_3_0_tcyc_ns_x_100;
1320 unsigned long max_4_0_tcyc_ns_x_100;
1321 unsigned long max_5_0_tcyc_ns_x_100;
1322 unsigned long cycle_time_ns_x_100[3];
1323 PPC440_SYS_INFO board_cfg;
1324 unsigned char cas_2_0_available;
1325 unsigned char cas_2_5_available;
1326 unsigned char cas_3_0_available;
1327 unsigned char cas_4_0_available;
1328 unsigned char cas_5_0_available;
1329 unsigned long sdr_ddrpll;
1330
1331 /*------------------------------------------------------------------
1332 * Get the board configuration info.
1333 *-----------------------------------------------------------------*/
1334 get_sys_info(&board_cfg);
1335
Stefan Roesedf294492007-03-08 10:06:09 +01001336 mfsdr(SDR0_DDR0, sdr_ddrpll);
Stefan Roese4037ed32007-02-20 10:43:34 +01001337 sdram_freq = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(sdr_ddrpll), 1);
Stefan Roesecabee752007-03-31 13:15:06 +02001338 debug("sdram_freq=%d\n", sdram_freq);
Stefan Roese4037ed32007-02-20 10:43:34 +01001339
1340 /*------------------------------------------------------------------
1341 * Handle the timing. We need to find the worst case timing of all
1342 * the dimm modules installed.
1343 *-----------------------------------------------------------------*/
1344 t_wr_ns = 0;
1345 cas_2_0_available = TRUE;
1346 cas_2_5_available = TRUE;
1347 cas_3_0_available = TRUE;
1348 cas_4_0_available = TRUE;
1349 cas_5_0_available = TRUE;
1350 max_2_0_tcyc_ns_x_100 = 10;
1351 max_2_5_tcyc_ns_x_100 = 10;
1352 max_3_0_tcyc_ns_x_100 = 10;
1353 max_4_0_tcyc_ns_x_100 = 10;
1354 max_5_0_tcyc_ns_x_100 = 10;
1355 sdram_ddr1 = TRUE;
1356
1357 /* loop through all the DIMM slots on the board */
1358 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1359 /* If a dimm is installed in a particular slot ... */
1360 if (dimm_populated[dimm_num] != SDRAM_NONE) {
1361 if (dimm_populated[dimm_num] == SDRAM_DDR1)
1362 sdram_ddr1 = TRUE;
1363 else
1364 sdram_ddr1 = FALSE;
1365
1366 /* t_wr_ns = max(t_wr_ns, (unsigned long)dimm_spd[dimm_num][36] >> 2); */ /* not used in this loop. */
1367 cas_bit = spd_read(iic0_dimm_addr[dimm_num], 18);
Stefan Roesecabee752007-03-31 13:15:06 +02001368 debug("cas_bit[SPD byte 18]=%02x\n", cas_bit);
Stefan Roese4037ed32007-02-20 10:43:34 +01001369
1370 /* For a particular DIMM, grab the three CAS values it supports */
1371 for (cas_index = 0; cas_index < 3; cas_index++) {
1372 switch (cas_index) {
1373 case 0:
1374 tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
1375 break;
1376 case 1:
1377 tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 23);
1378 break;
1379 default:
1380 tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 25);
1381 break;
1382 }
1383
1384 if ((tcyc_reg & 0x0F) >= 10) {
1385 if ((tcyc_reg & 0x0F) == 0x0D) {
1386 /* Convert from hex to decimal */
Stefan Roesecabee752007-03-31 13:15:06 +02001387 cycle_time_ns_x_100[cas_index] =
1388 (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
Stefan Roese4037ed32007-02-20 10:43:34 +01001389 } else {
1390 printf("ERROR: SPD reported Tcyc is incorrect for DIMM "
1391 "in slot %d\n", (unsigned int)dimm_num);
1392 hang();
1393 }
1394 } else {
1395 /* Convert from hex to decimal */
Stefan Roesecabee752007-03-31 13:15:06 +02001396 cycle_time_ns_x_100[cas_index] =
1397 (((tcyc_reg & 0xF0) >> 4) * 100) +
Stefan Roese4037ed32007-02-20 10:43:34 +01001398 ((tcyc_reg & 0x0F)*10);
1399 }
Stefan Roesecabee752007-03-31 13:15:06 +02001400 debug("cas_index=%d: cycle_time_ns_x_100=%d\n", cas_index,
1401 cycle_time_ns_x_100[cas_index]);
Stefan Roese4037ed32007-02-20 10:43:34 +01001402 }
1403
1404 /* The rest of this routine determines if CAS 2.0, 2.5, 3.0, 4.0 and 5.0 are */
1405 /* supported for a particular DIMM. */
1406 cas_index = 0;
1407
1408 if (sdram_ddr1) {
1409 /*
1410 * DDR devices use the following bitmask for CAS latency:
1411 * Bit 7 6 5 4 3 2 1 0
1412 * TBD 4.0 3.5 3.0 2.5 2.0 1.5 1.0
1413 */
Stefan Roesecabee752007-03-31 13:15:06 +02001414 if (((cas_bit & 0x40) == 0x40) && (cas_index < 3) &&
1415 (cycle_time_ns_x_100[cas_index] != 0)) {
1416 max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100,
1417 cycle_time_ns_x_100[cas_index]);
Stefan Roese4037ed32007-02-20 10:43:34 +01001418 cas_index++;
1419 } else {
1420 if (cas_index != 0)
1421 cas_index++;
1422 cas_4_0_available = FALSE;
1423 }
1424
Stefan Roesecabee752007-03-31 13:15:06 +02001425 if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) &&
1426 (cycle_time_ns_x_100[cas_index] != 0)) {
1427 max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100,
1428 cycle_time_ns_x_100[cas_index]);
Stefan Roese4037ed32007-02-20 10:43:34 +01001429 cas_index++;
1430 } else {
1431 if (cas_index != 0)
1432 cas_index++;
1433 cas_3_0_available = FALSE;
1434 }
1435
Stefan Roesecabee752007-03-31 13:15:06 +02001436 if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) &&
1437 (cycle_time_ns_x_100[cas_index] != 0)) {
1438 max_2_5_tcyc_ns_x_100 = max(max_2_5_tcyc_ns_x_100,
1439 cycle_time_ns_x_100[cas_index]);
Stefan Roese4037ed32007-02-20 10:43:34 +01001440 cas_index++;
1441 } else {
1442 if (cas_index != 0)
1443 cas_index++;
1444 cas_2_5_available = FALSE;
1445 }
1446
Stefan Roesecabee752007-03-31 13:15:06 +02001447 if (((cas_bit & 0x04) == 0x04) && (cas_index < 3) &&
1448 (cycle_time_ns_x_100[cas_index] != 0)) {
1449 max_2_0_tcyc_ns_x_100 = max(max_2_0_tcyc_ns_x_100,
1450 cycle_time_ns_x_100[cas_index]);
Stefan Roese4037ed32007-02-20 10:43:34 +01001451 cas_index++;
1452 } else {
1453 if (cas_index != 0)
1454 cas_index++;
1455 cas_2_0_available = FALSE;
1456 }
1457 } else {
1458 /*
1459 * DDR2 devices use the following bitmask for CAS latency:
1460 * Bit 7 6 5 4 3 2 1 0
1461 * TBD 6.0 5.0 4.0 3.0 2.0 TBD TBD
1462 */
Stefan Roesecabee752007-03-31 13:15:06 +02001463 if (((cas_bit & 0x20) == 0x20) && (cas_index < 3) &&
1464 (cycle_time_ns_x_100[cas_index] != 0)) {
1465 max_5_0_tcyc_ns_x_100 = max(max_5_0_tcyc_ns_x_100,
1466 cycle_time_ns_x_100[cas_index]);
Stefan Roese4037ed32007-02-20 10:43:34 +01001467 cas_index++;
1468 } else {
1469 if (cas_index != 0)
1470 cas_index++;
1471 cas_5_0_available = FALSE;
1472 }
1473
Stefan Roesecabee752007-03-31 13:15:06 +02001474 if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) &&
1475 (cycle_time_ns_x_100[cas_index] != 0)) {
1476 max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100,
1477 cycle_time_ns_x_100[cas_index]);
Stefan Roese4037ed32007-02-20 10:43:34 +01001478 cas_index++;
1479 } else {
1480 if (cas_index != 0)
1481 cas_index++;
1482 cas_4_0_available = FALSE;
1483 }
1484
Stefan Roesecabee752007-03-31 13:15:06 +02001485 if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) &&
1486 (cycle_time_ns_x_100[cas_index] != 0)) {
1487 max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100,
1488 cycle_time_ns_x_100[cas_index]);
Stefan Roese4037ed32007-02-20 10:43:34 +01001489 cas_index++;
1490 } else {
1491 if (cas_index != 0)
1492 cas_index++;
1493 cas_3_0_available = FALSE;
1494 }
1495 }
1496 }
1497 }
1498
1499 /*------------------------------------------------------------------
1500 * Set the SDRAM mode, SDRAM_MMODE
1501 *-----------------------------------------------------------------*/
1502 mfsdram(SDRAM_MMODE, mmode);
1503 mmode = mmode & ~(SDRAM_MMODE_WR_MASK | SDRAM_MMODE_DCL_MASK);
1504
Stefan Roesedf294492007-03-08 10:06:09 +01001505 /* add 10 here because of rounding problems */
1506 cycle_2_0_clk = MULDIV64(ONE_BILLION, 100, max_2_0_tcyc_ns_x_100) + 10;
1507 cycle_2_5_clk = MULDIV64(ONE_BILLION, 100, max_2_5_tcyc_ns_x_100) + 10;
1508 cycle_3_0_clk = MULDIV64(ONE_BILLION, 100, max_3_0_tcyc_ns_x_100) + 10;
1509 cycle_4_0_clk = MULDIV64(ONE_BILLION, 100, max_4_0_tcyc_ns_x_100) + 10;
1510 cycle_5_0_clk = MULDIV64(ONE_BILLION, 100, max_5_0_tcyc_ns_x_100) + 10;
Stefan Roesecabee752007-03-31 13:15:06 +02001511 debug("cycle_3_0_clk=%d\n", cycle_3_0_clk);
1512 debug("cycle_4_0_clk=%d\n", cycle_4_0_clk);
1513 debug("cycle_5_0_clk=%d\n", cycle_5_0_clk);
Stefan Roese4037ed32007-02-20 10:43:34 +01001514
1515 if (sdram_ddr1 == TRUE) { /* DDR1 */
1516 if ((cas_2_0_available == TRUE) && (sdram_freq <= cycle_2_0_clk)) {
1517 mmode |= SDRAM_MMODE_DCL_DDR1_2_0_CLK;
1518 *selected_cas = DDR_CAS_2;
1519 } else if ((cas_2_5_available == TRUE) && (sdram_freq <= cycle_2_5_clk)) {
1520 mmode |= SDRAM_MMODE_DCL_DDR1_2_5_CLK;
1521 *selected_cas = DDR_CAS_2_5;
1522 } else if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
1523 mmode |= SDRAM_MMODE_DCL_DDR1_3_0_CLK;
1524 *selected_cas = DDR_CAS_3;
1525 } else {
1526 printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
1527 printf("Only DIMMs DDR1 with CAS latencies of 2.0, 2.5, and 3.0 are supported.\n");
1528 printf("Make sure the PLB speed is within the supported range of the DIMMs.\n\n");
1529 hang();
1530 }
1531 } else { /* DDR2 */
Stefan Roese94f54702007-03-31 08:46:08 +02001532 debug("cas_3_0_available=%d\n", cas_3_0_available);
1533 debug("cas_4_0_available=%d\n", cas_4_0_available);
1534 debug("cas_5_0_available=%d\n", cas_5_0_available);
Stefan Roese4037ed32007-02-20 10:43:34 +01001535 if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
1536 mmode |= SDRAM_MMODE_DCL_DDR2_3_0_CLK;
1537 *selected_cas = DDR_CAS_3;
1538 } else if ((cas_4_0_available == TRUE) && (sdram_freq <= cycle_4_0_clk)) {
1539 mmode |= SDRAM_MMODE_DCL_DDR2_4_0_CLK;
1540 *selected_cas = DDR_CAS_4;
1541 } else if ((cas_5_0_available == TRUE) && (sdram_freq <= cycle_5_0_clk)) {
1542 mmode |= SDRAM_MMODE_DCL_DDR2_5_0_CLK;
1543 *selected_cas = DDR_CAS_5;
1544 } else {
1545 printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
1546 printf("Only DIMMs DDR2 with CAS latencies of 3.0, 4.0, and 5.0 are supported.\n");
Stefan Roesedf294492007-03-08 10:06:09 +01001547 printf("Make sure the PLB speed is within the supported range of the DIMMs.\n");
1548 printf("cas3=%d cas4=%d cas5=%d\n",
1549 cas_3_0_available, cas_4_0_available, cas_5_0_available);
1550 printf("sdram_freq=%d cycle3=%d cycle4=%d cycle5=%d\n\n",
1551 sdram_freq, cycle_3_0_clk, cycle_4_0_clk, cycle_5_0_clk);
Stefan Roese4037ed32007-02-20 10:43:34 +01001552 hang();
1553 }
1554 }
1555
1556 if (sdram_ddr1 == TRUE)
1557 mmode |= SDRAM_MMODE_WR_DDR1;
1558 else {
1559
1560 /* loop through all the DIMM slots on the board */
1561 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1562 /* If a dimm is installed in a particular slot ... */
1563 if (dimm_populated[dimm_num] != SDRAM_NONE)
1564 t_wr_ns = max(t_wr_ns,
1565 spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
1566 }
1567
1568 /*
1569 * convert from nanoseconds to ddr clocks
1570 * round up if necessary
1571 */
1572 t_wr_clk = MULDIV64(sdram_freq, t_wr_ns, ONE_BILLION);
1573 ddr_check = MULDIV64(ONE_BILLION, t_wr_clk, t_wr_ns);
1574 if (sdram_freq != ddr_check)
1575 t_wr_clk++;
1576
1577 switch (t_wr_clk) {
1578 case 0:
1579 case 1:
1580 case 2:
1581 case 3:
1582 mmode |= SDRAM_MMODE_WR_DDR2_3_CYC;
1583 break;
1584 case 4:
1585 mmode |= SDRAM_MMODE_WR_DDR2_4_CYC;
1586 break;
1587 case 5:
1588 mmode |= SDRAM_MMODE_WR_DDR2_5_CYC;
1589 break;
1590 default:
1591 mmode |= SDRAM_MMODE_WR_DDR2_6_CYC;
1592 break;
1593 }
Stefan Roeseba58e4c2007-03-01 21:11:36 +01001594 *write_recovery = t_wr_clk;
Stefan Roese4037ed32007-02-20 10:43:34 +01001595 }
1596
Stefan Roeseba58e4c2007-03-01 21:11:36 +01001597 debug("CAS latency = %d\n", *selected_cas);
1598 debug("Write recovery = %d\n", *write_recovery);
1599
Stefan Roese4037ed32007-02-20 10:43:34 +01001600 mtsdram(SDRAM_MMODE, mmode);
1601}
1602
1603/*-----------------------------------------------------------------------------+
1604 * program_rtr.
1605 *-----------------------------------------------------------------------------*/
1606static void program_rtr(unsigned long *dimm_populated,
1607 unsigned char *iic0_dimm_addr,
1608 unsigned long num_dimm_banks)
1609{
1610 PPC440_SYS_INFO board_cfg;
1611 unsigned long max_refresh_rate;
1612 unsigned long dimm_num;
1613 unsigned long refresh_rate_type;
1614 unsigned long refresh_rate;
1615 unsigned long rint;
1616 unsigned long sdram_freq;
1617 unsigned long sdr_ddrpll;
1618 unsigned long val;
1619
1620 /*------------------------------------------------------------------
1621 * Get the board configuration info.
1622 *-----------------------------------------------------------------*/
1623 get_sys_info(&board_cfg);
1624
1625 /*------------------------------------------------------------------
1626 * Set the SDRAM Refresh Timing Register, SDRAM_RTR
1627 *-----------------------------------------------------------------*/
Stefan Roesedf294492007-03-08 10:06:09 +01001628 mfsdr(SDR0_DDR0, sdr_ddrpll);
Stefan Roese4037ed32007-02-20 10:43:34 +01001629 sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
1630
1631 max_refresh_rate = 0;
1632 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1633 if (dimm_populated[dimm_num] != SDRAM_NONE) {
1634
1635 refresh_rate_type = spd_read(iic0_dimm_addr[dimm_num], 12);
1636 refresh_rate_type &= 0x7F;
1637 switch (refresh_rate_type) {
1638 case 0:
1639 refresh_rate = 15625;
1640 break;
1641 case 1:
1642 refresh_rate = 3906;
1643 break;
1644 case 2:
1645 refresh_rate = 7812;
1646 break;
1647 case 3:
1648 refresh_rate = 31250;
1649 break;
1650 case 4:
1651 refresh_rate = 62500;
1652 break;
1653 case 5:
1654 refresh_rate = 125000;
1655 break;
1656 default:
1657 refresh_rate = 0;
1658 printf("ERROR: DIMM %d unsupported refresh rate/type.\n",
1659 (unsigned int)dimm_num);
1660 printf("Replace the DIMM module with a supported DIMM.\n\n");
1661 hang();
1662 break;
1663 }
1664
1665 max_refresh_rate = max(max_refresh_rate, refresh_rate);
1666 }
1667 }
1668
1669 rint = MULDIV64(sdram_freq, max_refresh_rate, ONE_BILLION);
1670 mfsdram(SDRAM_RTR, val);
1671 mtsdram(SDRAM_RTR, (val & ~SDRAM_RTR_RINT_MASK) |
1672 (SDRAM_RTR_RINT_ENCODE(rint)));
1673}
1674
1675/*------------------------------------------------------------------
1676 * This routine programs the SDRAM_TRx registers.
1677 *-----------------------------------------------------------------*/
1678static void program_tr(unsigned long *dimm_populated,
1679 unsigned char *iic0_dimm_addr,
1680 unsigned long num_dimm_banks)
1681{
1682 unsigned long dimm_num;
1683 unsigned long sdram_ddr1;
1684 unsigned long t_rp_ns;
1685 unsigned long t_rcd_ns;
1686 unsigned long t_rrd_ns;
1687 unsigned long t_ras_ns;
1688 unsigned long t_rc_ns;
1689 unsigned long t_rfc_ns;
1690 unsigned long t_wpc_ns;
1691 unsigned long t_wtr_ns;
1692 unsigned long t_rpc_ns;
1693 unsigned long t_rp_clk;
1694 unsigned long t_rcd_clk;
1695 unsigned long t_rrd_clk;
1696 unsigned long t_ras_clk;
1697 unsigned long t_rc_clk;
1698 unsigned long t_rfc_clk;
1699 unsigned long t_wpc_clk;
1700 unsigned long t_wtr_clk;
1701 unsigned long t_rpc_clk;
1702 unsigned long sdtr1, sdtr2, sdtr3;
1703 unsigned long ddr_check;
1704 unsigned long sdram_freq;
1705 unsigned long sdr_ddrpll;
1706
1707 PPC440_SYS_INFO board_cfg;
1708
1709 /*------------------------------------------------------------------
1710 * Get the board configuration info.
1711 *-----------------------------------------------------------------*/
1712 get_sys_info(&board_cfg);
1713
Stefan Roesedf294492007-03-08 10:06:09 +01001714 mfsdr(SDR0_DDR0, sdr_ddrpll);
Stefan Roese4037ed32007-02-20 10:43:34 +01001715 sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
1716
1717 /*------------------------------------------------------------------
1718 * Handle the timing. We need to find the worst case timing of all
1719 * the dimm modules installed.
1720 *-----------------------------------------------------------------*/
1721 t_rp_ns = 0;
1722 t_rrd_ns = 0;
1723 t_rcd_ns = 0;
1724 t_ras_ns = 0;
1725 t_rc_ns = 0;
1726 t_rfc_ns = 0;
1727 t_wpc_ns = 0;
1728 t_wtr_ns = 0;
1729 t_rpc_ns = 0;
1730 sdram_ddr1 = TRUE;
1731
1732 /* loop through all the DIMM slots on the board */
1733 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1734 /* If a dimm is installed in a particular slot ... */
1735 if (dimm_populated[dimm_num] != SDRAM_NONE) {
1736 if (dimm_populated[dimm_num] == SDRAM_DDR2)
1737 sdram_ddr1 = TRUE;
1738 else
1739 sdram_ddr1 = FALSE;
1740
1741 t_rcd_ns = max(t_rcd_ns, spd_read(iic0_dimm_addr[dimm_num], 29) >> 2);
1742 t_rrd_ns = max(t_rrd_ns, spd_read(iic0_dimm_addr[dimm_num], 28) >> 2);
1743 t_rp_ns = max(t_rp_ns, spd_read(iic0_dimm_addr[dimm_num], 27) >> 2);
1744 t_ras_ns = max(t_ras_ns, spd_read(iic0_dimm_addr[dimm_num], 30));
1745 t_rc_ns = max(t_rc_ns, spd_read(iic0_dimm_addr[dimm_num], 41));
1746 t_rfc_ns = max(t_rfc_ns, spd_read(iic0_dimm_addr[dimm_num], 42));
1747 }
1748 }
1749
1750 /*------------------------------------------------------------------
1751 * Set the SDRAM Timing Reg 1, SDRAM_TR1
1752 *-----------------------------------------------------------------*/
1753 mfsdram(SDRAM_SDTR1, sdtr1);
1754 sdtr1 &= ~(SDRAM_SDTR1_LDOF_MASK | SDRAM_SDTR1_RTW_MASK |
1755 SDRAM_SDTR1_WTWO_MASK | SDRAM_SDTR1_RTRO_MASK);
1756
1757 /* default values */
1758 sdtr1 |= SDRAM_SDTR1_LDOF_2_CLK;
1759 sdtr1 |= SDRAM_SDTR1_RTW_2_CLK;
1760
1761 /* normal operations */
1762 sdtr1 |= SDRAM_SDTR1_WTWO_0_CLK;
1763 sdtr1 |= SDRAM_SDTR1_RTRO_1_CLK;
1764
1765 mtsdram(SDRAM_SDTR1, sdtr1);
1766
1767 /*------------------------------------------------------------------
1768 * Set the SDRAM Timing Reg 2, SDRAM_TR2
1769 *-----------------------------------------------------------------*/
1770 mfsdram(SDRAM_SDTR2, sdtr2);
1771 sdtr2 &= ~(SDRAM_SDTR2_RCD_MASK | SDRAM_SDTR2_WTR_MASK |
1772 SDRAM_SDTR2_XSNR_MASK | SDRAM_SDTR2_WPC_MASK |
1773 SDRAM_SDTR2_RPC_MASK | SDRAM_SDTR2_RP_MASK |
1774 SDRAM_SDTR2_RRD_MASK);
1775
1776 /*
1777 * convert t_rcd from nanoseconds to ddr clocks
1778 * round up if necessary
1779 */
1780 t_rcd_clk = MULDIV64(sdram_freq, t_rcd_ns, ONE_BILLION);
1781 ddr_check = MULDIV64(ONE_BILLION, t_rcd_clk, t_rcd_ns);
1782 if (sdram_freq != ddr_check)
1783 t_rcd_clk++;
1784
1785 switch (t_rcd_clk) {
1786 case 0:
1787 case 1:
1788 sdtr2 |= SDRAM_SDTR2_RCD_1_CLK;
1789 break;
1790 case 2:
1791 sdtr2 |= SDRAM_SDTR2_RCD_2_CLK;
1792 break;
1793 case 3:
1794 sdtr2 |= SDRAM_SDTR2_RCD_3_CLK;
1795 break;
1796 case 4:
1797 sdtr2 |= SDRAM_SDTR2_RCD_4_CLK;
1798 break;
1799 default:
1800 sdtr2 |= SDRAM_SDTR2_RCD_5_CLK;
1801 break;
1802 }
1803
1804 if (sdram_ddr1 == TRUE) { /* DDR1 */
1805 if (sdram_freq < 200000000) {
1806 sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
1807 sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
1808 sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
1809 } else {
1810 sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
1811 sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
1812 sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
1813 }
1814 } else { /* DDR2 */
1815 /* loop through all the DIMM slots on the board */
1816 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1817 /* If a dimm is installed in a particular slot ... */
1818 if (dimm_populated[dimm_num] != SDRAM_NONE) {
1819 t_wpc_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
1820 t_wtr_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 37) >> 2);
1821 t_rpc_ns = max(t_rpc_ns, spd_read(iic0_dimm_addr[dimm_num], 38) >> 2);
1822 }
1823 }
1824
1825 /*
1826 * convert from nanoseconds to ddr clocks
1827 * round up if necessary
1828 */
1829 t_wpc_clk = MULDIV64(sdram_freq, t_wpc_ns, ONE_BILLION);
1830 ddr_check = MULDIV64(ONE_BILLION, t_wpc_clk, t_wpc_ns);
1831 if (sdram_freq != ddr_check)
1832 t_wpc_clk++;
1833
1834 switch (t_wpc_clk) {
1835 case 0:
1836 case 1:
1837 case 2:
1838 sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
1839 break;
1840 case 3:
1841 sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
1842 break;
1843 case 4:
1844 sdtr2 |= SDRAM_SDTR2_WPC_4_CLK;
1845 break;
1846 case 5:
1847 sdtr2 |= SDRAM_SDTR2_WPC_5_CLK;
1848 break;
1849 default:
1850 sdtr2 |= SDRAM_SDTR2_WPC_6_CLK;
1851 break;
1852 }
1853
1854 /*
1855 * convert from nanoseconds to ddr clocks
1856 * round up if necessary
1857 */
1858 t_wtr_clk = MULDIV64(sdram_freq, t_wtr_ns, ONE_BILLION);
1859 ddr_check = MULDIV64(ONE_BILLION, t_wtr_clk, t_wtr_ns);
1860 if (sdram_freq != ddr_check)
1861 t_wtr_clk++;
1862
1863 switch (t_wtr_clk) {
1864 case 0:
1865 case 1:
1866 sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
1867 break;
1868 case 2:
1869 sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
1870 break;
1871 case 3:
1872 sdtr2 |= SDRAM_SDTR2_WTR_3_CLK;
1873 break;
1874 default:
1875 sdtr2 |= SDRAM_SDTR2_WTR_4_CLK;
1876 break;
1877 }
1878
1879 /*
1880 * convert from nanoseconds to ddr clocks
1881 * round up if necessary
1882 */
1883 t_rpc_clk = MULDIV64(sdram_freq, t_rpc_ns, ONE_BILLION);
1884 ddr_check = MULDIV64(ONE_BILLION, t_rpc_clk, t_rpc_ns);
1885 if (sdram_freq != ddr_check)
1886 t_rpc_clk++;
1887
1888 switch (t_rpc_clk) {
1889 case 0:
1890 case 1:
1891 case 2:
1892 sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
1893 break;
1894 case 3:
1895 sdtr2 |= SDRAM_SDTR2_RPC_3_CLK;
1896 break;
1897 default:
1898 sdtr2 |= SDRAM_SDTR2_RPC_4_CLK;
1899 break;
1900 }
1901 }
1902
1903 /* default value */
1904 sdtr2 |= SDRAM_SDTR2_XSNR_16_CLK;
1905
1906 /*
1907 * convert t_rrd from nanoseconds to ddr clocks
1908 * round up if necessary
1909 */
1910 t_rrd_clk = MULDIV64(sdram_freq, t_rrd_ns, ONE_BILLION);
1911 ddr_check = MULDIV64(ONE_BILLION, t_rrd_clk, t_rrd_ns);
1912 if (sdram_freq != ddr_check)
1913 t_rrd_clk++;
1914
1915 if (t_rrd_clk == 3)
1916 sdtr2 |= SDRAM_SDTR2_RRD_3_CLK;
1917 else
1918 sdtr2 |= SDRAM_SDTR2_RRD_2_CLK;
1919
1920 /*
1921 * convert t_rp from nanoseconds to ddr clocks
1922 * round up if necessary
1923 */
1924 t_rp_clk = MULDIV64(sdram_freq, t_rp_ns, ONE_BILLION);
1925 ddr_check = MULDIV64(ONE_BILLION, t_rp_clk, t_rp_ns);
1926 if (sdram_freq != ddr_check)
1927 t_rp_clk++;
1928
1929 switch (t_rp_clk) {
1930 case 0:
1931 case 1:
1932 case 2:
1933 case 3:
1934 sdtr2 |= SDRAM_SDTR2_RP_3_CLK;
1935 break;
1936 case 4:
1937 sdtr2 |= SDRAM_SDTR2_RP_4_CLK;
1938 break;
1939 case 5:
1940 sdtr2 |= SDRAM_SDTR2_RP_5_CLK;
1941 break;
1942 case 6:
1943 sdtr2 |= SDRAM_SDTR2_RP_6_CLK;
1944 break;
1945 default:
1946 sdtr2 |= SDRAM_SDTR2_RP_7_CLK;
1947 break;
1948 }
1949
1950 mtsdram(SDRAM_SDTR2, sdtr2);
1951
1952 /*------------------------------------------------------------------
1953 * Set the SDRAM Timing Reg 3, SDRAM_TR3
1954 *-----------------------------------------------------------------*/
1955 mfsdram(SDRAM_SDTR3, sdtr3);
1956 sdtr3 &= ~(SDRAM_SDTR3_RAS_MASK | SDRAM_SDTR3_RC_MASK |
1957 SDRAM_SDTR3_XCS_MASK | SDRAM_SDTR3_RFC_MASK);
1958
1959 /*
1960 * convert t_ras from nanoseconds to ddr clocks
1961 * round up if necessary
1962 */
1963 t_ras_clk = MULDIV64(sdram_freq, t_ras_ns, ONE_BILLION);
1964 ddr_check = MULDIV64(ONE_BILLION, t_ras_clk, t_ras_ns);
1965 if (sdram_freq != ddr_check)
1966 t_ras_clk++;
1967
1968 sdtr3 |= SDRAM_SDTR3_RAS_ENCODE(t_ras_clk);
1969
1970 /*
1971 * convert t_rc from nanoseconds to ddr clocks
1972 * round up if necessary
1973 */
1974 t_rc_clk = MULDIV64(sdram_freq, t_rc_ns, ONE_BILLION);
1975 ddr_check = MULDIV64(ONE_BILLION, t_rc_clk, t_rc_ns);
1976 if (sdram_freq != ddr_check)
1977 t_rc_clk++;
1978
1979 sdtr3 |= SDRAM_SDTR3_RC_ENCODE(t_rc_clk);
1980
1981 /* default xcs value */
1982 sdtr3 |= SDRAM_SDTR3_XCS;
1983
1984 /*
1985 * convert t_rfc from nanoseconds to ddr clocks
1986 * round up if necessary
1987 */
1988 t_rfc_clk = MULDIV64(sdram_freq, t_rfc_ns, ONE_BILLION);
1989 ddr_check = MULDIV64(ONE_BILLION, t_rfc_clk, t_rfc_ns);
1990 if (sdram_freq != ddr_check)
1991 t_rfc_clk++;
1992
1993 sdtr3 |= SDRAM_SDTR3_RFC_ENCODE(t_rfc_clk);
1994
1995 mtsdram(SDRAM_SDTR3, sdtr3);
1996}
1997
1998/*-----------------------------------------------------------------------------+
1999 * program_bxcf.
2000 *-----------------------------------------------------------------------------*/
2001static void program_bxcf(unsigned long *dimm_populated,
2002 unsigned char *iic0_dimm_addr,
2003 unsigned long num_dimm_banks)
2004{
2005 unsigned long dimm_num;
2006 unsigned long num_col_addr;
2007 unsigned long num_ranks;
2008 unsigned long num_banks;
2009 unsigned long mode;
2010 unsigned long ind_rank;
2011 unsigned long ind;
2012 unsigned long ind_bank;
2013 unsigned long bank_0_populated;
2014
2015 /*------------------------------------------------------------------
2016 * Set the BxCF regs. First, wipe out the bank config registers.
2017 *-----------------------------------------------------------------*/
2018 mtdcr(SDRAMC_CFGADDR, SDRAM_MB0CF);
2019 mtdcr(SDRAMC_CFGDATA, 0x00000000);
2020 mtdcr(SDRAMC_CFGADDR, SDRAM_MB1CF);
2021 mtdcr(SDRAMC_CFGDATA, 0x00000000);
2022 mtdcr(SDRAMC_CFGADDR, SDRAM_MB2CF);
2023 mtdcr(SDRAMC_CFGDATA, 0x00000000);
2024 mtdcr(SDRAMC_CFGADDR, SDRAM_MB3CF);
2025 mtdcr(SDRAMC_CFGDATA, 0x00000000);
2026
2027 mode = SDRAM_BXCF_M_BE_ENABLE;
2028
2029 bank_0_populated = 0;
2030
2031 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
2032 if (dimm_populated[dimm_num] != SDRAM_NONE) {
2033 num_col_addr = spd_read(iic0_dimm_addr[dimm_num], 4);
2034 num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
2035 if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
2036 num_ranks = (num_ranks & 0x0F) +1;
2037 else
2038 num_ranks = num_ranks & 0x0F;
2039
2040 num_banks = spd_read(iic0_dimm_addr[dimm_num], 17);
2041
2042 for (ind_bank = 0; ind_bank < 2; ind_bank++) {
2043 if (num_banks == 4)
2044 ind = 0;
2045 else
2046 ind = 5;
2047 switch (num_col_addr) {
2048 case 0x08:
2049 mode |= (SDRAM_BXCF_M_AM_0 + ind);
2050 break;
2051 case 0x09:
2052 mode |= (SDRAM_BXCF_M_AM_1 + ind);
2053 break;
2054 case 0x0A:
2055 mode |= (SDRAM_BXCF_M_AM_2 + ind);
2056 break;
2057 case 0x0B:
2058 mode |= (SDRAM_BXCF_M_AM_3 + ind);
2059 break;
2060 case 0x0C:
2061 mode |= (SDRAM_BXCF_M_AM_4 + ind);
2062 break;
2063 default:
2064 printf("DDR-SDRAM: DIMM %d BxCF configuration.\n",
2065 (unsigned int)dimm_num);
2066 printf("ERROR: Unsupported value for number of "
2067 "column addresses: %d.\n", (unsigned int)num_col_addr);
2068 printf("Replace the DIMM module with a supported DIMM.\n\n");
2069 hang();
2070 }
2071 }
2072
2073 if ((dimm_populated[dimm_num] != SDRAM_NONE)&& (dimm_num ==1))
2074 bank_0_populated = 1;
2075
2076 for (ind_rank = 0; ind_rank < num_ranks; ind_rank++) {
2077 mtdcr(SDRAMC_CFGADDR, SDRAM_MB0CF + ((dimm_num + bank_0_populated + ind_rank) << 2));
2078 mtdcr(SDRAMC_CFGDATA, mode);
2079 }
2080 }
2081 }
2082}
2083
2084/*------------------------------------------------------------------
2085 * program memory queue.
2086 *-----------------------------------------------------------------*/
2087static void program_memory_queue(unsigned long *dimm_populated,
2088 unsigned char *iic0_dimm_addr,
2089 unsigned long num_dimm_banks)
2090{
2091 unsigned long dimm_num;
2092 unsigned long rank_base_addr;
2093 unsigned long rank_reg;
2094 unsigned long rank_size_bytes;
2095 unsigned long rank_size_id;
2096 unsigned long num_ranks;
2097 unsigned long baseadd_size;
2098 unsigned long i;
2099 unsigned long bank_0_populated = 0;
2100
2101 /*------------------------------------------------------------------
2102 * Reset the rank_base_address.
2103 *-----------------------------------------------------------------*/
2104 rank_reg = SDRAM_R0BAS;
2105
2106 rank_base_addr = 0x00000000;
2107
2108 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
2109 if (dimm_populated[dimm_num] != SDRAM_NONE) {
2110 num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
2111 if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
2112 num_ranks = (num_ranks & 0x0F) + 1;
2113 else
2114 num_ranks = num_ranks & 0x0F;
2115
2116 rank_size_id = spd_read(iic0_dimm_addr[dimm_num], 31);
2117
2118 /*------------------------------------------------------------------
2119 * Set the sizes
2120 *-----------------------------------------------------------------*/
2121 baseadd_size = 0;
Stefan Roesedf294492007-03-08 10:06:09 +01002122 rank_size_bytes = 4 * 1024 * 1024 * rank_size_id;
Stefan Roese4037ed32007-02-20 10:43:34 +01002123 switch (rank_size_id) {
2124 case 0x02:
2125 baseadd_size |= SDRAM_RXBAS_SDSZ_8;
2126 break;
2127 case 0x04:
2128 baseadd_size |= SDRAM_RXBAS_SDSZ_16;
2129 break;
2130 case 0x08:
2131 baseadd_size |= SDRAM_RXBAS_SDSZ_32;
2132 break;
2133 case 0x10:
2134 baseadd_size |= SDRAM_RXBAS_SDSZ_64;
2135 break;
2136 case 0x20:
2137 baseadd_size |= SDRAM_RXBAS_SDSZ_128;
2138 break;
2139 case 0x40:
2140 baseadd_size |= SDRAM_RXBAS_SDSZ_256;
2141 break;
2142 case 0x80:
2143 baseadd_size |= SDRAM_RXBAS_SDSZ_512;
2144 break;
2145 default:
2146 printf("DDR-SDRAM: DIMM %d memory queue configuration.\n",
2147 (unsigned int)dimm_num);
2148 printf("ERROR: Unsupported value for the banksize: %d.\n",
2149 (unsigned int)rank_size_id);
2150 printf("Replace the DIMM module with a supported DIMM.\n\n");
2151 hang();
2152 }
2153
2154 if ((dimm_populated[dimm_num] != SDRAM_NONE) && (dimm_num == 1))
2155 bank_0_populated = 1;
2156
2157 for (i = 0; i < num_ranks; i++) {
2158 mtdcr_any(rank_reg+i+dimm_num+bank_0_populated,
Stefan Roesedf294492007-03-08 10:06:09 +01002159 (SDRAM_RXBAS_SDBA_ENCODE(rank_base_addr) |
2160 baseadd_size));
Stefan Roese4037ed32007-02-20 10:43:34 +01002161 rank_base_addr += rank_size_bytes;
2162 }
2163 }
2164 }
2165}
2166
2167/*-----------------------------------------------------------------------------+
2168 * is_ecc_enabled.
2169 *-----------------------------------------------------------------------------*/
2170static unsigned long is_ecc_enabled(void)
2171{
2172 unsigned long dimm_num;
2173 unsigned long ecc;
2174 unsigned long val;
2175
2176 ecc = 0;
2177 /* loop through all the DIMM slots on the board */
2178 for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
2179 mfsdram(SDRAM_MCOPT1, val);
2180 ecc = max(ecc, SDRAM_MCOPT1_MCHK_CHK_DECODE(val));
2181 }
2182
Stefan Roesedf294492007-03-08 10:06:09 +01002183 return ecc;
Stefan Roese4037ed32007-02-20 10:43:34 +01002184}
2185
Stefan Roese94f54702007-03-31 08:46:08 +02002186static void blank_string(int size)
2187{
2188 int i;
2189
2190 for (i=0; i<size; i++)
2191 putc('\b');
2192 for (i=0; i<size; i++)
2193 putc(' ');
2194 for (i=0; i<size; i++)
2195 putc('\b');
2196}
2197
Stefan Roesedf294492007-03-08 10:06:09 +01002198#ifdef CONFIG_DDR_ECC
Stefan Roese4037ed32007-02-20 10:43:34 +01002199/*-----------------------------------------------------------------------------+
2200 * program_ecc.
2201 *-----------------------------------------------------------------------------*/
2202static void program_ecc(unsigned long *dimm_populated,
2203 unsigned char *iic0_dimm_addr,
Stefan Roeseba58e4c2007-03-01 21:11:36 +01002204 unsigned long num_dimm_banks,
2205 unsigned long tlb_word2_i_value)
Stefan Roese4037ed32007-02-20 10:43:34 +01002206{
2207 unsigned long mcopt1;
2208 unsigned long mcopt2;
2209 unsigned long mcstat;
2210 unsigned long dimm_num;
2211 unsigned long ecc;
2212
2213 ecc = 0;
2214 /* loop through all the DIMM slots on the board */
2215 for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
2216 /* If a dimm is installed in a particular slot ... */
2217 if (dimm_populated[dimm_num] != SDRAM_NONE)
2218 ecc = max(ecc, spd_read(iic0_dimm_addr[dimm_num], 11));
2219 }
2220 if (ecc == 0)
2221 return;
2222
2223 mfsdram(SDRAM_MCOPT1, mcopt1);
2224 mfsdram(SDRAM_MCOPT2, mcopt2);
2225
2226 if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
2227 /* DDR controller must be enabled and not in self-refresh. */
2228 mfsdram(SDRAM_MCSTAT, mcstat);
2229 if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
2230 && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
2231 && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
2232 == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
2233
Stefan Roeseba58e4c2007-03-01 21:11:36 +01002234 program_ecc_addr(0, sdram_memsize(), tlb_word2_i_value);
Stefan Roese4037ed32007-02-20 10:43:34 +01002235 }
2236 }
2237
2238 return;
2239}
2240
Stefan Roeseba58e4c2007-03-01 21:11:36 +01002241#ifdef CONFIG_ECC_ERROR_RESET
2242/*
2243 * Check for ECC errors and reset board upon any error here
2244 *
2245 * On the Katmai 440SPe eval board, from time to time, the first
2246 * lword write access after DDR2 initializazion with ECC checking
2247 * enabled, leads to an ECC error. I couldn't find a configuration
2248 * without this happening. On my board with the current setup it
2249 * happens about 1 from 10 times.
2250 *
2251 * The ECC modules used for testing are:
2252 * - Kingston ValueRAM KVR667D2E5/512 (tested with 1 and 2 DIMM's)
2253 *
2254 * This has to get fixed for the Katmai and tested for the other
2255 * board (440SP/440SPe) that will eventually use this code in the
2256 * future.
2257 *
2258 * 2007-03-01, sr
2259 */
2260static void check_ecc(void)
2261{
2262 u32 val;
2263
2264 mfsdram(SDRAM_ECCCR, val);
2265 if (val != 0) {
2266 printf("\nECC error: MCIF0_ECCES=%08lx MQ0_ESL=%08lx address=%08lx\n",
2267 val, mfdcr(0x4c), mfdcr(0x4e));
2268 printf("ECC error occured, resetting board...\n");
2269 do_reset(NULL, 0, 0, NULL);
2270 }
2271}
2272#endif
2273
Stefan Roesedf294492007-03-08 10:06:09 +01002274static void wait_ddr_idle(void)
2275{
2276 u32 val;
2277
2278 do {
2279 mfsdram(SDRAM_MCSTAT, val);
2280 } while ((val & SDRAM_MCSTAT_IDLE_MASK) == SDRAM_MCSTAT_IDLE_NOT);
2281}
2282
Stefan Roese4037ed32007-02-20 10:43:34 +01002283/*-----------------------------------------------------------------------------+
2284 * program_ecc_addr.
2285 *-----------------------------------------------------------------------------*/
2286static void program_ecc_addr(unsigned long start_address,
Stefan Roeseba58e4c2007-03-01 21:11:36 +01002287 unsigned long num_bytes,
2288 unsigned long tlb_word2_i_value)
Stefan Roese4037ed32007-02-20 10:43:34 +01002289{
2290 unsigned long current_address;
2291 unsigned long end_address;
2292 unsigned long address_increment;
2293 unsigned long mcopt1;
Stefan Roese94f54702007-03-31 08:46:08 +02002294 char str[] = "ECC generation -";
2295 char slash[] = "\\|/-\\|/-";
2296 int loop = 0;
2297 int loopi = 0;
Stefan Roese4037ed32007-02-20 10:43:34 +01002298
2299 current_address = start_address;
2300 mfsdram(SDRAM_MCOPT1, mcopt1);
2301 if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
2302 mtsdram(SDRAM_MCOPT1,
2303 (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_GEN);
2304 sync();
2305 eieio();
2306 wait_ddr_idle();
2307
Stefan Roeseba58e4c2007-03-01 21:11:36 +01002308 puts(str);
2309 if (tlb_word2_i_value == TLB_WORD2_I_ENABLE) {
2310 /* ECC bit set method for non-cached memory */
2311 if ((mcopt1 & SDRAM_MCOPT1_DMWD_MASK) == SDRAM_MCOPT1_DMWD_32)
2312 address_increment = 4;
2313 else
2314 address_increment = 8;
2315 end_address = current_address + num_bytes;
Stefan Roese4037ed32007-02-20 10:43:34 +01002316
Stefan Roeseba58e4c2007-03-01 21:11:36 +01002317 while (current_address < end_address) {
2318 *((unsigned long *)current_address) = 0x00000000;
2319 current_address += address_increment;
Stefan Roese94f54702007-03-31 08:46:08 +02002320
2321 if ((loop++ % (2 << 20)) == 0) {
2322 putc('\b');
2323 putc(slash[loopi++ % 8]);
2324 }
Stefan Roeseba58e4c2007-03-01 21:11:36 +01002325 }
Stefan Roese94f54702007-03-31 08:46:08 +02002326
Stefan Roeseba58e4c2007-03-01 21:11:36 +01002327 } else {
2328 /* ECC bit set method for cached memory */
2329 dcbz_area(start_address, num_bytes);
2330 dflush();
Stefan Roese4037ed32007-02-20 10:43:34 +01002331 }
Stefan Roese94f54702007-03-31 08:46:08 +02002332
2333 blank_string(strlen(str));
Stefan Roeseba58e4c2007-03-01 21:11:36 +01002334
Stefan Roese4037ed32007-02-20 10:43:34 +01002335 sync();
2336 eieio();
2337 wait_ddr_idle();
2338
Stefan Roeseba58e4c2007-03-01 21:11:36 +01002339 /* clear ECC error repoting registers */
2340 mtsdram(SDRAM_ECCCR, 0xffffffff);
2341 mtdcr(0x4c, 0xffffffff);
2342
Stefan Roese4037ed32007-02-20 10:43:34 +01002343 mtsdram(SDRAM_MCOPT1,
Stefan Roeseba58e4c2007-03-01 21:11:36 +01002344 (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_CHK_REP);
Stefan Roese4037ed32007-02-20 10:43:34 +01002345 sync();
2346 eieio();
2347 wait_ddr_idle();
Stefan Roeseba58e4c2007-03-01 21:11:36 +01002348
2349#ifdef CONFIG_ECC_ERROR_RESET
2350 /*
2351 * One write to 0 is enough to trigger this ECC error
2352 * (see description above)
2353 */
2354 out_be32(0, 0x12345678);
2355 check_ecc();
2356#endif
Stefan Roese4037ed32007-02-20 10:43:34 +01002357 }
2358}
Stefan Roesedf294492007-03-08 10:06:09 +01002359#endif
Stefan Roese4037ed32007-02-20 10:43:34 +01002360
2361/*-----------------------------------------------------------------------------+
2362 * program_DQS_calibration.
2363 *-----------------------------------------------------------------------------*/
2364static void program_DQS_calibration(unsigned long *dimm_populated,
2365 unsigned char *iic0_dimm_addr,
2366 unsigned long num_dimm_banks)
2367{
2368 unsigned long val;
2369
2370#ifdef HARD_CODED_DQS /* calibration test with hardvalues */
2371 mtsdram(SDRAM_RQDC, 0x80000037);
2372 mtsdram(SDRAM_RDCC, 0x40000000);
2373 mtsdram(SDRAM_RFDC, 0x000001DF);
2374
2375 test();
2376#else
2377 /*------------------------------------------------------------------
2378 * Program RDCC register
2379 * Read sample cycle auto-update enable
2380 *-----------------------------------------------------------------*/
2381
2382 /*
2383 * Modified for the Katmai platform: with some DIMMs, the DDR2
2384 * controller automatically selects the T2 read cycle, but this
2385 * proves unreliable. Go ahead and force the DDR2 controller
2386 * to use the T4 sample and disable the automatic update of the
2387 * RDSS field.
2388 */
2389 mfsdram(SDRAM_RDCC, val);
2390 mtsdram(SDRAM_RDCC,
2391 (val & ~(SDRAM_RDCC_RDSS_MASK | SDRAM_RDCC_RSAE_MASK))
2392 | (SDRAM_RDCC_RDSS_T4 | SDRAM_RDCC_RSAE_DISABLE));
2393
2394 /*------------------------------------------------------------------
2395 * Program RQDC register
2396 * Internal DQS delay mechanism enable
2397 *-----------------------------------------------------------------*/
2398 mtsdram(SDRAM_RQDC, (SDRAM_RQDC_RQDE_ENABLE|SDRAM_RQDC_RQFD_ENCODE(0x38)));
2399
2400 /*------------------------------------------------------------------
2401 * Program RFDC register
2402 * Set Feedback Fractional Oversample
2403 * Auto-detect read sample cycle enable
2404 *-----------------------------------------------------------------*/
2405 mfsdram(SDRAM_RFDC, val);
2406 mtsdram(SDRAM_RFDC,
2407 (val & ~(SDRAM_RFDC_ARSE_MASK | SDRAM_RFDC_RFOS_MASK |
2408 SDRAM_RFDC_RFFD_MASK))
2409 | (SDRAM_RFDC_ARSE_ENABLE | SDRAM_RFDC_RFOS_ENCODE(0) |
2410 SDRAM_RFDC_RFFD_ENCODE(0)));
2411
2412 DQS_calibration_process();
2413#endif
2414}
2415
Stefan Roese94f54702007-03-31 08:46:08 +02002416static int short_mem_test(void)
Stefan Roese4037ed32007-02-20 10:43:34 +01002417{
2418 u32 *membase;
2419 u32 bxcr_num;
2420 u32 bxcf;
2421 int i;
2422 int j;
2423 u32 test[NUMMEMTESTS][NUMMEMWORDS] = {
2424 {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
2425 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
2426 {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
2427 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
2428 {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
2429 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
2430 {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
2431 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
2432 {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
2433 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
2434 {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
2435 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
2436 {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
2437 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
2438 {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
2439 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
Stefan Roese94f54702007-03-31 08:46:08 +02002440 int l;
Stefan Roese4037ed32007-02-20 10:43:34 +01002441
2442 for (bxcr_num = 0; bxcr_num < MAXBXCF; bxcr_num++) {
2443 mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf);
2444
2445 /* Banks enabled */
2446 if ((bxcf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
Stefan Roese4037ed32007-02-20 10:43:34 +01002447 /* Bank is enabled */
Stefan Roese4037ed32007-02-20 10:43:34 +01002448
2449 /*------------------------------------------------------------------
2450 * Run the short memory test.
2451 *-----------------------------------------------------------------*/
Stefan Roese94f54702007-03-31 08:46:08 +02002452 membase = (u32 *)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+bxcr_num)));
2453
Stefan Roese4037ed32007-02-20 10:43:34 +01002454 for (i = 0; i < NUMMEMTESTS; i++) {
2455 for (j = 0; j < NUMMEMWORDS; j++) {
2456 membase[j] = test[i][j];
2457 ppcDcbf((u32)&(membase[j]));
2458 }
2459 sync();
Stefan Roese94f54702007-03-31 08:46:08 +02002460 for (l=0; l<NUMLOOPS; l++) {
2461 for (j = 0; j < NUMMEMWORDS; j++) {
2462 if (membase[j] != test[i][j]) {
2463 ppcDcbf((u32)&(membase[j]));
2464 return 0;
2465 }
Stefan Roese4037ed32007-02-20 10:43:34 +01002466 ppcDcbf((u32)&(membase[j]));
Stefan Roese4037ed32007-02-20 10:43:34 +01002467 }
Stefan Roese94f54702007-03-31 08:46:08 +02002468 sync();
Stefan Roese4037ed32007-02-20 10:43:34 +01002469 }
Stefan Roese4037ed32007-02-20 10:43:34 +01002470 }
Stefan Roese4037ed32007-02-20 10:43:34 +01002471 } /* if bank enabled */
2472 } /* for bxcf_num */
2473
Stefan Roese94f54702007-03-31 08:46:08 +02002474 return 1;
Stefan Roese4037ed32007-02-20 10:43:34 +01002475}
2476
2477#ifndef HARD_CODED_DQS
2478/*-----------------------------------------------------------------------------+
2479 * DQS_calibration_process.
2480 *-----------------------------------------------------------------------------*/
2481static void DQS_calibration_process(void)
2482{
Stefan Roese4037ed32007-02-20 10:43:34 +01002483 unsigned long rfdc_reg;
2484 unsigned long rffd;
2485 unsigned long rqdc_reg;
2486 unsigned long rqfd;
Stefan Roese4037ed32007-02-20 10:43:34 +01002487 unsigned long val;
2488 long rqfd_average;
2489 long rffd_average;
2490 long max_start;
2491 long min_end;
2492 unsigned long begin_rqfd[MAXRANKS];
2493 unsigned long begin_rffd[MAXRANKS];
2494 unsigned long end_rqfd[MAXRANKS];
2495 unsigned long end_rffd[MAXRANKS];
2496 char window_found;
2497 unsigned long dlycal;
2498 unsigned long dly_val;
2499 unsigned long max_pass_length;
2500 unsigned long current_pass_length;
2501 unsigned long current_fail_length;
2502 unsigned long current_start;
2503 long max_end;
2504 unsigned char fail_found;
2505 unsigned char pass_found;
Stefan Roese94f54702007-03-31 08:46:08 +02002506 u32 rqfd_start;
2507 char str[] = "Auto calibration -";
2508 char slash[] = "\\|/-\\|/-";
2509 int loopi = 0;
Stefan Roese4037ed32007-02-20 10:43:34 +01002510
2511 /*------------------------------------------------------------------
2512 * Test to determine the best read clock delay tuning bits.
2513 *
2514 * Before the DDR controller can be used, the read clock delay needs to be
2515 * set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
2516 * This value cannot be hardcoded into the program because it changes
2517 * depending on the board's setup and environment.
2518 * To do this, all delay values are tested to see if they
2519 * work or not. By doing this, you get groups of fails with groups of
2520 * passing values. The idea is to find the start and end of a passing
2521 * window and take the center of it to use as the read clock delay.
2522 *
2523 * A failure has to be seen first so that when we hit a pass, we know
2524 * that it is truely the start of the window. If we get passing values
2525 * to start off with, we don't know if we are at the start of the window.
2526 *
2527 * The code assumes that a failure will always be found.
2528 * If a failure is not found, there is no easy way to get the middle
2529 * of the passing window. I guess we can pretty much pick any value
2530 * but some values will be better than others. Since the lowest speed
2531 * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
2532 * from experimentation it is safe to say you will always have a failure.
2533 *-----------------------------------------------------------------*/
Stefan Roese94f54702007-03-31 08:46:08 +02002534
2535 /* first fix RQDC[RQFD] to an average of 80 degre phase shift to find RFDC[RFFD] */
2536 rqfd_start = 64; /* test-only: don't know if this is the _best_ start value */
2537
2538 puts(str);
2539
2540calibration_loop:
2541 mfsdram(SDRAM_RQDC, rqdc_reg);
2542 mtsdram(SDRAM_RQDC, (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
2543 SDRAM_RQDC_RQFD_ENCODE(rqfd_start));
Stefan Roese4037ed32007-02-20 10:43:34 +01002544
2545 max_start = 0;
2546 min_end = 0;
2547 begin_rqfd[0] = 0;
2548 begin_rffd[0] = 0;
2549 begin_rqfd[1] = 0;
2550 begin_rffd[1] = 0;
2551 end_rqfd[0] = 0;
2552 end_rffd[0] = 0;
2553 end_rqfd[1] = 0;
2554 end_rffd[1] = 0;
2555 window_found = FALSE;
2556
2557 max_pass_length = 0;
2558 max_start = 0;
2559 max_end = 0;
2560 current_pass_length = 0;
2561 current_fail_length = 0;
2562 current_start = 0;
2563 window_found = FALSE;
2564 fail_found = FALSE;
2565 pass_found = FALSE;
2566
Stefan Roese4037ed32007-02-20 10:43:34 +01002567 /*
2568 * get the delay line calibration register value
2569 */
2570 mfsdram(SDRAM_DLCR, dlycal);
2571 dly_val = SDRAM_DLYCAL_DLCV_DECODE(dlycal) << 2;
2572
2573 for (rffd = 0; rffd <= SDRAM_RFDC_RFFD_MAX; rffd++) {
2574 mfsdram(SDRAM_RFDC, rfdc_reg);
2575 rfdc_reg &= ~(SDRAM_RFDC_RFFD_MASK);
2576
2577 /*------------------------------------------------------------------
2578 * Set the timing reg for the test.
2579 *-----------------------------------------------------------------*/
2580 mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd));
2581
Stefan Roese4037ed32007-02-20 10:43:34 +01002582 /*------------------------------------------------------------------
2583 * See if the rffd value passed.
2584 *-----------------------------------------------------------------*/
Stefan Roese94f54702007-03-31 08:46:08 +02002585 if (short_mem_test()) {
Stefan Roese4037ed32007-02-20 10:43:34 +01002586 if (fail_found == TRUE) {
2587 pass_found = TRUE;
2588 if (current_pass_length == 0)
2589 current_start = rffd;
2590
2591 current_fail_length = 0;
2592 current_pass_length++;
2593
2594 if (current_pass_length > max_pass_length) {
2595 max_pass_length = current_pass_length;
2596 max_start = current_start;
2597 max_end = rffd;
2598 }
2599 }
2600 } else {
2601 current_pass_length = 0;
2602 current_fail_length++;
2603
2604 if (current_fail_length >= (dly_val >> 2)) {
2605 if (fail_found == FALSE) {
2606 fail_found = TRUE;
2607 } else if (pass_found == TRUE) {
2608 window_found = TRUE;
2609 break;
2610 }
2611 }
2612 }
2613 } /* for rffd */
2614
Stefan Roese4037ed32007-02-20 10:43:34 +01002615 /*------------------------------------------------------------------
2616 * Set the average RFFD value
2617 *-----------------------------------------------------------------*/
2618 rffd_average = ((max_start + max_end) >> 1);
2619
2620 if (rffd_average < 0)
2621 rffd_average = 0;
2622
2623 if (rffd_average > SDRAM_RFDC_RFFD_MAX)
2624 rffd_average = SDRAM_RFDC_RFFD_MAX;
2625 /* now fix RFDC[RFFD] found and find RQDC[RQFD] */
2626 mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd_average));
2627
2628 max_pass_length = 0;
2629 max_start = 0;
2630 max_end = 0;
2631 current_pass_length = 0;
2632 current_fail_length = 0;
2633 current_start = 0;
2634 window_found = FALSE;
2635 fail_found = FALSE;
2636 pass_found = FALSE;
2637
2638 for (rqfd = 0; rqfd <= SDRAM_RQDC_RQFD_MAX; rqfd++) {
2639 mfsdram(SDRAM_RQDC, rqdc_reg);
2640 rqdc_reg &= ~(SDRAM_RQDC_RQFD_MASK);
2641
2642 /*------------------------------------------------------------------
2643 * Set the timing reg for the test.
2644 *-----------------------------------------------------------------*/
2645 mtsdram(SDRAM_RQDC, rqdc_reg | SDRAM_RQDC_RQFD_ENCODE(rqfd));
2646
Stefan Roese4037ed32007-02-20 10:43:34 +01002647 /*------------------------------------------------------------------
2648 * See if the rffd value passed.
2649 *-----------------------------------------------------------------*/
Stefan Roese94f54702007-03-31 08:46:08 +02002650 if (short_mem_test()) {
Stefan Roese4037ed32007-02-20 10:43:34 +01002651 if (fail_found == TRUE) {
2652 pass_found = TRUE;
2653 if (current_pass_length == 0)
2654 current_start = rqfd;
2655
2656 current_fail_length = 0;
2657 current_pass_length++;
2658
2659 if (current_pass_length > max_pass_length) {
2660 max_pass_length = current_pass_length;
2661 max_start = current_start;
2662 max_end = rqfd;
2663 }
2664 }
2665 } else {
2666 current_pass_length = 0;
2667 current_fail_length++;
2668
2669 if (fail_found == FALSE) {
2670 fail_found = TRUE;
2671 } else if (pass_found == TRUE) {
2672 window_found = TRUE;
2673 break;
2674 }
2675 }
2676 }
2677
Stefan Roese94f54702007-03-31 08:46:08 +02002678 rqfd_average = ((max_start + max_end) >> 1);
2679
Stefan Roese4037ed32007-02-20 10:43:34 +01002680 /*------------------------------------------------------------------
2681 * Make sure we found the valid read passing window. Halt if not
2682 *-----------------------------------------------------------------*/
2683 if (window_found == FALSE) {
Stefan Roese94f54702007-03-31 08:46:08 +02002684 if (rqfd_start < SDRAM_RQDC_RQFD_MAX) {
2685 putc('\b');
2686 putc(slash[loopi++ % 8]);
2687
2688 /* try again from with a different RQFD start value */
2689 rqfd_start++;
2690 goto calibration_loop;
2691 }
2692
2693 printf("\nERROR: Cannot determine a common read delay for the "
Stefan Roese4037ed32007-02-20 10:43:34 +01002694 "DIMM(s) installed.\n");
2695 debug("%s[%d] ERROR : \n", __FUNCTION__,__LINE__);
2696 hang();
2697 }
2698
Stefan Roese94f54702007-03-31 08:46:08 +02002699 blank_string(strlen(str));
Stefan Roese4037ed32007-02-20 10:43:34 +01002700
2701 if (rqfd_average < 0)
2702 rqfd_average = 0;
2703
2704 if (rqfd_average > SDRAM_RQDC_RQFD_MAX)
2705 rqfd_average = SDRAM_RQDC_RQFD_MAX;
2706
Stefan Roese4037ed32007-02-20 10:43:34 +01002707 mtsdram(SDRAM_RQDC,
2708 (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
2709 SDRAM_RQDC_RQFD_ENCODE(rqfd_average));
2710
2711 mfsdram(SDRAM_DLCR, val);
2712 debug("%s[%d] DLCR: 0x%08X\n", __FUNCTION__, __LINE__, val);
2713 mfsdram(SDRAM_RQDC, val);
2714 debug("%s[%d] RQDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
2715 mfsdram(SDRAM_RFDC, val);
2716 debug("%s[%d] RFDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
2717}
2718#else /* calibration test with hardvalues */
2719/*-----------------------------------------------------------------------------+
2720 * DQS_calibration_process.
2721 *-----------------------------------------------------------------------------*/
2722static void test(void)
2723{
2724 unsigned long dimm_num;
2725 unsigned long ecc_temp;
2726 unsigned long i, j;
2727 unsigned long *membase;
2728 unsigned long bxcf[MAXRANKS];
2729 unsigned long val;
2730 char window_found;
2731 char begin_found[MAXDIMMS];
2732 char end_found[MAXDIMMS];
2733 char search_end[MAXDIMMS];
2734 unsigned long test[NUMMEMTESTS][NUMMEMWORDS] = {
2735 {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
2736 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
2737 {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
2738 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
2739 {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
2740 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
2741 {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
2742 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
2743 {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
2744 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
2745 {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
2746 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
2747 {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
2748 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
2749 {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
2750 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
2751
2752 /*------------------------------------------------------------------
2753 * Test to determine the best read clock delay tuning bits.
2754 *
2755 * Before the DDR controller can be used, the read clock delay needs to be
2756 * set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
2757 * This value cannot be hardcoded into the program because it changes
2758 * depending on the board's setup and environment.
2759 * To do this, all delay values are tested to see if they
2760 * work or not. By doing this, you get groups of fails with groups of
2761 * passing values. The idea is to find the start and end of a passing
2762 * window and take the center of it to use as the read clock delay.
2763 *
2764 * A failure has to be seen first so that when we hit a pass, we know
2765 * that it is truely the start of the window. If we get passing values
2766 * to start off with, we don't know if we are at the start of the window.
2767 *
2768 * The code assumes that a failure will always be found.
2769 * If a failure is not found, there is no easy way to get the middle
2770 * of the passing window. I guess we can pretty much pick any value
2771 * but some values will be better than others. Since the lowest speed
2772 * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
2773 * from experimentation it is safe to say you will always have a failure.
2774 *-----------------------------------------------------------------*/
2775 mfsdram(SDRAM_MCOPT1, ecc_temp);
2776 ecc_temp &= SDRAM_MCOPT1_MCHK_MASK;
2777 mfsdram(SDRAM_MCOPT1, val);
2778 mtsdram(SDRAM_MCOPT1, (val & ~SDRAM_MCOPT1_MCHK_MASK) |
2779 SDRAM_MCOPT1_MCHK_NON);
2780
2781 window_found = FALSE;
2782 begin_found[0] = FALSE;
2783 end_found[0] = FALSE;
2784 search_end[0] = FALSE;
2785 begin_found[1] = FALSE;
2786 end_found[1] = FALSE;
2787 search_end[1] = FALSE;
2788
2789 for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
2790 mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf[bxcr_num]);
2791
2792 /* Banks enabled */
2793 if ((bxcf[dimm_num] & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
2794
2795 /* Bank is enabled */
2796 membase =
2797 (unsigned long*)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+dimm_num)));
2798
2799 /*------------------------------------------------------------------
2800 * Run the short memory test.
2801 *-----------------------------------------------------------------*/
2802 for (i = 0; i < NUMMEMTESTS; i++) {
2803 for (j = 0; j < NUMMEMWORDS; j++) {
2804 membase[j] = test[i][j];
2805 ppcDcbf((u32)&(membase[j]));
2806 }
2807 sync();
2808 for (j = 0; j < NUMMEMWORDS; j++) {
2809 if (membase[j] != test[i][j]) {
2810 ppcDcbf((u32)&(membase[j]));
2811 break;
2812 }
2813 ppcDcbf((u32)&(membase[j]));
2814 }
2815 sync();
2816 if (j < NUMMEMWORDS)
2817 break;
2818 }
2819
2820 /*------------------------------------------------------------------
2821 * See if the rffd value passed.
2822 *-----------------------------------------------------------------*/
2823 if (i < NUMMEMTESTS) {
2824 if ((end_found[dimm_num] == FALSE) &&
2825 (search_end[dimm_num] == TRUE)) {
2826 end_found[dimm_num] = TRUE;
2827 }
2828 if ((end_found[0] == TRUE) &&
2829 (end_found[1] == TRUE))
2830 break;
2831 } else {
2832 if (begin_found[dimm_num] == FALSE) {
2833 begin_found[dimm_num] = TRUE;
2834 search_end[dimm_num] = TRUE;
2835 }
2836 }
2837 } else {
2838 begin_found[dimm_num] = TRUE;
2839 end_found[dimm_num] = TRUE;
2840 }
2841 }
2842
2843 if ((begin_found[0] == TRUE) && (begin_found[1] == TRUE))
2844 window_found = TRUE;
2845
2846 /*------------------------------------------------------------------
2847 * Make sure we found the valid read passing window. Halt if not
2848 *-----------------------------------------------------------------*/
2849 if (window_found == FALSE) {
2850 printf("ERROR: Cannot determine a common read delay for the "
2851 "DIMM(s) installed.\n");
2852 hang();
2853 }
2854
2855 /*------------------------------------------------------------------
2856 * Restore the ECC variable to what it originally was
2857 *-----------------------------------------------------------------*/
2858 mtsdram(SDRAM_MCOPT1,
2859 (ppcMfdcr_sdram(SDRAM_MCOPT1) & ~SDRAM_MCOPT1_MCHK_MASK)
2860 | ecc_temp);
2861}
2862#endif
2863
2864#if defined(DEBUG)
2865static void ppc440sp_sdram_register_dump(void)
2866{
2867 unsigned int sdram_reg;
2868 unsigned int sdram_data;
2869 unsigned int dcr_data;
2870
2871 printf("\n Register Dump:\n");
2872 sdram_reg = SDRAM_MCSTAT;
2873 mfsdram(sdram_reg, sdram_data);
2874 printf(" SDRAM_MCSTAT = 0x%08X", sdram_data);
2875 sdram_reg = SDRAM_MCOPT1;
2876 mfsdram(sdram_reg, sdram_data);
2877 printf(" SDRAM_MCOPT1 = 0x%08X\n", sdram_data);
2878 sdram_reg = SDRAM_MCOPT2;
2879 mfsdram(sdram_reg, sdram_data);
2880 printf(" SDRAM_MCOPT2 = 0x%08X", sdram_data);
2881 sdram_reg = SDRAM_MODT0;
2882 mfsdram(sdram_reg, sdram_data);
2883 printf(" SDRAM_MODT0 = 0x%08X\n", sdram_data);
2884 sdram_reg = SDRAM_MODT1;
2885 mfsdram(sdram_reg, sdram_data);
2886 printf(" SDRAM_MODT1 = 0x%08X", sdram_data);
2887 sdram_reg = SDRAM_MODT2;
2888 mfsdram(sdram_reg, sdram_data);
2889 printf(" SDRAM_MODT2 = 0x%08X\n", sdram_data);
2890 sdram_reg = SDRAM_MODT3;
2891 mfsdram(sdram_reg, sdram_data);
2892 printf(" SDRAM_MODT3 = 0x%08X", sdram_data);
2893 sdram_reg = SDRAM_CODT;
2894 mfsdram(sdram_reg, sdram_data);
2895 printf(" SDRAM_CODT = 0x%08X\n", sdram_data);
2896 sdram_reg = SDRAM_VVPR;
2897 mfsdram(sdram_reg, sdram_data);
2898 printf(" SDRAM_VVPR = 0x%08X", sdram_data);
2899 sdram_reg = SDRAM_OPARS;
2900 mfsdram(sdram_reg, sdram_data);
2901 printf(" SDRAM_OPARS = 0x%08X\n", sdram_data);
2902 /*
2903 * OPAR2 is only used as a trigger register.
2904 * No data is contained in this register, and reading or writing
2905 * to is can cause bad things to happen (hangs). Just skip it
2906 * and report NA
2907 * sdram_reg = SDRAM_OPAR2;
2908 * mfsdram(sdram_reg, sdram_data);
2909 * printf(" SDRAM_OPAR2 = 0x%08X\n", sdram_data);
2910 */
2911 printf(" SDRAM_OPART = N/A ");
2912 sdram_reg = SDRAM_RTR;
2913 mfsdram(sdram_reg, sdram_data);
2914 printf(" SDRAM_RTR = 0x%08X\n", sdram_data);
2915 sdram_reg = SDRAM_MB0CF;
2916 mfsdram(sdram_reg, sdram_data);
2917 printf(" SDRAM_MB0CF = 0x%08X", sdram_data);
2918 sdram_reg = SDRAM_MB1CF;
2919 mfsdram(sdram_reg, sdram_data);
2920 printf(" SDRAM_MB1CF = 0x%08X\n", sdram_data);
2921 sdram_reg = SDRAM_MB2CF;
2922 mfsdram(sdram_reg, sdram_data);
2923 printf(" SDRAM_MB2CF = 0x%08X", sdram_data);
2924 sdram_reg = SDRAM_MB3CF;
2925 mfsdram(sdram_reg, sdram_data);
2926 printf(" SDRAM_MB3CF = 0x%08X\n", sdram_data);
2927 sdram_reg = SDRAM_INITPLR0;
2928 mfsdram(sdram_reg, sdram_data);
2929 printf(" SDRAM_INITPLR0 = 0x%08X", sdram_data);
2930 sdram_reg = SDRAM_INITPLR1;
2931 mfsdram(sdram_reg, sdram_data);
2932 printf(" SDRAM_INITPLR1 = 0x%08X\n", sdram_data);
2933 sdram_reg = SDRAM_INITPLR2;
2934 mfsdram(sdram_reg, sdram_data);
2935 printf(" SDRAM_INITPLR2 = 0x%08X", sdram_data);
2936 sdram_reg = SDRAM_INITPLR3;
2937 mfsdram(sdram_reg, sdram_data);
2938 printf(" SDRAM_INITPLR3 = 0x%08X\n", sdram_data);
2939 sdram_reg = SDRAM_INITPLR4;
2940 mfsdram(sdram_reg, sdram_data);
2941 printf(" SDRAM_INITPLR4 = 0x%08X", sdram_data);
2942 sdram_reg = SDRAM_INITPLR5;
2943 mfsdram(sdram_reg, sdram_data);
2944 printf(" SDRAM_INITPLR5 = 0x%08X\n", sdram_data);
2945 sdram_reg = SDRAM_INITPLR6;
2946 mfsdram(sdram_reg, sdram_data);
2947 printf(" SDRAM_INITPLR6 = 0x%08X", sdram_data);
2948 sdram_reg = SDRAM_INITPLR7;
2949 mfsdram(sdram_reg, sdram_data);
2950 printf(" SDRAM_INITPLR7 = 0x%08X\n", sdram_data);
2951 sdram_reg = SDRAM_INITPLR8;
2952 mfsdram(sdram_reg, sdram_data);
2953 printf(" SDRAM_INITPLR8 = 0x%08X", sdram_data);
2954 sdram_reg = SDRAM_INITPLR9;
2955 mfsdram(sdram_reg, sdram_data);
2956 printf(" SDRAM_INITPLR9 = 0x%08X\n", sdram_data);
2957 sdram_reg = SDRAM_INITPLR10;
2958 mfsdram(sdram_reg, sdram_data);
2959 printf(" SDRAM_INITPLR10 = 0x%08X", sdram_data);
2960 sdram_reg = SDRAM_INITPLR11;
2961 mfsdram(sdram_reg, sdram_data);
2962 printf(" SDRAM_INITPLR11 = 0x%08X\n", sdram_data);
2963 sdram_reg = SDRAM_INITPLR12;
2964 mfsdram(sdram_reg, sdram_data);
2965 printf(" SDRAM_INITPLR12 = 0x%08X", sdram_data);
2966 sdram_reg = SDRAM_INITPLR13;
2967 mfsdram(sdram_reg, sdram_data);
2968 printf(" SDRAM_INITPLR13 = 0x%08X\n", sdram_data);
2969 sdram_reg = SDRAM_INITPLR14;
2970 mfsdram(sdram_reg, sdram_data);
2971 printf(" SDRAM_INITPLR14 = 0x%08X", sdram_data);
2972 sdram_reg = SDRAM_INITPLR15;
2973 mfsdram(sdram_reg, sdram_data);
2974 printf(" SDRAM_INITPLR15 = 0x%08X\n", sdram_data);
2975 sdram_reg = SDRAM_RQDC;
2976 mfsdram(sdram_reg, sdram_data);
2977 printf(" SDRAM_RQDC = 0x%08X", sdram_data);
2978 sdram_reg = SDRAM_RFDC;
2979 mfsdram(sdram_reg, sdram_data);
2980 printf(" SDRAM_RFDC = 0x%08X\n", sdram_data);
2981 sdram_reg = SDRAM_RDCC;
2982 mfsdram(sdram_reg, sdram_data);
2983 printf(" SDRAM_RDCC = 0x%08X", sdram_data);
2984 sdram_reg = SDRAM_DLCR;
2985 mfsdram(sdram_reg, sdram_data);
2986 printf(" SDRAM_DLCR = 0x%08X\n", sdram_data);
2987 sdram_reg = SDRAM_CLKTR;
2988 mfsdram(sdram_reg, sdram_data);
2989 printf(" SDRAM_CLKTR = 0x%08X", sdram_data);
2990 sdram_reg = SDRAM_WRDTR;
2991 mfsdram(sdram_reg, sdram_data);
2992 printf(" SDRAM_WRDTR = 0x%08X\n", sdram_data);
2993 sdram_reg = SDRAM_SDTR1;
2994 mfsdram(sdram_reg, sdram_data);
2995 printf(" SDRAM_SDTR1 = 0x%08X", sdram_data);
2996 sdram_reg = SDRAM_SDTR2;
2997 mfsdram(sdram_reg, sdram_data);
2998 printf(" SDRAM_SDTR2 = 0x%08X\n", sdram_data);
2999 sdram_reg = SDRAM_SDTR3;
3000 mfsdram(sdram_reg, sdram_data);
3001 printf(" SDRAM_SDTR3 = 0x%08X", sdram_data);
3002 sdram_reg = SDRAM_MMODE;
3003 mfsdram(sdram_reg, sdram_data);
3004 printf(" SDRAM_MMODE = 0x%08X\n", sdram_data);
3005 sdram_reg = SDRAM_MEMODE;
3006 mfsdram(sdram_reg, sdram_data);
3007 printf(" SDRAM_MEMODE = 0x%08X", sdram_data);
3008 sdram_reg = SDRAM_ECCCR;
3009 mfsdram(sdram_reg, sdram_data);
3010 printf(" SDRAM_ECCCR = 0x%08X\n\n", sdram_data);
3011
3012 dcr_data = mfdcr(SDRAM_R0BAS);
3013 printf(" MQ0_B0BAS = 0x%08X", dcr_data);
3014 dcr_data = mfdcr(SDRAM_R1BAS);
3015 printf(" MQ1_B0BAS = 0x%08X\n", dcr_data);
3016 dcr_data = mfdcr(SDRAM_R2BAS);
3017 printf(" MQ2_B0BAS = 0x%08X", dcr_data);
3018 dcr_data = mfdcr(SDRAM_R3BAS);
3019 printf(" MQ3_B0BAS = 0x%08X\n", dcr_data);
3020}
3021#endif
3022#endif /* CONFIG_SPD_EEPROM */