blob: 9ed40177cb993ccb4d137c9bef58eb81f8a497e9 [file] [log] [blame]
Stefan Roese9eefe2a2009-03-19 15:35:05 +01001/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
Heiko Schocherff94bc42014-06-24 10:10:04 +02006 * SPDX-License-Identifier: GPL-2.0+
Stefan Roese9eefe2a2009-03-19 15:35:05 +01007 *
8 * Authors: Adrian Hunter
9 * Artem Bityutskiy (Битюцкий Артём)
10 */
11
12/*
13 * This file implements the budgeting sub-system which is responsible for UBIFS
14 * space management.
15 *
16 * Factors such as compression, wasted space at the ends of LEBs, space in other
17 * journal heads, the effect of updates on the index, and so on, make it
18 * impossible to accurately predict the amount of space needed. Consequently
19 * approximations are used.
20 */
21
22#include "ubifs.h"
Heiko Schocherff94bc42014-06-24 10:10:04 +020023#define __UBOOT__
24#ifndef __UBOOT__
25#include <linux/writeback.h>
26#else
27#include <linux/err.h>
28#endif
Stefan Roese9eefe2a2009-03-19 15:35:05 +010029#include <linux/math64.h>
30
Heiko Schocherff94bc42014-06-24 10:10:04 +020031/*
32 * When pessimistic budget calculations say that there is no enough space,
33 * UBIFS starts writing back dirty inodes and pages, doing garbage collection,
34 * or committing. The below constant defines maximum number of times UBIFS
35 * repeats the operations.
36 */
37#define MAX_MKSPC_RETRIES 3
38
39/*
40 * The below constant defines amount of dirty pages which should be written
41 * back at when trying to shrink the liability.
42 */
43#define NR_TO_WRITE 16
44
45#ifndef __UBOOT__
Stefan Roese9eefe2a2009-03-19 15:35:05 +010046/**
Heiko Schocherff94bc42014-06-24 10:10:04 +020047 * shrink_liability - write-back some dirty pages/inodes.
48 * @c: UBIFS file-system description object
49 * @nr_to_write: how many dirty pages to write-back
50 *
51 * This function shrinks UBIFS liability by means of writing back some amount
52 * of dirty inodes and their pages.
53 *
54 * Note, this function synchronizes even VFS inodes which are locked
55 * (@i_mutex) by the caller of the budgeting function, because write-back does
56 * not touch @i_mutex.
57 */
58static void shrink_liability(struct ubifs_info *c, int nr_to_write)
59{
60 down_read(&c->vfs_sb->s_umount);
61 writeback_inodes_sb(c->vfs_sb, WB_REASON_FS_FREE_SPACE);
62 up_read(&c->vfs_sb->s_umount);
63}
64
65/**
66 * run_gc - run garbage collector.
Stefan Roese9eefe2a2009-03-19 15:35:05 +010067 * @c: UBIFS file-system description object
68 *
Heiko Schocherff94bc42014-06-24 10:10:04 +020069 * This function runs garbage collector to make some more free space. Returns
70 * zero if a free LEB has been produced, %-EAGAIN if commit is required, and a
71 * negative error code in case of failure.
72 */
73static int run_gc(struct ubifs_info *c)
74{
75 int err, lnum;
76
77 /* Make some free space by garbage-collecting dirty space */
78 down_read(&c->commit_sem);
79 lnum = ubifs_garbage_collect(c, 1);
80 up_read(&c->commit_sem);
81 if (lnum < 0)
82 return lnum;
83
84 /* GC freed one LEB, return it to lprops */
85 dbg_budg("GC freed LEB %d", lnum);
86 err = ubifs_return_leb(c, lnum);
87 if (err)
88 return err;
89 return 0;
90}
91
92/**
93 * get_liability - calculate current liability.
94 * @c: UBIFS file-system description object
95 *
96 * This function calculates and returns current UBIFS liability, i.e. the
97 * amount of bytes UBIFS has "promised" to write to the media.
98 */
99static long long get_liability(struct ubifs_info *c)
100{
101 long long liab;
102
103 spin_lock(&c->space_lock);
104 liab = c->bi.idx_growth + c->bi.data_growth + c->bi.dd_growth;
105 spin_unlock(&c->space_lock);
106 return liab;
107}
108
109/**
110 * make_free_space - make more free space on the file-system.
111 * @c: UBIFS file-system description object
112 *
113 * This function is called when an operation cannot be budgeted because there
114 * is supposedly no free space. But in most cases there is some free space:
115 * o budgeting is pessimistic, so it always budgets more than it is actually
116 * needed, so shrinking the liability is one way to make free space - the
117 * cached data will take less space then it was budgeted for;
118 * o GC may turn some dark space into free space (budgeting treats dark space
119 * as not available);
120 * o commit may free some LEB, i.e., turn freeable LEBs into free LEBs.
121 *
122 * So this function tries to do the above. Returns %-EAGAIN if some free space
123 * was presumably made and the caller has to re-try budgeting the operation.
124 * Returns %-ENOSPC if it couldn't do more free space, and other negative error
125 * codes on failures.
126 */
127static int make_free_space(struct ubifs_info *c)
128{
129 int err, retries = 0;
130 long long liab1, liab2;
131
132 do {
133 liab1 = get_liability(c);
134 /*
135 * We probably have some dirty pages or inodes (liability), try
136 * to write them back.
137 */
138 dbg_budg("liability %lld, run write-back", liab1);
139 shrink_liability(c, NR_TO_WRITE);
140
141 liab2 = get_liability(c);
142 if (liab2 < liab1)
143 return -EAGAIN;
144
145 dbg_budg("new liability %lld (not shrunk)", liab2);
146
147 /* Liability did not shrink again, try GC */
148 dbg_budg("Run GC");
149 err = run_gc(c);
150 if (!err)
151 return -EAGAIN;
152
153 if (err != -EAGAIN && err != -ENOSPC)
154 /* Some real error happened */
155 return err;
156
157 dbg_budg("Run commit (retries %d)", retries);
158 err = ubifs_run_commit(c);
159 if (err)
160 return err;
161 } while (retries++ < MAX_MKSPC_RETRIES);
162
163 return -ENOSPC;
164}
165#endif
166
167/**
168 * ubifs_calc_min_idx_lebs - calculate amount of LEBs for the index.
169 * @c: UBIFS file-system description object
170 *
171 * This function calculates and returns the number of LEBs which should be kept
172 * for index usage.
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100173 */
174int ubifs_calc_min_idx_lebs(struct ubifs_info *c)
175{
Heiko Schocherff94bc42014-06-24 10:10:04 +0200176 int idx_lebs;
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100177 long long idx_size;
178
Heiko Schocherff94bc42014-06-24 10:10:04 +0200179 idx_size = c->bi.old_idx_sz + c->bi.idx_growth + c->bi.uncommitted_idx;
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100180 /* And make sure we have thrice the index size of space reserved */
Heiko Schocherff94bc42014-06-24 10:10:04 +0200181 idx_size += idx_size << 1;
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100182 /*
183 * We do not maintain 'old_idx_size' as 'old_idx_lebs'/'old_idx_bytes'
184 * pair, nor similarly the two variables for the new index size, so we
185 * have to do this costly 64-bit division on fast-path.
186 */
Heiko Schocherff94bc42014-06-24 10:10:04 +0200187 idx_lebs = div_u64(idx_size + c->idx_leb_size - 1, c->idx_leb_size);
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100188 /*
189 * The index head is not available for the in-the-gaps method, so add an
190 * extra LEB to compensate.
191 */
192 idx_lebs += 1;
193 if (idx_lebs < MIN_INDEX_LEBS)
194 idx_lebs = MIN_INDEX_LEBS;
195 return idx_lebs;
196}
197
Heiko Schocherff94bc42014-06-24 10:10:04 +0200198#ifndef __UBOOT__
199/**
200 * ubifs_calc_available - calculate available FS space.
201 * @c: UBIFS file-system description object
202 * @min_idx_lebs: minimum number of LEBs reserved for the index
203 *
204 * This function calculates and returns amount of FS space available for use.
205 */
206long long ubifs_calc_available(const struct ubifs_info *c, int min_idx_lebs)
207{
208 int subtract_lebs;
209 long long available;
210
211 available = c->main_bytes - c->lst.total_used;
212
213 /*
214 * Now 'available' contains theoretically available flash space
215 * assuming there is no index, so we have to subtract the space which
216 * is reserved for the index.
217 */
218 subtract_lebs = min_idx_lebs;
219
220 /* Take into account that GC reserves one LEB for its own needs */
221 subtract_lebs += 1;
222
223 /*
224 * The GC journal head LEB is not really accessible. And since
225 * different write types go to different heads, we may count only on
226 * one head's space.
227 */
228 subtract_lebs += c->jhead_cnt - 1;
229
230 /* We also reserve one LEB for deletions, which bypass budgeting */
231 subtract_lebs += 1;
232
233 available -= (long long)subtract_lebs * c->leb_size;
234
235 /* Subtract the dead space which is not available for use */
236 available -= c->lst.total_dead;
237
238 /*
239 * Subtract dark space, which might or might not be usable - it depends
240 * on the data which we have on the media and which will be written. If
241 * this is a lot of uncompressed or not-compressible data, the dark
242 * space cannot be used.
243 */
244 available -= c->lst.total_dark;
245
246 /*
247 * However, there is more dark space. The index may be bigger than
248 * @min_idx_lebs. Those extra LEBs are assumed to be available, but
249 * their dark space is not included in total_dark, so it is subtracted
250 * here.
251 */
252 if (c->lst.idx_lebs > min_idx_lebs) {
253 subtract_lebs = c->lst.idx_lebs - min_idx_lebs;
254 available -= subtract_lebs * c->dark_wm;
255 }
256
257 /* The calculations are rough and may end up with a negative number */
258 return available > 0 ? available : 0;
259}
260
261/**
262 * can_use_rp - check whether the user is allowed to use reserved pool.
263 * @c: UBIFS file-system description object
264 *
265 * UBIFS has so-called "reserved pool" which is flash space reserved
266 * for the superuser and for uses whose UID/GID is recorded in UBIFS superblock.
267 * This function checks whether current user is allowed to use reserved pool.
268 * Returns %1 current user is allowed to use reserved pool and %0 otherwise.
269 */
270static int can_use_rp(struct ubifs_info *c)
271{
272 if (uid_eq(current_fsuid(), c->rp_uid) || capable(CAP_SYS_RESOURCE) ||
273 (!gid_eq(c->rp_gid, GLOBAL_ROOT_GID) && in_group_p(c->rp_gid)))
274 return 1;
275 return 0;
276}
277
278/**
279 * do_budget_space - reserve flash space for index and data growth.
280 * @c: UBIFS file-system description object
281 *
282 * This function makes sure UBIFS has enough free LEBs for index growth and
283 * data.
284 *
285 * When budgeting index space, UBIFS reserves thrice as many LEBs as the index
286 * would take if it was consolidated and written to the flash. This guarantees
287 * that the "in-the-gaps" commit method always succeeds and UBIFS will always
288 * be able to commit dirty index. So this function basically adds amount of
289 * budgeted index space to the size of the current index, multiplies this by 3,
290 * and makes sure this does not exceed the amount of free LEBs.
291 *
292 * Notes about @c->bi.min_idx_lebs and @c->lst.idx_lebs variables:
293 * o @c->lst.idx_lebs is the number of LEBs the index currently uses. It might
294 * be large, because UBIFS does not do any index consolidation as long as
295 * there is free space. IOW, the index may take a lot of LEBs, but the LEBs
296 * will contain a lot of dirt.
297 * o @c->bi.min_idx_lebs is the number of LEBS the index presumably takes. IOW,
298 * the index may be consolidated to take up to @c->bi.min_idx_lebs LEBs.
299 *
300 * This function returns zero in case of success, and %-ENOSPC in case of
301 * failure.
302 */
303static int do_budget_space(struct ubifs_info *c)
304{
305 long long outstanding, available;
306 int lebs, rsvd_idx_lebs, min_idx_lebs;
307
308 /* First budget index space */
309 min_idx_lebs = ubifs_calc_min_idx_lebs(c);
310
311 /* Now 'min_idx_lebs' contains number of LEBs to reserve */
312 if (min_idx_lebs > c->lst.idx_lebs)
313 rsvd_idx_lebs = min_idx_lebs - c->lst.idx_lebs;
314 else
315 rsvd_idx_lebs = 0;
316
317 /*
318 * The number of LEBs that are available to be used by the index is:
319 *
320 * @c->lst.empty_lebs + @c->freeable_cnt + @c->idx_gc_cnt -
321 * @c->lst.taken_empty_lebs
322 *
323 * @c->lst.empty_lebs are available because they are empty.
324 * @c->freeable_cnt are available because they contain only free and
325 * dirty space, @c->idx_gc_cnt are available because they are index
326 * LEBs that have been garbage collected and are awaiting the commit
327 * before they can be used. And the in-the-gaps method will grab these
328 * if it needs them. @c->lst.taken_empty_lebs are empty LEBs that have
329 * already been allocated for some purpose.
330 *
331 * Note, @c->idx_gc_cnt is included to both @c->lst.empty_lebs (because
332 * these LEBs are empty) and to @c->lst.taken_empty_lebs (because they
333 * are taken until after the commit).
334 *
335 * Note, @c->lst.taken_empty_lebs may temporarily be higher by one
336 * because of the way we serialize LEB allocations and budgeting. See a
337 * comment in 'ubifs_find_free_space()'.
338 */
339 lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
340 c->lst.taken_empty_lebs;
341 if (unlikely(rsvd_idx_lebs > lebs)) {
342 dbg_budg("out of indexing space: min_idx_lebs %d (old %d), rsvd_idx_lebs %d",
343 min_idx_lebs, c->bi.min_idx_lebs, rsvd_idx_lebs);
344 return -ENOSPC;
345 }
346
347 available = ubifs_calc_available(c, min_idx_lebs);
348 outstanding = c->bi.data_growth + c->bi.dd_growth;
349
350 if (unlikely(available < outstanding)) {
351 dbg_budg("out of data space: available %lld, outstanding %lld",
352 available, outstanding);
353 return -ENOSPC;
354 }
355
356 if (available - outstanding <= c->rp_size && !can_use_rp(c))
357 return -ENOSPC;
358
359 c->bi.min_idx_lebs = min_idx_lebs;
360 return 0;
361}
362
363/**
364 * calc_idx_growth - calculate approximate index growth from budgeting request.
365 * @c: UBIFS file-system description object
366 * @req: budgeting request
367 *
368 * For now we assume each new node adds one znode. But this is rather poor
369 * approximation, though.
370 */
371static int calc_idx_growth(const struct ubifs_info *c,
372 const struct ubifs_budget_req *req)
373{
374 int znodes;
375
376 znodes = req->new_ino + (req->new_page << UBIFS_BLOCKS_PER_PAGE_SHIFT) +
377 req->new_dent;
378 return znodes * c->max_idx_node_sz;
379}
380
381/**
382 * calc_data_growth - calculate approximate amount of new data from budgeting
383 * request.
384 * @c: UBIFS file-system description object
385 * @req: budgeting request
386 */
387static int calc_data_growth(const struct ubifs_info *c,
388 const struct ubifs_budget_req *req)
389{
390 int data_growth;
391
392 data_growth = req->new_ino ? c->bi.inode_budget : 0;
393 if (req->new_page)
394 data_growth += c->bi.page_budget;
395 if (req->new_dent)
396 data_growth += c->bi.dent_budget;
397 data_growth += req->new_ino_d;
398 return data_growth;
399}
400
401/**
402 * calc_dd_growth - calculate approximate amount of data which makes other data
403 * dirty from budgeting request.
404 * @c: UBIFS file-system description object
405 * @req: budgeting request
406 */
407static int calc_dd_growth(const struct ubifs_info *c,
408 const struct ubifs_budget_req *req)
409{
410 int dd_growth;
411
412 dd_growth = req->dirtied_page ? c->bi.page_budget : 0;
413
414 if (req->dirtied_ino)
415 dd_growth += c->bi.inode_budget << (req->dirtied_ino - 1);
416 if (req->mod_dent)
417 dd_growth += c->bi.dent_budget;
418 dd_growth += req->dirtied_ino_d;
419 return dd_growth;
420}
421
422/**
423 * ubifs_budget_space - ensure there is enough space to complete an operation.
424 * @c: UBIFS file-system description object
425 * @req: budget request
426 *
427 * This function allocates budget for an operation. It uses pessimistic
428 * approximation of how much flash space the operation needs. The goal of this
429 * function is to make sure UBIFS always has flash space to flush all dirty
430 * pages, dirty inodes, and dirty znodes (liability). This function may force
431 * commit, garbage-collection or write-back. Returns zero in case of success,
432 * %-ENOSPC if there is no free space and other negative error codes in case of
433 * failures.
434 */
435int ubifs_budget_space(struct ubifs_info *c, struct ubifs_budget_req *req)
436{
437 int uninitialized_var(cmt_retries), uninitialized_var(wb_retries);
438 int err, idx_growth, data_growth, dd_growth, retried = 0;
439
440 ubifs_assert(req->new_page <= 1);
441 ubifs_assert(req->dirtied_page <= 1);
442 ubifs_assert(req->new_dent <= 1);
443 ubifs_assert(req->mod_dent <= 1);
444 ubifs_assert(req->new_ino <= 1);
445 ubifs_assert(req->new_ino_d <= UBIFS_MAX_INO_DATA);
446 ubifs_assert(req->dirtied_ino <= 4);
447 ubifs_assert(req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
448 ubifs_assert(!(req->new_ino_d & 7));
449 ubifs_assert(!(req->dirtied_ino_d & 7));
450
451 data_growth = calc_data_growth(c, req);
452 dd_growth = calc_dd_growth(c, req);
453 if (!data_growth && !dd_growth)
454 return 0;
455 idx_growth = calc_idx_growth(c, req);
456
457again:
458 spin_lock(&c->space_lock);
459 ubifs_assert(c->bi.idx_growth >= 0);
460 ubifs_assert(c->bi.data_growth >= 0);
461 ubifs_assert(c->bi.dd_growth >= 0);
462
463 if (unlikely(c->bi.nospace) && (c->bi.nospace_rp || !can_use_rp(c))) {
464 dbg_budg("no space");
465 spin_unlock(&c->space_lock);
466 return -ENOSPC;
467 }
468
469 c->bi.idx_growth += idx_growth;
470 c->bi.data_growth += data_growth;
471 c->bi.dd_growth += dd_growth;
472
473 err = do_budget_space(c);
474 if (likely(!err)) {
475 req->idx_growth = idx_growth;
476 req->data_growth = data_growth;
477 req->dd_growth = dd_growth;
478 spin_unlock(&c->space_lock);
479 return 0;
480 }
481
482 /* Restore the old values */
483 c->bi.idx_growth -= idx_growth;
484 c->bi.data_growth -= data_growth;
485 c->bi.dd_growth -= dd_growth;
486 spin_unlock(&c->space_lock);
487
488 if (req->fast) {
489 dbg_budg("no space for fast budgeting");
490 return err;
491 }
492
493 err = make_free_space(c);
494 cond_resched();
495 if (err == -EAGAIN) {
496 dbg_budg("try again");
497 goto again;
498 } else if (err == -ENOSPC) {
499 if (!retried) {
500 retried = 1;
501 dbg_budg("-ENOSPC, but anyway try once again");
502 goto again;
503 }
504 dbg_budg("FS is full, -ENOSPC");
505 c->bi.nospace = 1;
506 if (can_use_rp(c) || c->rp_size == 0)
507 c->bi.nospace_rp = 1;
508 smp_wmb();
509 } else
510 ubifs_err("cannot budget space, error %d", err);
511 return err;
512}
513
514/**
515 * ubifs_release_budget - release budgeted free space.
516 * @c: UBIFS file-system description object
517 * @req: budget request
518 *
519 * This function releases the space budgeted by 'ubifs_budget_space()'. Note,
520 * since the index changes (which were budgeted for in @req->idx_growth) will
521 * only be written to the media on commit, this function moves the index budget
522 * from @c->bi.idx_growth to @c->bi.uncommitted_idx. The latter will be zeroed
523 * by the commit operation.
524 */
525void ubifs_release_budget(struct ubifs_info *c, struct ubifs_budget_req *req)
526{
527 ubifs_assert(req->new_page <= 1);
528 ubifs_assert(req->dirtied_page <= 1);
529 ubifs_assert(req->new_dent <= 1);
530 ubifs_assert(req->mod_dent <= 1);
531 ubifs_assert(req->new_ino <= 1);
532 ubifs_assert(req->new_ino_d <= UBIFS_MAX_INO_DATA);
533 ubifs_assert(req->dirtied_ino <= 4);
534 ubifs_assert(req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
535 ubifs_assert(!(req->new_ino_d & 7));
536 ubifs_assert(!(req->dirtied_ino_d & 7));
537 if (!req->recalculate) {
538 ubifs_assert(req->idx_growth >= 0);
539 ubifs_assert(req->data_growth >= 0);
540 ubifs_assert(req->dd_growth >= 0);
541 }
542
543 if (req->recalculate) {
544 req->data_growth = calc_data_growth(c, req);
545 req->dd_growth = calc_dd_growth(c, req);
546 req->idx_growth = calc_idx_growth(c, req);
547 }
548
549 if (!req->data_growth && !req->dd_growth)
550 return;
551
552 c->bi.nospace = c->bi.nospace_rp = 0;
553 smp_wmb();
554
555 spin_lock(&c->space_lock);
556 c->bi.idx_growth -= req->idx_growth;
557 c->bi.uncommitted_idx += req->idx_growth;
558 c->bi.data_growth -= req->data_growth;
559 c->bi.dd_growth -= req->dd_growth;
560 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
561
562 ubifs_assert(c->bi.idx_growth >= 0);
563 ubifs_assert(c->bi.data_growth >= 0);
564 ubifs_assert(c->bi.dd_growth >= 0);
565 ubifs_assert(c->bi.min_idx_lebs < c->main_lebs);
566 ubifs_assert(!(c->bi.idx_growth & 7));
567 ubifs_assert(!(c->bi.data_growth & 7));
568 ubifs_assert(!(c->bi.dd_growth & 7));
569 spin_unlock(&c->space_lock);
570}
571
572/**
573 * ubifs_convert_page_budget - convert budget of a new page.
574 * @c: UBIFS file-system description object
575 *
576 * This function converts budget which was allocated for a new page of data to
577 * the budget of changing an existing page of data. The latter is smaller than
578 * the former, so this function only does simple re-calculation and does not
579 * involve any write-back.
580 */
581void ubifs_convert_page_budget(struct ubifs_info *c)
582{
583 spin_lock(&c->space_lock);
584 /* Release the index growth reservation */
585 c->bi.idx_growth -= c->max_idx_node_sz << UBIFS_BLOCKS_PER_PAGE_SHIFT;
586 /* Release the data growth reservation */
587 c->bi.data_growth -= c->bi.page_budget;
588 /* Increase the dirty data growth reservation instead */
589 c->bi.dd_growth += c->bi.page_budget;
590 /* And re-calculate the indexing space reservation */
591 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
592 spin_unlock(&c->space_lock);
593}
594
595/**
596 * ubifs_release_dirty_inode_budget - release dirty inode budget.
597 * @c: UBIFS file-system description object
598 * @ui: UBIFS inode to release the budget for
599 *
600 * This function releases budget corresponding to a dirty inode. It is usually
601 * called when after the inode has been written to the media and marked as
602 * clean. It also causes the "no space" flags to be cleared.
603 */
604void ubifs_release_dirty_inode_budget(struct ubifs_info *c,
605 struct ubifs_inode *ui)
606{
607 struct ubifs_budget_req req;
608
609 memset(&req, 0, sizeof(struct ubifs_budget_req));
610 /* The "no space" flags will be cleared because dd_growth is > 0 */
611 req.dd_growth = c->bi.inode_budget + ALIGN(ui->data_len, 8);
612 ubifs_release_budget(c, &req);
613}
614#endif
615
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100616/**
617 * ubifs_reported_space - calculate reported free space.
618 * @c: the UBIFS file-system description object
619 * @free: amount of free space
620 *
621 * This function calculates amount of free space which will be reported to
622 * user-space. User-space application tend to expect that if the file-system
623 * (e.g., via the 'statfs()' call) reports that it has N bytes available, they
624 * are able to write a file of size N. UBIFS attaches node headers to each data
625 * node and it has to write indexing nodes as well. This introduces additional
626 * overhead, and UBIFS has to report slightly less free space to meet the above
627 * expectations.
628 *
629 * This function assumes free space is made up of uncompressed data nodes and
630 * full index nodes (one per data node, tripled because we always allow enough
631 * space to write the index thrice).
632 *
633 * Note, the calculation is pessimistic, which means that most of the time
634 * UBIFS reports less space than it actually has.
635 */
636long long ubifs_reported_space(const struct ubifs_info *c, long long free)
637{
638 int divisor, factor, f;
639
640 /*
641 * Reported space size is @free * X, where X is UBIFS block size
642 * divided by UBIFS block size + all overhead one data block
643 * introduces. The overhead is the node header + indexing overhead.
644 *
645 * Indexing overhead calculations are based on the following formula:
646 * I = N/(f - 1) + 1, where I - number of indexing nodes, N - number
647 * of data nodes, f - fanout. Because effective UBIFS fanout is twice
648 * as less than maximum fanout, we assume that each data node
649 * introduces 3 * @c->max_idx_node_sz / (@c->fanout/2 - 1) bytes.
650 * Note, the multiplier 3 is because UBIFS reserves thrice as more space
651 * for the index.
652 */
653 f = c->fanout > 3 ? c->fanout >> 1 : 2;
654 factor = UBIFS_BLOCK_SIZE;
655 divisor = UBIFS_MAX_DATA_NODE_SZ;
656 divisor += (c->max_idx_node_sz * 3) / (f - 1);
657 free *= factor;
658 return div_u64(free, divisor);
659}
Heiko Schocherff94bc42014-06-24 10:10:04 +0200660
661#ifndef __UBOOT__
662/**
663 * ubifs_get_free_space_nolock - return amount of free space.
664 * @c: UBIFS file-system description object
665 *
666 * This function calculates amount of free space to report to user-space.
667 *
668 * Because UBIFS may introduce substantial overhead (the index, node headers,
669 * alignment, wastage at the end of LEBs, etc), it cannot report real amount of
670 * free flash space it has (well, because not all dirty space is reclaimable,
671 * UBIFS does not actually know the real amount). If UBIFS did so, it would
672 * bread user expectations about what free space is. Users seem to accustomed
673 * to assume that if the file-system reports N bytes of free space, they would
674 * be able to fit a file of N bytes to the FS. This almost works for
675 * traditional file-systems, because they have way less overhead than UBIFS.
676 * So, to keep users happy, UBIFS tries to take the overhead into account.
677 */
678long long ubifs_get_free_space_nolock(struct ubifs_info *c)
679{
680 int rsvd_idx_lebs, lebs;
681 long long available, outstanding, free;
682
683 ubifs_assert(c->bi.min_idx_lebs == ubifs_calc_min_idx_lebs(c));
684 outstanding = c->bi.data_growth + c->bi.dd_growth;
685 available = ubifs_calc_available(c, c->bi.min_idx_lebs);
686
687 /*
688 * When reporting free space to user-space, UBIFS guarantees that it is
689 * possible to write a file of free space size. This means that for
690 * empty LEBs we may use more precise calculations than
691 * 'ubifs_calc_available()' is using. Namely, we know that in empty
692 * LEBs we would waste only @c->leb_overhead bytes, not @c->dark_wm.
693 * Thus, amend the available space.
694 *
695 * Note, the calculations below are similar to what we have in
696 * 'do_budget_space()', so refer there for comments.
697 */
698 if (c->bi.min_idx_lebs > c->lst.idx_lebs)
699 rsvd_idx_lebs = c->bi.min_idx_lebs - c->lst.idx_lebs;
700 else
701 rsvd_idx_lebs = 0;
702 lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
703 c->lst.taken_empty_lebs;
704 lebs -= rsvd_idx_lebs;
705 available += lebs * (c->dark_wm - c->leb_overhead);
706
707 if (available > outstanding)
708 free = ubifs_reported_space(c, available - outstanding);
709 else
710 free = 0;
711 return free;
712}
713
714/**
715 * ubifs_get_free_space - return amount of free space.
716 * @c: UBIFS file-system description object
717 *
718 * This function calculates and returns amount of free space to report to
719 * user-space.
720 */
721long long ubifs_get_free_space(struct ubifs_info *c)
722{
723 long long free;
724
725 spin_lock(&c->space_lock);
726 free = ubifs_get_free_space_nolock(c);
727 spin_unlock(&c->space_lock);
728
729 return free;
730}
731#endif