blob: 776ead319ae9c1dfbc2c243a698c749077139eee [file] [log] [blame]
Anup Patelc40b6df2019-02-25 08:14:49 +00001// SPDX-License-Identifier: GPL-2.0
2/*
Anup Patelc2368022019-06-25 06:31:08 +00003 * Copyright (C) 2018-2019 SiFive, Inc.
Anup Patelc40b6df2019-02-25 08:14:49 +00004 * Wesley Terpstra
5 * Paul Walmsley
6 *
Anup Patelc40b6df2019-02-25 08:14:49 +00007 * This library supports configuration parsing and reprogramming of
8 * the CLN28HPC variant of the Analog Bits Wide Range PLL. The
9 * intention is for this library to be reusable for any device that
10 * integrates this PLL; thus the register structure and programming
11 * details are expected to be provided by a separate IP block driver.
12 *
13 * The bulk of this code is primarily useful for clock configurations
14 * that must operate at arbitrary rates, as opposed to clock configurations
15 * that are restricted by software or manufacturer guidance to a small,
16 * pre-determined set of performance points.
17 *
18 * References:
19 * - Analog Bits "Wide Range PLL Datasheet", version 2015.10.01
20 * - SiFive FU540-C000 Manual v1p0, Chapter 7 "Clocking and Reset"
Anup Patelc2368022019-06-25 06:31:08 +000021 * https://static.dev.sifive.com/FU540-C000-v1.0.pdf
Anup Patelc40b6df2019-02-25 08:14:49 +000022 */
23
24#include <linux/bug.h>
25#include <linux/err.h>
26#include <linux/log2.h>
27#include <linux/math64.h>
Anup Pateld04c79d2019-06-25 06:31:02 +000028#include <linux/clk/analogbits-wrpll-cln28hpc.h>
Anup Patelc40b6df2019-02-25 08:14:49 +000029
30/* MIN_INPUT_FREQ: minimum input clock frequency, in Hz (Fref_min) */
31#define MIN_INPUT_FREQ 7000000
32
33/* MAX_INPUT_FREQ: maximum input clock frequency, in Hz (Fref_max) */
34#define MAX_INPUT_FREQ 600000000
35
36/* MIN_POST_DIVIDE_REF_FREQ: minimum post-divider reference frequency, in Hz */
37#define MIN_POST_DIVR_FREQ 7000000
38
39/* MAX_POST_DIVIDE_REF_FREQ: maximum post-divider reference frequency, in Hz */
40#define MAX_POST_DIVR_FREQ 200000000
41
42/* MIN_VCO_FREQ: minimum VCO frequency, in Hz (Fvco_min) */
43#define MIN_VCO_FREQ 2400000000UL
44
45/* MAX_VCO_FREQ: maximum VCO frequency, in Hz (Fvco_max) */
46#define MAX_VCO_FREQ 4800000000ULL
47
48/* MAX_DIVQ_DIVISOR: maximum output divisor. Selected by DIVQ = 6 */
49#define MAX_DIVQ_DIVISOR 64
50
51/* MAX_DIVR_DIVISOR: maximum reference divisor. Selected by DIVR = 63 */
52#define MAX_DIVR_DIVISOR 64
53
54/* MAX_LOCK_US: maximum PLL lock time, in microseconds (tLOCK_max) */
55#define MAX_LOCK_US 70
56
57/*
58 * ROUND_SHIFT: number of bits to shift to avoid precision loss in the rounding
59 * algorithm
60 */
61#define ROUND_SHIFT 20
62
63/*
64 * Private functions
65 */
66
67/**
68 * __wrpll_calc_filter_range() - determine PLL loop filter bandwidth
69 * @post_divr_freq: input clock rate after the R divider
70 *
71 * Select the value to be presented to the PLL RANGE input signals, based
72 * on the input clock frequency after the post-R-divider @post_divr_freq.
73 * This code follows the recommendations in the PLL datasheet for filter
74 * range selection.
75 *
76 * Return: The RANGE value to be presented to the PLL configuration inputs,
Anup Patelc2368022019-06-25 06:31:08 +000077 * or a negative return code upon error.
Anup Patelc40b6df2019-02-25 08:14:49 +000078 */
79static int __wrpll_calc_filter_range(unsigned long post_divr_freq)
80{
Anup Patelc40b6df2019-02-25 08:14:49 +000081 if (post_divr_freq < MIN_POST_DIVR_FREQ ||
82 post_divr_freq > MAX_POST_DIVR_FREQ) {
83 WARN(1, "%s: post-divider reference freq out of range: %lu",
84 __func__, post_divr_freq);
Anup Patelc2368022019-06-25 06:31:08 +000085 return -ERANGE;
Anup Patelc40b6df2019-02-25 08:14:49 +000086 }
87
Anup Patelc2368022019-06-25 06:31:08 +000088 switch (post_divr_freq) {
89 case 0 ... 10999999:
90 return 1;
91 case 11000000 ... 17999999:
92 return 2;
93 case 18000000 ... 29999999:
94 return 3;
95 case 30000000 ... 49999999:
96 return 4;
97 case 50000000 ... 79999999:
98 return 5;
99 case 80000000 ... 129999999:
100 return 6;
101 }
Anup Patelc40b6df2019-02-25 08:14:49 +0000102
Anup Patelc2368022019-06-25 06:31:08 +0000103 return 7;
Anup Patelc40b6df2019-02-25 08:14:49 +0000104}
105
106/**
107 * __wrpll_calc_fbdiv() - return feedback fixed divide value
Anup Patelc2368022019-06-25 06:31:08 +0000108 * @c: ptr to a struct wrpll_cfg record to read from
Anup Patelc40b6df2019-02-25 08:14:49 +0000109 *
110 * The internal feedback path includes a fixed by-two divider; the
111 * external feedback path does not. Return the appropriate divider
112 * value (2 or 1) depending on whether internal or external feedback
113 * is enabled. This code doesn't test for invalid configurations
114 * (e.g. both or neither of WRPLL_FLAGS_*_FEEDBACK are set); it relies
115 * on the caller to do so.
116 *
117 * Context: Any context. Caller must protect the memory pointed to by
118 * @c from simultaneous modification.
119 *
120 * Return: 2 if internal feedback is enabled or 1 if external feedback
121 * is enabled.
122 */
Anup Patelc2368022019-06-25 06:31:08 +0000123static u8 __wrpll_calc_fbdiv(const struct wrpll_cfg *c)
Anup Patelc40b6df2019-02-25 08:14:49 +0000124{
125 return (c->flags & WRPLL_FLAGS_INT_FEEDBACK_MASK) ? 2 : 1;
126}
127
128/**
129 * __wrpll_calc_divq() - determine DIVQ based on target PLL output clock rate
130 * @target_rate: target PLL output clock rate
131 * @vco_rate: pointer to a u64 to store the computed VCO rate into
132 *
133 * Determine a reasonable value for the PLL Q post-divider, based on the
134 * target output rate @target_rate for the PLL. Along with returning the
135 * computed Q divider value as the return value, this function stores the
136 * desired target VCO rate into the variable pointed to by @vco_rate.
137 *
138 * Context: Any context. Caller must protect the memory pointed to by
139 * @vco_rate from simultaneous access or modification.
140 *
141 * Return: a positive integer DIVQ value to be programmed into the hardware
142 * upon success, or 0 upon error (since 0 is an invalid DIVQ value)
143 */
144static u8 __wrpll_calc_divq(u32 target_rate, u64 *vco_rate)
145{
146 u64 s;
147 u8 divq = 0;
148
149 if (!vco_rate) {
150 WARN_ON(1);
151 goto wcd_out;
152 }
153
154 s = div_u64(MAX_VCO_FREQ, target_rate);
155 if (s <= 1) {
156 divq = 1;
157 *vco_rate = MAX_VCO_FREQ;
158 } else if (s > MAX_DIVQ_DIVISOR) {
159 divq = ilog2(MAX_DIVQ_DIVISOR);
160 *vco_rate = MIN_VCO_FREQ;
161 } else {
162 divq = ilog2(s);
Anup Patelc2368022019-06-25 06:31:08 +0000163 *vco_rate = (u64)target_rate << divq;
Anup Patelc40b6df2019-02-25 08:14:49 +0000164 }
165
166wcd_out:
167 return divq;
168}
169
170/**
171 * __wrpll_update_parent_rate() - update PLL data when parent rate changes
Anup Patelc2368022019-06-25 06:31:08 +0000172 * @c: ptr to a struct wrpll_cfg record to write PLL data to
Anup Patelc40b6df2019-02-25 08:14:49 +0000173 * @parent_rate: PLL input refclk rate (pre-R-divider)
174 *
175 * Pre-compute some data used by the PLL configuration algorithm when
176 * the PLL's reference clock rate changes. The intention is to avoid
177 * computation when the parent rate remains constant - expected to be
178 * the common case.
179 *
Anup Patelc2368022019-06-25 06:31:08 +0000180 * Returns: 0 upon success or -ERANGE if the reference clock rate is
181 * out of range.
Anup Patelc40b6df2019-02-25 08:14:49 +0000182 */
Anup Patelc2368022019-06-25 06:31:08 +0000183static int __wrpll_update_parent_rate(struct wrpll_cfg *c,
Anup Patelc40b6df2019-02-25 08:14:49 +0000184 unsigned long parent_rate)
185{
186 u8 max_r_for_parent;
187
188 if (parent_rate > MAX_INPUT_FREQ || parent_rate < MIN_POST_DIVR_FREQ)
Anup Patelc2368022019-06-25 06:31:08 +0000189 return -ERANGE;
Anup Patelc40b6df2019-02-25 08:14:49 +0000190
Anup Patelc2368022019-06-25 06:31:08 +0000191 c->parent_rate = parent_rate;
Anup Patelc40b6df2019-02-25 08:14:49 +0000192 max_r_for_parent = div_u64(parent_rate, MIN_POST_DIVR_FREQ);
Anup Patelc2368022019-06-25 06:31:08 +0000193 c->max_r = min_t(u8, MAX_DIVR_DIVISOR, max_r_for_parent);
Anup Patelc40b6df2019-02-25 08:14:49 +0000194
Anup Patelc2368022019-06-25 06:31:08 +0000195 c->init_r = DIV_ROUND_UP_ULL(parent_rate, MAX_POST_DIVR_FREQ);
Anup Patelc40b6df2019-02-25 08:14:49 +0000196
197 return 0;
198}
199
Anup Patelc40b6df2019-02-25 08:14:49 +0000200/**
Anup Patelc2368022019-06-25 06:31:08 +0000201 * wrpll_configure() - compute PLL configuration for a target rate
202 * @c: ptr to a struct wrpll_cfg record to write into
Anup Patelc40b6df2019-02-25 08:14:49 +0000203 * @target_rate: target PLL output clock rate (post-Q-divider)
204 * @parent_rate: PLL input refclk rate (pre-R-divider)
205 *
Anup Patelc2368022019-06-25 06:31:08 +0000206 * Compute the appropriate PLL signal configuration values and store
207 * in PLL context @c. PLL reprogramming is not glitchless, so the
208 * caller should switch any downstream logic to a different clock
209 * source or clock-gate it before presenting these values to the PLL
210 * configuration signals.
Anup Patelc40b6df2019-02-25 08:14:49 +0000211 *
212 * The caller must pass this function a pre-initialized struct
Anup Patelc2368022019-06-25 06:31:08 +0000213 * wrpll_cfg record: either initialized to zero (with the
Anup Patelc40b6df2019-02-25 08:14:49 +0000214 * exception of the .name and .flags fields) or read from the PLL.
215 *
216 * Context: Any context. Caller must protect the memory pointed to by @c
217 * from simultaneous access or modification.
218 *
219 * Return: 0 upon success; anything else upon failure.
220 */
Anup Patelc2368022019-06-25 06:31:08 +0000221int wrpll_configure_for_rate(struct wrpll_cfg *c, u32 target_rate,
222 unsigned long parent_rate)
Anup Patelc40b6df2019-02-25 08:14:49 +0000223{
224 unsigned long ratio;
225 u64 target_vco_rate, delta, best_delta, f_pre_div, vco, vco_pre;
Anup Patelc2368022019-06-25 06:31:08 +0000226 u32 best_f, f, post_divr_freq;
Anup Patelc40b6df2019-02-25 08:14:49 +0000227 u8 fbdiv, divq, best_r, r;
Anup Patelc2368022019-06-25 06:31:08 +0000228 int range;
Anup Patelc40b6df2019-02-25 08:14:49 +0000229
230 if (c->flags == 0) {
231 WARN(1, "%s called with uninitialized PLL config", __func__);
Anup Patelc2368022019-06-25 06:31:08 +0000232 return -EINVAL;
Anup Patelc40b6df2019-02-25 08:14:49 +0000233 }
234
235 /* Initialize rounding data if it hasn't been initialized already */
Anup Patelc2368022019-06-25 06:31:08 +0000236 if (parent_rate != c->parent_rate) {
Anup Patelc40b6df2019-02-25 08:14:49 +0000237 if (__wrpll_update_parent_rate(c, parent_rate)) {
238 pr_err("%s: PLL input rate is out of range\n",
239 __func__);
Anup Patelc2368022019-06-25 06:31:08 +0000240 return -ERANGE;
Anup Patelc40b6df2019-02-25 08:14:49 +0000241 }
242 }
243
244 c->flags &= ~WRPLL_FLAGS_RESET_MASK;
245
246 /* Put the PLL into bypass if the user requests the parent clock rate */
247 if (target_rate == parent_rate) {
248 c->flags |= WRPLL_FLAGS_BYPASS_MASK;
249 return 0;
250 }
Anup Patelc2368022019-06-25 06:31:08 +0000251
Anup Patelc40b6df2019-02-25 08:14:49 +0000252 c->flags &= ~WRPLL_FLAGS_BYPASS_MASK;
253
254 /* Calculate the Q shift and target VCO rate */
255 divq = __wrpll_calc_divq(target_rate, &target_vco_rate);
Anup Patelc2368022019-06-25 06:31:08 +0000256 if (!divq)
Anup Patelc40b6df2019-02-25 08:14:49 +0000257 return -1;
258 c->divq = divq;
259
260 /* Precalculate the pre-Q divider target ratio */
261 ratio = div64_u64((target_vco_rate << ROUND_SHIFT), parent_rate);
262
263 fbdiv = __wrpll_calc_fbdiv(c);
264 best_r = 0;
265 best_f = 0;
266 best_delta = MAX_VCO_FREQ;
267
268 /*
269 * Consider all values for R which land within
270 * [MIN_POST_DIVR_FREQ, MAX_POST_DIVR_FREQ]; prefer smaller R
271 */
Anup Patelc2368022019-06-25 06:31:08 +0000272 for (r = c->init_r; r <= c->max_r; ++r) {
Anup Patelc40b6df2019-02-25 08:14:49 +0000273 f_pre_div = ratio * r;
274 f = (f_pre_div + (1 << ROUND_SHIFT)) >> ROUND_SHIFT;
275 f >>= (fbdiv - 1);
276
277 post_divr_freq = div_u64(parent_rate, r);
278 vco_pre = fbdiv * post_divr_freq;
279 vco = vco_pre * f;
280
281 /* Ensure rounding didn't take us out of range */
282 if (vco > target_vco_rate) {
283 --f;
284 vco = vco_pre * f;
285 } else if (vco < MIN_VCO_FREQ) {
286 ++f;
287 vco = vco_pre * f;
288 }
289
290 delta = abs(target_rate - vco);
291 if (delta < best_delta) {
292 best_delta = delta;
293 best_r = r;
294 best_f = f;
295 }
296 }
297
298 c->divr = best_r - 1;
299 c->divf = best_f - 1;
300
301 post_divr_freq = div_u64(parent_rate, best_r);
302
303 /* Pick the best PLL jitter filter */
Anup Patelc2368022019-06-25 06:31:08 +0000304 range = __wrpll_calc_filter_range(post_divr_freq);
305 if (range < 0)
306 return range;
307 c->range = range;
Anup Patelc40b6df2019-02-25 08:14:49 +0000308
309 return 0;
310}
311
312/**
Anup Patelc2368022019-06-25 06:31:08 +0000313 * wrpll_calc_output_rate() - calculate the PLL's target output rate
314 * @c: ptr to a struct wrpll_cfg record to read from
Anup Patelc40b6df2019-02-25 08:14:49 +0000315 * @parent_rate: PLL refclk rate
316 *
317 * Given a pointer to the PLL's current input configuration @c and the
318 * PLL's input reference clock rate @parent_rate (before the R
319 * pre-divider), calculate the PLL's output clock rate (after the Q
Anup Patelc2368022019-06-25 06:31:08 +0000320 * post-divider).
Anup Patelc40b6df2019-02-25 08:14:49 +0000321 *
322 * Context: Any context. Caller must protect the memory pointed to by @c
323 * from simultaneous modification.
324 *
Anup Patelc2368022019-06-25 06:31:08 +0000325 * Return: the PLL's output clock rate, in Hz. The return value from
326 * this function is intended to be convenient to pass directly
327 * to the Linux clock framework; thus there is no explicit
328 * error return value.
Anup Patelc40b6df2019-02-25 08:14:49 +0000329 */
Anup Patelc2368022019-06-25 06:31:08 +0000330unsigned long wrpll_calc_output_rate(const struct wrpll_cfg *c,
331 unsigned long parent_rate)
Anup Patelc40b6df2019-02-25 08:14:49 +0000332{
333 u8 fbdiv;
334 u64 n;
335
Anup Patelc2368022019-06-25 06:31:08 +0000336 if (c->flags & WRPLL_FLAGS_EXT_FEEDBACK_MASK) {
337 WARN(1, "external feedback mode not yet supported");
338 return ULONG_MAX;
339 }
Anup Patelc40b6df2019-02-25 08:14:49 +0000340
341 fbdiv = __wrpll_calc_fbdiv(c);
342 n = parent_rate * fbdiv * (c->divf + 1);
Anup Patelc2368022019-06-25 06:31:08 +0000343 n = div_u64(n, c->divr + 1);
Anup Patelc40b6df2019-02-25 08:14:49 +0000344 n >>= c->divq;
345
346 return n;
347}
348
349/**
Anup Patelc2368022019-06-25 06:31:08 +0000350 * wrpll_calc_max_lock_us() - return the time for the PLL to lock
351 * @c: ptr to a struct wrpll_cfg record to read from
Anup Patelc40b6df2019-02-25 08:14:49 +0000352 *
353 * Return the minimum amount of time (in microseconds) that the caller
354 * must wait after reprogramming the PLL to ensure that it is locked
355 * to the input frequency and stable. This is likely to depend on the DIVR
356 * value; this is under discussion with the manufacturer.
357 *
358 * Return: the minimum amount of time the caller must wait for the PLL
359 * to lock (in microseconds)
360 */
Anup Patelc2368022019-06-25 06:31:08 +0000361unsigned int wrpll_calc_max_lock_us(const struct wrpll_cfg *c)
Anup Patelc40b6df2019-02-25 08:14:49 +0000362{
363 return MAX_LOCK_US;
364}