blob: 74ae1a2d2a4e3de75c1c62670fafcc35835f1da1 [file] [log] [blame]
Stefan Roese99d4c6d2016-02-10 07:22:10 +01001/*
2 * Driver for Marvell PPv2 network controller for Armada 375 SoC.
3 *
4 * Copyright (C) 2014 Marvell
5 *
6 * Marcin Wojtas <mw@semihalf.com>
7 *
8 * U-Boot version:
9 * Copyright (C) 2016 Stefan Roese <sr@denx.de>
10 *
11 * This file is licensed under the terms of the GNU General Public
12 * License version 2. This program is licensed "as is" without any
13 * warranty of any kind, whether express or implied.
14 */
15
16#include <common.h>
17#include <dm.h>
18#include <dm/device-internal.h>
19#include <dm/lists.h>
20#include <net.h>
21#include <netdev.h>
22#include <config.h>
23#include <malloc.h>
24#include <asm/io.h>
Masahiro Yamada1221ce42016-09-21 11:28:55 +090025#include <linux/errno.h>
Stefan Roese99d4c6d2016-02-10 07:22:10 +010026#include <phy.h>
27#include <miiphy.h>
28#include <watchdog.h>
29#include <asm/arch/cpu.h>
30#include <asm/arch/soc.h>
31#include <linux/compat.h>
32#include <linux/mbus.h>
33
34DECLARE_GLOBAL_DATA_PTR;
35
36/* Some linux -> U-Boot compatibility stuff */
37#define netdev_err(dev, fmt, args...) \
38 printf(fmt, ##args)
39#define netdev_warn(dev, fmt, args...) \
40 printf(fmt, ##args)
41#define netdev_info(dev, fmt, args...) \
42 printf(fmt, ##args)
43#define netdev_dbg(dev, fmt, args...) \
44 printf(fmt, ##args)
45
46#define ETH_ALEN 6 /* Octets in one ethernet addr */
47
48#define __verify_pcpu_ptr(ptr) \
49do { \
50 const void __percpu *__vpp_verify = (typeof((ptr) + 0))NULL; \
51 (void)__vpp_verify; \
52} while (0)
53
54#define VERIFY_PERCPU_PTR(__p) \
55({ \
56 __verify_pcpu_ptr(__p); \
57 (typeof(*(__p)) __kernel __force *)(__p); \
58})
59
60#define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR(ptr); })
61#define smp_processor_id() 0
62#define num_present_cpus() 1
63#define for_each_present_cpu(cpu) \
64 for ((cpu) = 0; (cpu) < 1; (cpu)++)
65
66#define NET_SKB_PAD max(32, MVPP2_CPU_D_CACHE_LINE_SIZE)
67
68#define CONFIG_NR_CPUS 1
69#define ETH_HLEN ETHER_HDR_SIZE /* Total octets in header */
70
71/* 2(HW hdr) 14(MAC hdr) 4(CRC) 32(extra for cache prefetch) */
72#define WRAP (2 + ETH_HLEN + 4 + 32)
73#define MTU 1500
74#define RX_BUFFER_SIZE (ALIGN(MTU + WRAP, ARCH_DMA_MINALIGN))
75
76#define MVPP2_SMI_TIMEOUT 10000
77
78/* RX Fifo Registers */
79#define MVPP2_RX_DATA_FIFO_SIZE_REG(port) (0x00 + 4 * (port))
80#define MVPP2_RX_ATTR_FIFO_SIZE_REG(port) (0x20 + 4 * (port))
81#define MVPP2_RX_MIN_PKT_SIZE_REG 0x60
82#define MVPP2_RX_FIFO_INIT_REG 0x64
83
84/* RX DMA Top Registers */
85#define MVPP2_RX_CTRL_REG(port) (0x140 + 4 * (port))
86#define MVPP2_RX_LOW_LATENCY_PKT_SIZE(s) (((s) & 0xfff) << 16)
87#define MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK BIT(31)
88#define MVPP2_POOL_BUF_SIZE_REG(pool) (0x180 + 4 * (pool))
89#define MVPP2_POOL_BUF_SIZE_OFFSET 5
90#define MVPP2_RXQ_CONFIG_REG(rxq) (0x800 + 4 * (rxq))
91#define MVPP2_SNOOP_PKT_SIZE_MASK 0x1ff
92#define MVPP2_SNOOP_BUF_HDR_MASK BIT(9)
93#define MVPP2_RXQ_POOL_SHORT_OFFS 20
94#define MVPP2_RXQ_POOL_SHORT_MASK 0x700000
95#define MVPP2_RXQ_POOL_LONG_OFFS 24
96#define MVPP2_RXQ_POOL_LONG_MASK 0x7000000
97#define MVPP2_RXQ_PACKET_OFFSET_OFFS 28
98#define MVPP2_RXQ_PACKET_OFFSET_MASK 0x70000000
99#define MVPP2_RXQ_DISABLE_MASK BIT(31)
100
101/* Parser Registers */
102#define MVPP2_PRS_INIT_LOOKUP_REG 0x1000
103#define MVPP2_PRS_PORT_LU_MAX 0xf
104#define MVPP2_PRS_PORT_LU_MASK(port) (0xff << ((port) * 4))
105#define MVPP2_PRS_PORT_LU_VAL(port, val) ((val) << ((port) * 4))
106#define MVPP2_PRS_INIT_OFFS_REG(port) (0x1004 + ((port) & 4))
107#define MVPP2_PRS_INIT_OFF_MASK(port) (0x3f << (((port) % 4) * 8))
108#define MVPP2_PRS_INIT_OFF_VAL(port, val) ((val) << (((port) % 4) * 8))
109#define MVPP2_PRS_MAX_LOOP_REG(port) (0x100c + ((port) & 4))
110#define MVPP2_PRS_MAX_LOOP_MASK(port) (0xff << (((port) % 4) * 8))
111#define MVPP2_PRS_MAX_LOOP_VAL(port, val) ((val) << (((port) % 4) * 8))
112#define MVPP2_PRS_TCAM_IDX_REG 0x1100
113#define MVPP2_PRS_TCAM_DATA_REG(idx) (0x1104 + (idx) * 4)
114#define MVPP2_PRS_TCAM_INV_MASK BIT(31)
115#define MVPP2_PRS_SRAM_IDX_REG 0x1200
116#define MVPP2_PRS_SRAM_DATA_REG(idx) (0x1204 + (idx) * 4)
117#define MVPP2_PRS_TCAM_CTRL_REG 0x1230
118#define MVPP2_PRS_TCAM_EN_MASK BIT(0)
119
120/* Classifier Registers */
121#define MVPP2_CLS_MODE_REG 0x1800
122#define MVPP2_CLS_MODE_ACTIVE_MASK BIT(0)
123#define MVPP2_CLS_PORT_WAY_REG 0x1810
124#define MVPP2_CLS_PORT_WAY_MASK(port) (1 << (port))
125#define MVPP2_CLS_LKP_INDEX_REG 0x1814
126#define MVPP2_CLS_LKP_INDEX_WAY_OFFS 6
127#define MVPP2_CLS_LKP_TBL_REG 0x1818
128#define MVPP2_CLS_LKP_TBL_RXQ_MASK 0xff
129#define MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK BIT(25)
130#define MVPP2_CLS_FLOW_INDEX_REG 0x1820
131#define MVPP2_CLS_FLOW_TBL0_REG 0x1824
132#define MVPP2_CLS_FLOW_TBL1_REG 0x1828
133#define MVPP2_CLS_FLOW_TBL2_REG 0x182c
134#define MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port) (0x1980 + ((port) * 4))
135#define MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS 3
136#define MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK 0x7
137#define MVPP2_CLS_SWFWD_P2HQ_REG(port) (0x19b0 + ((port) * 4))
138#define MVPP2_CLS_SWFWD_PCTRL_REG 0x19d0
139#define MVPP2_CLS_SWFWD_PCTRL_MASK(port) (1 << (port))
140
141/* Descriptor Manager Top Registers */
142#define MVPP2_RXQ_NUM_REG 0x2040
143#define MVPP2_RXQ_DESC_ADDR_REG 0x2044
144#define MVPP2_RXQ_DESC_SIZE_REG 0x2048
145#define MVPP2_RXQ_DESC_SIZE_MASK 0x3ff0
146#define MVPP2_RXQ_STATUS_UPDATE_REG(rxq) (0x3000 + 4 * (rxq))
147#define MVPP2_RXQ_NUM_PROCESSED_OFFSET 0
148#define MVPP2_RXQ_NUM_NEW_OFFSET 16
149#define MVPP2_RXQ_STATUS_REG(rxq) (0x3400 + 4 * (rxq))
150#define MVPP2_RXQ_OCCUPIED_MASK 0x3fff
151#define MVPP2_RXQ_NON_OCCUPIED_OFFSET 16
152#define MVPP2_RXQ_NON_OCCUPIED_MASK 0x3fff0000
153#define MVPP2_RXQ_THRESH_REG 0x204c
154#define MVPP2_OCCUPIED_THRESH_OFFSET 0
155#define MVPP2_OCCUPIED_THRESH_MASK 0x3fff
156#define MVPP2_RXQ_INDEX_REG 0x2050
157#define MVPP2_TXQ_NUM_REG 0x2080
158#define MVPP2_TXQ_DESC_ADDR_REG 0x2084
159#define MVPP2_TXQ_DESC_SIZE_REG 0x2088
160#define MVPP2_TXQ_DESC_SIZE_MASK 0x3ff0
161#define MVPP2_AGGR_TXQ_UPDATE_REG 0x2090
162#define MVPP2_TXQ_THRESH_REG 0x2094
163#define MVPP2_TRANSMITTED_THRESH_OFFSET 16
164#define MVPP2_TRANSMITTED_THRESH_MASK 0x3fff0000
165#define MVPP2_TXQ_INDEX_REG 0x2098
166#define MVPP2_TXQ_PREF_BUF_REG 0x209c
167#define MVPP2_PREF_BUF_PTR(desc) ((desc) & 0xfff)
168#define MVPP2_PREF_BUF_SIZE_4 (BIT(12) | BIT(13))
169#define MVPP2_PREF_BUF_SIZE_16 (BIT(12) | BIT(14))
170#define MVPP2_PREF_BUF_THRESH(val) ((val) << 17)
171#define MVPP2_TXQ_DRAIN_EN_MASK BIT(31)
172#define MVPP2_TXQ_PENDING_REG 0x20a0
173#define MVPP2_TXQ_PENDING_MASK 0x3fff
174#define MVPP2_TXQ_INT_STATUS_REG 0x20a4
175#define MVPP2_TXQ_SENT_REG(txq) (0x3c00 + 4 * (txq))
176#define MVPP2_TRANSMITTED_COUNT_OFFSET 16
177#define MVPP2_TRANSMITTED_COUNT_MASK 0x3fff0000
178#define MVPP2_TXQ_RSVD_REQ_REG 0x20b0
179#define MVPP2_TXQ_RSVD_REQ_Q_OFFSET 16
180#define MVPP2_TXQ_RSVD_RSLT_REG 0x20b4
181#define MVPP2_TXQ_RSVD_RSLT_MASK 0x3fff
182#define MVPP2_TXQ_RSVD_CLR_REG 0x20b8
183#define MVPP2_TXQ_RSVD_CLR_OFFSET 16
184#define MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu) (0x2100 + 4 * (cpu))
185#define MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu) (0x2140 + 4 * (cpu))
186#define MVPP2_AGGR_TXQ_DESC_SIZE_MASK 0x3ff0
187#define MVPP2_AGGR_TXQ_STATUS_REG(cpu) (0x2180 + 4 * (cpu))
188#define MVPP2_AGGR_TXQ_PENDING_MASK 0x3fff
189#define MVPP2_AGGR_TXQ_INDEX_REG(cpu) (0x21c0 + 4 * (cpu))
190
191/* MBUS bridge registers */
192#define MVPP2_WIN_BASE(w) (0x4000 + ((w) << 2))
193#define MVPP2_WIN_SIZE(w) (0x4020 + ((w) << 2))
194#define MVPP2_WIN_REMAP(w) (0x4040 + ((w) << 2))
195#define MVPP2_BASE_ADDR_ENABLE 0x4060
196
197/* Interrupt Cause and Mask registers */
198#define MVPP2_ISR_RX_THRESHOLD_REG(rxq) (0x5200 + 4 * (rxq))
199#define MVPP2_ISR_RXQ_GROUP_REG(rxq) (0x5400 + 4 * (rxq))
200#define MVPP2_ISR_ENABLE_REG(port) (0x5420 + 4 * (port))
201#define MVPP2_ISR_ENABLE_INTERRUPT(mask) ((mask) & 0xffff)
202#define MVPP2_ISR_DISABLE_INTERRUPT(mask) (((mask) << 16) & 0xffff0000)
203#define MVPP2_ISR_RX_TX_CAUSE_REG(port) (0x5480 + 4 * (port))
204#define MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK 0xffff
205#define MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK 0xff0000
206#define MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK BIT(24)
207#define MVPP2_CAUSE_FCS_ERR_MASK BIT(25)
208#define MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK BIT(26)
209#define MVPP2_CAUSE_TX_EXCEPTION_SUM_MASK BIT(29)
210#define MVPP2_CAUSE_RX_EXCEPTION_SUM_MASK BIT(30)
211#define MVPP2_CAUSE_MISC_SUM_MASK BIT(31)
212#define MVPP2_ISR_RX_TX_MASK_REG(port) (0x54a0 + 4 * (port))
213#define MVPP2_ISR_PON_RX_TX_MASK_REG 0x54bc
214#define MVPP2_PON_CAUSE_RXQ_OCCUP_DESC_ALL_MASK 0xffff
215#define MVPP2_PON_CAUSE_TXP_OCCUP_DESC_ALL_MASK 0x3fc00000
216#define MVPP2_PON_CAUSE_MISC_SUM_MASK BIT(31)
217#define MVPP2_ISR_MISC_CAUSE_REG 0x55b0
218
219/* Buffer Manager registers */
220#define MVPP2_BM_POOL_BASE_REG(pool) (0x6000 + ((pool) * 4))
221#define MVPP2_BM_POOL_BASE_ADDR_MASK 0xfffff80
222#define MVPP2_BM_POOL_SIZE_REG(pool) (0x6040 + ((pool) * 4))
223#define MVPP2_BM_POOL_SIZE_MASK 0xfff0
224#define MVPP2_BM_POOL_READ_PTR_REG(pool) (0x6080 + ((pool) * 4))
225#define MVPP2_BM_POOL_GET_READ_PTR_MASK 0xfff0
226#define MVPP2_BM_POOL_PTRS_NUM_REG(pool) (0x60c0 + ((pool) * 4))
227#define MVPP2_BM_POOL_PTRS_NUM_MASK 0xfff0
228#define MVPP2_BM_BPPI_READ_PTR_REG(pool) (0x6100 + ((pool) * 4))
229#define MVPP2_BM_BPPI_PTRS_NUM_REG(pool) (0x6140 + ((pool) * 4))
230#define MVPP2_BM_BPPI_PTR_NUM_MASK 0x7ff
231#define MVPP2_BM_BPPI_PREFETCH_FULL_MASK BIT(16)
232#define MVPP2_BM_POOL_CTRL_REG(pool) (0x6200 + ((pool) * 4))
233#define MVPP2_BM_START_MASK BIT(0)
234#define MVPP2_BM_STOP_MASK BIT(1)
235#define MVPP2_BM_STATE_MASK BIT(4)
236#define MVPP2_BM_LOW_THRESH_OFFS 8
237#define MVPP2_BM_LOW_THRESH_MASK 0x7f00
238#define MVPP2_BM_LOW_THRESH_VALUE(val) ((val) << \
239 MVPP2_BM_LOW_THRESH_OFFS)
240#define MVPP2_BM_HIGH_THRESH_OFFS 16
241#define MVPP2_BM_HIGH_THRESH_MASK 0x7f0000
242#define MVPP2_BM_HIGH_THRESH_VALUE(val) ((val) << \
243 MVPP2_BM_HIGH_THRESH_OFFS)
244#define MVPP2_BM_INTR_CAUSE_REG(pool) (0x6240 + ((pool) * 4))
245#define MVPP2_BM_RELEASED_DELAY_MASK BIT(0)
246#define MVPP2_BM_ALLOC_FAILED_MASK BIT(1)
247#define MVPP2_BM_BPPE_EMPTY_MASK BIT(2)
248#define MVPP2_BM_BPPE_FULL_MASK BIT(3)
249#define MVPP2_BM_AVAILABLE_BP_LOW_MASK BIT(4)
250#define MVPP2_BM_INTR_MASK_REG(pool) (0x6280 + ((pool) * 4))
251#define MVPP2_BM_PHY_ALLOC_REG(pool) (0x6400 + ((pool) * 4))
252#define MVPP2_BM_PHY_ALLOC_GRNTD_MASK BIT(0)
253#define MVPP2_BM_VIRT_ALLOC_REG 0x6440
254#define MVPP2_BM_PHY_RLS_REG(pool) (0x6480 + ((pool) * 4))
255#define MVPP2_BM_PHY_RLS_MC_BUFF_MASK BIT(0)
256#define MVPP2_BM_PHY_RLS_PRIO_EN_MASK BIT(1)
257#define MVPP2_BM_PHY_RLS_GRNTD_MASK BIT(2)
258#define MVPP2_BM_VIRT_RLS_REG 0x64c0
259#define MVPP2_BM_MC_RLS_REG 0x64c4
260#define MVPP2_BM_MC_ID_MASK 0xfff
261#define MVPP2_BM_FORCE_RELEASE_MASK BIT(12)
262
263/* TX Scheduler registers */
264#define MVPP2_TXP_SCHED_PORT_INDEX_REG 0x8000
265#define MVPP2_TXP_SCHED_Q_CMD_REG 0x8004
266#define MVPP2_TXP_SCHED_ENQ_MASK 0xff
267#define MVPP2_TXP_SCHED_DISQ_OFFSET 8
268#define MVPP2_TXP_SCHED_CMD_1_REG 0x8010
269#define MVPP2_TXP_SCHED_PERIOD_REG 0x8018
270#define MVPP2_TXP_SCHED_MTU_REG 0x801c
271#define MVPP2_TXP_MTU_MAX 0x7FFFF
272#define MVPP2_TXP_SCHED_REFILL_REG 0x8020
273#define MVPP2_TXP_REFILL_TOKENS_ALL_MASK 0x7ffff
274#define MVPP2_TXP_REFILL_PERIOD_ALL_MASK 0x3ff00000
275#define MVPP2_TXP_REFILL_PERIOD_MASK(v) ((v) << 20)
276#define MVPP2_TXP_SCHED_TOKEN_SIZE_REG 0x8024
277#define MVPP2_TXP_TOKEN_SIZE_MAX 0xffffffff
278#define MVPP2_TXQ_SCHED_REFILL_REG(q) (0x8040 + ((q) << 2))
279#define MVPP2_TXQ_REFILL_TOKENS_ALL_MASK 0x7ffff
280#define MVPP2_TXQ_REFILL_PERIOD_ALL_MASK 0x3ff00000
281#define MVPP2_TXQ_REFILL_PERIOD_MASK(v) ((v) << 20)
282#define MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(q) (0x8060 + ((q) << 2))
283#define MVPP2_TXQ_TOKEN_SIZE_MAX 0x7fffffff
284#define MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(q) (0x8080 + ((q) << 2))
285#define MVPP2_TXQ_TOKEN_CNTR_MAX 0xffffffff
286
287/* TX general registers */
288#define MVPP2_TX_SNOOP_REG 0x8800
289#define MVPP2_TX_PORT_FLUSH_REG 0x8810
290#define MVPP2_TX_PORT_FLUSH_MASK(port) (1 << (port))
291
292/* LMS registers */
293#define MVPP2_SRC_ADDR_MIDDLE 0x24
294#define MVPP2_SRC_ADDR_HIGH 0x28
295#define MVPP2_PHY_AN_CFG0_REG 0x34
296#define MVPP2_PHY_AN_STOP_SMI0_MASK BIT(7)
Stefan Roese99d4c6d2016-02-10 07:22:10 +0100297#define MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG 0x305c
Thomas Petazzoni6b28f422017-02-15 12:16:23 +0100298#define MVPP2_EXT_GLOBAL_CTRL_DEFAULT 0x27
Stefan Roese99d4c6d2016-02-10 07:22:10 +0100299
300/* Per-port registers */
301#define MVPP2_GMAC_CTRL_0_REG 0x0
302#define MVPP2_GMAC_PORT_EN_MASK BIT(0)
303#define MVPP2_GMAC_MAX_RX_SIZE_OFFS 2
304#define MVPP2_GMAC_MAX_RX_SIZE_MASK 0x7ffc
305#define MVPP2_GMAC_MIB_CNTR_EN_MASK BIT(15)
306#define MVPP2_GMAC_CTRL_1_REG 0x4
307#define MVPP2_GMAC_PERIODIC_XON_EN_MASK BIT(1)
308#define MVPP2_GMAC_GMII_LB_EN_MASK BIT(5)
309#define MVPP2_GMAC_PCS_LB_EN_BIT 6
310#define MVPP2_GMAC_PCS_LB_EN_MASK BIT(6)
311#define MVPP2_GMAC_SA_LOW_OFFS 7
312#define MVPP2_GMAC_CTRL_2_REG 0x8
313#define MVPP2_GMAC_INBAND_AN_MASK BIT(0)
314#define MVPP2_GMAC_PCS_ENABLE_MASK BIT(3)
315#define MVPP2_GMAC_PORT_RGMII_MASK BIT(4)
316#define MVPP2_GMAC_PORT_RESET_MASK BIT(6)
317#define MVPP2_GMAC_AUTONEG_CONFIG 0xc
318#define MVPP2_GMAC_FORCE_LINK_DOWN BIT(0)
319#define MVPP2_GMAC_FORCE_LINK_PASS BIT(1)
320#define MVPP2_GMAC_CONFIG_MII_SPEED BIT(5)
321#define MVPP2_GMAC_CONFIG_GMII_SPEED BIT(6)
322#define MVPP2_GMAC_AN_SPEED_EN BIT(7)
323#define MVPP2_GMAC_FC_ADV_EN BIT(9)
324#define MVPP2_GMAC_CONFIG_FULL_DUPLEX BIT(12)
325#define MVPP2_GMAC_AN_DUPLEX_EN BIT(13)
326#define MVPP2_GMAC_PORT_FIFO_CFG_1_REG 0x1c
327#define MVPP2_GMAC_TX_FIFO_MIN_TH_OFFS 6
328#define MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK 0x1fc0
329#define MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(v) (((v) << 6) & \
330 MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK)
331
332#define MVPP2_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
333
334/* Descriptor ring Macros */
335#define MVPP2_QUEUE_NEXT_DESC(q, index) \
336 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
337
338/* SMI: 0xc0054 -> offset 0x54 to lms_base */
339#define MVPP2_SMI 0x0054
340#define MVPP2_PHY_REG_MASK 0x1f
341/* SMI register fields */
342#define MVPP2_SMI_DATA_OFFS 0 /* Data */
343#define MVPP2_SMI_DATA_MASK (0xffff << MVPP2_SMI_DATA_OFFS)
344#define MVPP2_SMI_DEV_ADDR_OFFS 16 /* PHY device address */
345#define MVPP2_SMI_REG_ADDR_OFFS 21 /* PHY device reg addr*/
346#define MVPP2_SMI_OPCODE_OFFS 26 /* Write/Read opcode */
347#define MVPP2_SMI_OPCODE_READ (1 << MVPP2_SMI_OPCODE_OFFS)
348#define MVPP2_SMI_READ_VALID (1 << 27) /* Read Valid */
349#define MVPP2_SMI_BUSY (1 << 28) /* Busy */
350
351#define MVPP2_PHY_ADDR_MASK 0x1f
352#define MVPP2_PHY_REG_MASK 0x1f
353
354/* Various constants */
355
356/* Coalescing */
357#define MVPP2_TXDONE_COAL_PKTS_THRESH 15
358#define MVPP2_TXDONE_HRTIMER_PERIOD_NS 1000000UL
359#define MVPP2_RX_COAL_PKTS 32
360#define MVPP2_RX_COAL_USEC 100
361
362/* The two bytes Marvell header. Either contains a special value used
363 * by Marvell switches when a specific hardware mode is enabled (not
364 * supported by this driver) or is filled automatically by zeroes on
365 * the RX side. Those two bytes being at the front of the Ethernet
366 * header, they allow to have the IP header aligned on a 4 bytes
367 * boundary automatically: the hardware skips those two bytes on its
368 * own.
369 */
370#define MVPP2_MH_SIZE 2
371#define MVPP2_ETH_TYPE_LEN 2
372#define MVPP2_PPPOE_HDR_SIZE 8
373#define MVPP2_VLAN_TAG_LEN 4
374
375/* Lbtd 802.3 type */
376#define MVPP2_IP_LBDT_TYPE 0xfffa
377
378#define MVPP2_CPU_D_CACHE_LINE_SIZE 32
379#define MVPP2_TX_CSUM_MAX_SIZE 9800
380
381/* Timeout constants */
382#define MVPP2_TX_DISABLE_TIMEOUT_MSEC 1000
383#define MVPP2_TX_PENDING_TIMEOUT_MSEC 1000
384
385#define MVPP2_TX_MTU_MAX 0x7ffff
386
387/* Maximum number of T-CONTs of PON port */
388#define MVPP2_MAX_TCONT 16
389
390/* Maximum number of supported ports */
391#define MVPP2_MAX_PORTS 4
392
393/* Maximum number of TXQs used by single port */
394#define MVPP2_MAX_TXQ 8
395
396/* Maximum number of RXQs used by single port */
397#define MVPP2_MAX_RXQ 8
398
399/* Default number of TXQs in use */
400#define MVPP2_DEFAULT_TXQ 1
401
402/* Dfault number of RXQs in use */
403#define MVPP2_DEFAULT_RXQ 1
404#define CONFIG_MV_ETH_RXQ 8 /* increment by 8 */
405
406/* Total number of RXQs available to all ports */
407#define MVPP2_RXQ_TOTAL_NUM (MVPP2_MAX_PORTS * MVPP2_MAX_RXQ)
408
409/* Max number of Rx descriptors */
410#define MVPP2_MAX_RXD 16
411
412/* Max number of Tx descriptors */
413#define MVPP2_MAX_TXD 16
414
415/* Amount of Tx descriptors that can be reserved at once by CPU */
416#define MVPP2_CPU_DESC_CHUNK 64
417
418/* Max number of Tx descriptors in each aggregated queue */
419#define MVPP2_AGGR_TXQ_SIZE 256
420
421/* Descriptor aligned size */
422#define MVPP2_DESC_ALIGNED_SIZE 32
423
424/* Descriptor alignment mask */
425#define MVPP2_TX_DESC_ALIGN (MVPP2_DESC_ALIGNED_SIZE - 1)
426
427/* RX FIFO constants */
428#define MVPP2_RX_FIFO_PORT_DATA_SIZE 0x2000
429#define MVPP2_RX_FIFO_PORT_ATTR_SIZE 0x80
430#define MVPP2_RX_FIFO_PORT_MIN_PKT 0x80
431
432/* RX buffer constants */
433#define MVPP2_SKB_SHINFO_SIZE \
434 0
435
436#define MVPP2_RX_PKT_SIZE(mtu) \
437 ALIGN((mtu) + MVPP2_MH_SIZE + MVPP2_VLAN_TAG_LEN + \
438 ETH_HLEN + ETH_FCS_LEN, MVPP2_CPU_D_CACHE_LINE_SIZE)
439
440#define MVPP2_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD)
441#define MVPP2_RX_TOTAL_SIZE(buf_size) ((buf_size) + MVPP2_SKB_SHINFO_SIZE)
442#define MVPP2_RX_MAX_PKT_SIZE(total_size) \
443 ((total_size) - NET_SKB_PAD - MVPP2_SKB_SHINFO_SIZE)
444
445#define MVPP2_BIT_TO_BYTE(bit) ((bit) / 8)
446
447/* IPv6 max L3 address size */
448#define MVPP2_MAX_L3_ADDR_SIZE 16
449
450/* Port flags */
451#define MVPP2_F_LOOPBACK BIT(0)
452
453/* Marvell tag types */
454enum mvpp2_tag_type {
455 MVPP2_TAG_TYPE_NONE = 0,
456 MVPP2_TAG_TYPE_MH = 1,
457 MVPP2_TAG_TYPE_DSA = 2,
458 MVPP2_TAG_TYPE_EDSA = 3,
459 MVPP2_TAG_TYPE_VLAN = 4,
460 MVPP2_TAG_TYPE_LAST = 5
461};
462
463/* Parser constants */
464#define MVPP2_PRS_TCAM_SRAM_SIZE 256
465#define MVPP2_PRS_TCAM_WORDS 6
466#define MVPP2_PRS_SRAM_WORDS 4
467#define MVPP2_PRS_FLOW_ID_SIZE 64
468#define MVPP2_PRS_FLOW_ID_MASK 0x3f
469#define MVPP2_PRS_TCAM_ENTRY_INVALID 1
470#define MVPP2_PRS_TCAM_DSA_TAGGED_BIT BIT(5)
471#define MVPP2_PRS_IPV4_HEAD 0x40
472#define MVPP2_PRS_IPV4_HEAD_MASK 0xf0
473#define MVPP2_PRS_IPV4_MC 0xe0
474#define MVPP2_PRS_IPV4_MC_MASK 0xf0
475#define MVPP2_PRS_IPV4_BC_MASK 0xff
476#define MVPP2_PRS_IPV4_IHL 0x5
477#define MVPP2_PRS_IPV4_IHL_MASK 0xf
478#define MVPP2_PRS_IPV6_MC 0xff
479#define MVPP2_PRS_IPV6_MC_MASK 0xff
480#define MVPP2_PRS_IPV6_HOP_MASK 0xff
481#define MVPP2_PRS_TCAM_PROTO_MASK 0xff
482#define MVPP2_PRS_TCAM_PROTO_MASK_L 0x3f
483#define MVPP2_PRS_DBL_VLANS_MAX 100
484
485/* Tcam structure:
486 * - lookup ID - 4 bits
487 * - port ID - 1 byte
488 * - additional information - 1 byte
489 * - header data - 8 bytes
490 * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(5)->(0).
491 */
492#define MVPP2_PRS_AI_BITS 8
493#define MVPP2_PRS_PORT_MASK 0xff
494#define MVPP2_PRS_LU_MASK 0xf
495#define MVPP2_PRS_TCAM_DATA_BYTE(offs) \
496 (((offs) - ((offs) % 2)) * 2 + ((offs) % 2))
497#define MVPP2_PRS_TCAM_DATA_BYTE_EN(offs) \
498 (((offs) * 2) - ((offs) % 2) + 2)
499#define MVPP2_PRS_TCAM_AI_BYTE 16
500#define MVPP2_PRS_TCAM_PORT_BYTE 17
501#define MVPP2_PRS_TCAM_LU_BYTE 20
502#define MVPP2_PRS_TCAM_EN_OFFS(offs) ((offs) + 2)
503#define MVPP2_PRS_TCAM_INV_WORD 5
504/* Tcam entries ID */
505#define MVPP2_PE_DROP_ALL 0
506#define MVPP2_PE_FIRST_FREE_TID 1
507#define MVPP2_PE_LAST_FREE_TID (MVPP2_PRS_TCAM_SRAM_SIZE - 31)
508#define MVPP2_PE_IP6_EXT_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 30)
509#define MVPP2_PE_MAC_MC_IP6 (MVPP2_PRS_TCAM_SRAM_SIZE - 29)
510#define MVPP2_PE_IP6_ADDR_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 28)
511#define MVPP2_PE_IP4_ADDR_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 27)
512#define MVPP2_PE_LAST_DEFAULT_FLOW (MVPP2_PRS_TCAM_SRAM_SIZE - 26)
513#define MVPP2_PE_FIRST_DEFAULT_FLOW (MVPP2_PRS_TCAM_SRAM_SIZE - 19)
514#define MVPP2_PE_EDSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 18)
515#define MVPP2_PE_EDSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 17)
516#define MVPP2_PE_DSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 16)
517#define MVPP2_PE_DSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 15)
518#define MVPP2_PE_ETYPE_EDSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 14)
519#define MVPP2_PE_ETYPE_EDSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 13)
520#define MVPP2_PE_ETYPE_DSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 12)
521#define MVPP2_PE_ETYPE_DSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 11)
522#define MVPP2_PE_MH_DEFAULT (MVPP2_PRS_TCAM_SRAM_SIZE - 10)
523#define MVPP2_PE_DSA_DEFAULT (MVPP2_PRS_TCAM_SRAM_SIZE - 9)
524#define MVPP2_PE_IP6_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 8)
525#define MVPP2_PE_IP4_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 7)
526#define MVPP2_PE_ETH_TYPE_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 6)
527#define MVPP2_PE_VLAN_DBL (MVPP2_PRS_TCAM_SRAM_SIZE - 5)
528#define MVPP2_PE_VLAN_NONE (MVPP2_PRS_TCAM_SRAM_SIZE - 4)
529#define MVPP2_PE_MAC_MC_ALL (MVPP2_PRS_TCAM_SRAM_SIZE - 3)
530#define MVPP2_PE_MAC_PROMISCUOUS (MVPP2_PRS_TCAM_SRAM_SIZE - 2)
531#define MVPP2_PE_MAC_NON_PROMISCUOUS (MVPP2_PRS_TCAM_SRAM_SIZE - 1)
532
533/* Sram structure
534 * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(3)->(0).
535 */
536#define MVPP2_PRS_SRAM_RI_OFFS 0
537#define MVPP2_PRS_SRAM_RI_WORD 0
538#define MVPP2_PRS_SRAM_RI_CTRL_OFFS 32
539#define MVPP2_PRS_SRAM_RI_CTRL_WORD 1
540#define MVPP2_PRS_SRAM_RI_CTRL_BITS 32
541#define MVPP2_PRS_SRAM_SHIFT_OFFS 64
542#define MVPP2_PRS_SRAM_SHIFT_SIGN_BIT 72
543#define MVPP2_PRS_SRAM_UDF_OFFS 73
544#define MVPP2_PRS_SRAM_UDF_BITS 8
545#define MVPP2_PRS_SRAM_UDF_MASK 0xff
546#define MVPP2_PRS_SRAM_UDF_SIGN_BIT 81
547#define MVPP2_PRS_SRAM_UDF_TYPE_OFFS 82
548#define MVPP2_PRS_SRAM_UDF_TYPE_MASK 0x7
549#define MVPP2_PRS_SRAM_UDF_TYPE_L3 1
550#define MVPP2_PRS_SRAM_UDF_TYPE_L4 4
551#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS 85
552#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK 0x3
553#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD 1
554#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP4_ADD 2
555#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP6_ADD 3
556#define MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS 87
557#define MVPP2_PRS_SRAM_OP_SEL_UDF_BITS 2
558#define MVPP2_PRS_SRAM_OP_SEL_UDF_MASK 0x3
559#define MVPP2_PRS_SRAM_OP_SEL_UDF_ADD 0
560#define MVPP2_PRS_SRAM_OP_SEL_UDF_IP4_ADD 2
561#define MVPP2_PRS_SRAM_OP_SEL_UDF_IP6_ADD 3
562#define MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS 89
563#define MVPP2_PRS_SRAM_AI_OFFS 90
564#define MVPP2_PRS_SRAM_AI_CTRL_OFFS 98
565#define MVPP2_PRS_SRAM_AI_CTRL_BITS 8
566#define MVPP2_PRS_SRAM_AI_MASK 0xff
567#define MVPP2_PRS_SRAM_NEXT_LU_OFFS 106
568#define MVPP2_PRS_SRAM_NEXT_LU_MASK 0xf
569#define MVPP2_PRS_SRAM_LU_DONE_BIT 110
570#define MVPP2_PRS_SRAM_LU_GEN_BIT 111
571
572/* Sram result info bits assignment */
573#define MVPP2_PRS_RI_MAC_ME_MASK 0x1
574#define MVPP2_PRS_RI_DSA_MASK 0x2
575#define MVPP2_PRS_RI_VLAN_MASK 0xc
576#define MVPP2_PRS_RI_VLAN_NONE ~(BIT(2) | BIT(3))
577#define MVPP2_PRS_RI_VLAN_SINGLE BIT(2)
578#define MVPP2_PRS_RI_VLAN_DOUBLE BIT(3)
579#define MVPP2_PRS_RI_VLAN_TRIPLE (BIT(2) | BIT(3))
580#define MVPP2_PRS_RI_CPU_CODE_MASK 0x70
581#define MVPP2_PRS_RI_CPU_CODE_RX_SPEC BIT(4)
582#define MVPP2_PRS_RI_L2_CAST_MASK 0x600
583#define MVPP2_PRS_RI_L2_UCAST ~(BIT(9) | BIT(10))
584#define MVPP2_PRS_RI_L2_MCAST BIT(9)
585#define MVPP2_PRS_RI_L2_BCAST BIT(10)
586#define MVPP2_PRS_RI_PPPOE_MASK 0x800
587#define MVPP2_PRS_RI_L3_PROTO_MASK 0x7000
588#define MVPP2_PRS_RI_L3_UN ~(BIT(12) | BIT(13) | BIT(14))
589#define MVPP2_PRS_RI_L3_IP4 BIT(12)
590#define MVPP2_PRS_RI_L3_IP4_OPT BIT(13)
591#define MVPP2_PRS_RI_L3_IP4_OTHER (BIT(12) | BIT(13))
592#define MVPP2_PRS_RI_L3_IP6 BIT(14)
593#define MVPP2_PRS_RI_L3_IP6_EXT (BIT(12) | BIT(14))
594#define MVPP2_PRS_RI_L3_ARP (BIT(13) | BIT(14))
595#define MVPP2_PRS_RI_L3_ADDR_MASK 0x18000
596#define MVPP2_PRS_RI_L3_UCAST ~(BIT(15) | BIT(16))
597#define MVPP2_PRS_RI_L3_MCAST BIT(15)
598#define MVPP2_PRS_RI_L3_BCAST (BIT(15) | BIT(16))
599#define MVPP2_PRS_RI_IP_FRAG_MASK 0x20000
600#define MVPP2_PRS_RI_UDF3_MASK 0x300000
601#define MVPP2_PRS_RI_UDF3_RX_SPECIAL BIT(21)
602#define MVPP2_PRS_RI_L4_PROTO_MASK 0x1c00000
603#define MVPP2_PRS_RI_L4_TCP BIT(22)
604#define MVPP2_PRS_RI_L4_UDP BIT(23)
605#define MVPP2_PRS_RI_L4_OTHER (BIT(22) | BIT(23))
606#define MVPP2_PRS_RI_UDF7_MASK 0x60000000
607#define MVPP2_PRS_RI_UDF7_IP6_LITE BIT(29)
608#define MVPP2_PRS_RI_DROP_MASK 0x80000000
609
610/* Sram additional info bits assignment */
611#define MVPP2_PRS_IPV4_DIP_AI_BIT BIT(0)
612#define MVPP2_PRS_IPV6_NO_EXT_AI_BIT BIT(0)
613#define MVPP2_PRS_IPV6_EXT_AI_BIT BIT(1)
614#define MVPP2_PRS_IPV6_EXT_AH_AI_BIT BIT(2)
615#define MVPP2_PRS_IPV6_EXT_AH_LEN_AI_BIT BIT(3)
616#define MVPP2_PRS_IPV6_EXT_AH_L4_AI_BIT BIT(4)
617#define MVPP2_PRS_SINGLE_VLAN_AI 0
618#define MVPP2_PRS_DBL_VLAN_AI_BIT BIT(7)
619
620/* DSA/EDSA type */
621#define MVPP2_PRS_TAGGED true
622#define MVPP2_PRS_UNTAGGED false
623#define MVPP2_PRS_EDSA true
624#define MVPP2_PRS_DSA false
625
626/* MAC entries, shadow udf */
627enum mvpp2_prs_udf {
628 MVPP2_PRS_UDF_MAC_DEF,
629 MVPP2_PRS_UDF_MAC_RANGE,
630 MVPP2_PRS_UDF_L2_DEF,
631 MVPP2_PRS_UDF_L2_DEF_COPY,
632 MVPP2_PRS_UDF_L2_USER,
633};
634
635/* Lookup ID */
636enum mvpp2_prs_lookup {
637 MVPP2_PRS_LU_MH,
638 MVPP2_PRS_LU_MAC,
639 MVPP2_PRS_LU_DSA,
640 MVPP2_PRS_LU_VLAN,
641 MVPP2_PRS_LU_L2,
642 MVPP2_PRS_LU_PPPOE,
643 MVPP2_PRS_LU_IP4,
644 MVPP2_PRS_LU_IP6,
645 MVPP2_PRS_LU_FLOWS,
646 MVPP2_PRS_LU_LAST,
647};
648
649/* L3 cast enum */
650enum mvpp2_prs_l3_cast {
651 MVPP2_PRS_L3_UNI_CAST,
652 MVPP2_PRS_L3_MULTI_CAST,
653 MVPP2_PRS_L3_BROAD_CAST
654};
655
656/* Classifier constants */
657#define MVPP2_CLS_FLOWS_TBL_SIZE 512
658#define MVPP2_CLS_FLOWS_TBL_DATA_WORDS 3
659#define MVPP2_CLS_LKP_TBL_SIZE 64
660
661/* BM constants */
662#define MVPP2_BM_POOLS_NUM 1
663#define MVPP2_BM_LONG_BUF_NUM 16
664#define MVPP2_BM_SHORT_BUF_NUM 16
665#define MVPP2_BM_POOL_SIZE_MAX (16*1024 - MVPP2_BM_POOL_PTR_ALIGN/4)
666#define MVPP2_BM_POOL_PTR_ALIGN 128
667#define MVPP2_BM_SWF_LONG_POOL(port) 0
668
669/* BM cookie (32 bits) definition */
670#define MVPP2_BM_COOKIE_POOL_OFFS 8
671#define MVPP2_BM_COOKIE_CPU_OFFS 24
672
673/* BM short pool packet size
674 * These value assure that for SWF the total number
675 * of bytes allocated for each buffer will be 512
676 */
677#define MVPP2_BM_SHORT_PKT_SIZE MVPP2_RX_MAX_PKT_SIZE(512)
678
679enum mvpp2_bm_type {
680 MVPP2_BM_FREE,
681 MVPP2_BM_SWF_LONG,
682 MVPP2_BM_SWF_SHORT
683};
684
685/* Definitions */
686
687/* Shared Packet Processor resources */
688struct mvpp2 {
689 /* Shared registers' base addresses */
690 void __iomem *base;
691 void __iomem *lms_base;
692
693 /* List of pointers to port structures */
694 struct mvpp2_port **port_list;
695
696 /* Aggregated TXQs */
697 struct mvpp2_tx_queue *aggr_txqs;
698
699 /* BM pools */
700 struct mvpp2_bm_pool *bm_pools;
701
702 /* PRS shadow table */
703 struct mvpp2_prs_shadow *prs_shadow;
704 /* PRS auxiliary table for double vlan entries control */
705 bool *prs_double_vlans;
706
707 /* Tclk value */
708 u32 tclk;
709
710 struct mii_dev *bus;
711};
712
713struct mvpp2_pcpu_stats {
714 u64 rx_packets;
715 u64 rx_bytes;
716 u64 tx_packets;
717 u64 tx_bytes;
718};
719
720struct mvpp2_port {
721 u8 id;
722
723 int irq;
724
725 struct mvpp2 *priv;
726
727 /* Per-port registers' base address */
728 void __iomem *base;
729
730 struct mvpp2_rx_queue **rxqs;
731 struct mvpp2_tx_queue **txqs;
732
733 int pkt_size;
734
735 u32 pending_cause_rx;
736
737 /* Per-CPU port control */
738 struct mvpp2_port_pcpu __percpu *pcpu;
739
740 /* Flags */
741 unsigned long flags;
742
743 u16 tx_ring_size;
744 u16 rx_ring_size;
745 struct mvpp2_pcpu_stats __percpu *stats;
746
747 struct phy_device *phy_dev;
748 phy_interface_t phy_interface;
749 int phy_node;
750 int phyaddr;
751 int init;
752 unsigned int link;
753 unsigned int duplex;
754 unsigned int speed;
755
756 struct mvpp2_bm_pool *pool_long;
757 struct mvpp2_bm_pool *pool_short;
758
759 /* Index of first port's physical RXQ */
760 u8 first_rxq;
761
762 u8 dev_addr[ETH_ALEN];
763};
764
765/* The mvpp2_tx_desc and mvpp2_rx_desc structures describe the
766 * layout of the transmit and reception DMA descriptors, and their
767 * layout is therefore defined by the hardware design
768 */
769
770#define MVPP2_TXD_L3_OFF_SHIFT 0
771#define MVPP2_TXD_IP_HLEN_SHIFT 8
772#define MVPP2_TXD_L4_CSUM_FRAG BIT(13)
773#define MVPP2_TXD_L4_CSUM_NOT BIT(14)
774#define MVPP2_TXD_IP_CSUM_DISABLE BIT(15)
775#define MVPP2_TXD_PADDING_DISABLE BIT(23)
776#define MVPP2_TXD_L4_UDP BIT(24)
777#define MVPP2_TXD_L3_IP6 BIT(26)
778#define MVPP2_TXD_L_DESC BIT(28)
779#define MVPP2_TXD_F_DESC BIT(29)
780
781#define MVPP2_RXD_ERR_SUMMARY BIT(15)
782#define MVPP2_RXD_ERR_CODE_MASK (BIT(13) | BIT(14))
783#define MVPP2_RXD_ERR_CRC 0x0
784#define MVPP2_RXD_ERR_OVERRUN BIT(13)
785#define MVPP2_RXD_ERR_RESOURCE (BIT(13) | BIT(14))
786#define MVPP2_RXD_BM_POOL_ID_OFFS 16
787#define MVPP2_RXD_BM_POOL_ID_MASK (BIT(16) | BIT(17) | BIT(18))
788#define MVPP2_RXD_HWF_SYNC BIT(21)
789#define MVPP2_RXD_L4_CSUM_OK BIT(22)
790#define MVPP2_RXD_IP4_HEADER_ERR BIT(24)
791#define MVPP2_RXD_L4_TCP BIT(25)
792#define MVPP2_RXD_L4_UDP BIT(26)
793#define MVPP2_RXD_L3_IP4 BIT(28)
794#define MVPP2_RXD_L3_IP6 BIT(30)
795#define MVPP2_RXD_BUF_HDR BIT(31)
796
797struct mvpp2_tx_desc {
798 u32 command; /* Options used by HW for packet transmitting.*/
799 u8 packet_offset; /* the offset from the buffer beginning */
800 u8 phys_txq; /* destination queue ID */
801 u16 data_size; /* data size of transmitted packet in bytes */
802 u32 buf_phys_addr; /* physical addr of transmitted buffer */
803 u32 buf_cookie; /* cookie for access to TX buffer in tx path */
804 u32 reserved1[3]; /* hw_cmd (for future use, BM, PON, PNC) */
805 u32 reserved2; /* reserved (for future use) */
806};
807
808struct mvpp2_rx_desc {
809 u32 status; /* info about received packet */
810 u16 reserved1; /* parser_info (for future use, PnC) */
811 u16 data_size; /* size of received packet in bytes */
812 u32 buf_phys_addr; /* physical address of the buffer */
813 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
814 u16 reserved2; /* gem_port_id (for future use, PON) */
815 u16 reserved3; /* csum_l4 (for future use, PnC) */
816 u8 reserved4; /* bm_qset (for future use, BM) */
817 u8 reserved5;
818 u16 reserved6; /* classify_info (for future use, PnC) */
819 u32 reserved7; /* flow_id (for future use, PnC) */
820 u32 reserved8;
821};
822
823/* Per-CPU Tx queue control */
824struct mvpp2_txq_pcpu {
825 int cpu;
826
827 /* Number of Tx DMA descriptors in the descriptor ring */
828 int size;
829
830 /* Number of currently used Tx DMA descriptor in the
831 * descriptor ring
832 */
833 int count;
834
835 /* Number of Tx DMA descriptors reserved for each CPU */
836 int reserved_num;
837
838 /* Index of last TX DMA descriptor that was inserted */
839 int txq_put_index;
840
841 /* Index of the TX DMA descriptor to be cleaned up */
842 int txq_get_index;
843};
844
845struct mvpp2_tx_queue {
846 /* Physical number of this Tx queue */
847 u8 id;
848
849 /* Logical number of this Tx queue */
850 u8 log_id;
851
852 /* Number of Tx DMA descriptors in the descriptor ring */
853 int size;
854
855 /* Number of currently used Tx DMA descriptor in the descriptor ring */
856 int count;
857
858 /* Per-CPU control of physical Tx queues */
859 struct mvpp2_txq_pcpu __percpu *pcpu;
860
861 u32 done_pkts_coal;
862
863 /* Virtual address of thex Tx DMA descriptors array */
864 struct mvpp2_tx_desc *descs;
865
866 /* DMA address of the Tx DMA descriptors array */
867 dma_addr_t descs_phys;
868
869 /* Index of the last Tx DMA descriptor */
870 int last_desc;
871
872 /* Index of the next Tx DMA descriptor to process */
873 int next_desc_to_proc;
874};
875
876struct mvpp2_rx_queue {
877 /* RX queue number, in the range 0-31 for physical RXQs */
878 u8 id;
879
880 /* Num of rx descriptors in the rx descriptor ring */
881 int size;
882
883 u32 pkts_coal;
884 u32 time_coal;
885
886 /* Virtual address of the RX DMA descriptors array */
887 struct mvpp2_rx_desc *descs;
888
889 /* DMA address of the RX DMA descriptors array */
890 dma_addr_t descs_phys;
891
892 /* Index of the last RX DMA descriptor */
893 int last_desc;
894
895 /* Index of the next RX DMA descriptor to process */
896 int next_desc_to_proc;
897
898 /* ID of port to which physical RXQ is mapped */
899 int port;
900
901 /* Port's logic RXQ number to which physical RXQ is mapped */
902 int logic_rxq;
903};
904
905union mvpp2_prs_tcam_entry {
906 u32 word[MVPP2_PRS_TCAM_WORDS];
907 u8 byte[MVPP2_PRS_TCAM_WORDS * 4];
908};
909
910union mvpp2_prs_sram_entry {
911 u32 word[MVPP2_PRS_SRAM_WORDS];
912 u8 byte[MVPP2_PRS_SRAM_WORDS * 4];
913};
914
915struct mvpp2_prs_entry {
916 u32 index;
917 union mvpp2_prs_tcam_entry tcam;
918 union mvpp2_prs_sram_entry sram;
919};
920
921struct mvpp2_prs_shadow {
922 bool valid;
923 bool finish;
924
925 /* Lookup ID */
926 int lu;
927
928 /* User defined offset */
929 int udf;
930
931 /* Result info */
932 u32 ri;
933 u32 ri_mask;
934};
935
936struct mvpp2_cls_flow_entry {
937 u32 index;
938 u32 data[MVPP2_CLS_FLOWS_TBL_DATA_WORDS];
939};
940
941struct mvpp2_cls_lookup_entry {
942 u32 lkpid;
943 u32 way;
944 u32 data;
945};
946
947struct mvpp2_bm_pool {
948 /* Pool number in the range 0-7 */
949 int id;
950 enum mvpp2_bm_type type;
951
952 /* Buffer Pointers Pool External (BPPE) size */
953 int size;
954 /* Number of buffers for this pool */
955 int buf_num;
956 /* Pool buffer size */
957 int buf_size;
958 /* Packet size */
959 int pkt_size;
960
961 /* BPPE virtual base address */
962 u32 *virt_addr;
963 /* BPPE physical base address */
964 dma_addr_t phys_addr;
965
966 /* Ports using BM pool */
967 u32 port_map;
968
969 /* Occupied buffers indicator */
970 int in_use_thresh;
971};
972
973struct mvpp2_buff_hdr {
974 u32 next_buff_phys_addr;
975 u32 next_buff_virt_addr;
976 u16 byte_count;
977 u16 info;
978 u8 reserved1; /* bm_qset (for future use, BM) */
979};
980
981/* Buffer header info bits */
982#define MVPP2_B_HDR_INFO_MC_ID_MASK 0xfff
983#define MVPP2_B_HDR_INFO_MC_ID(info) ((info) & MVPP2_B_HDR_INFO_MC_ID_MASK)
984#define MVPP2_B_HDR_INFO_LAST_OFFS 12
985#define MVPP2_B_HDR_INFO_LAST_MASK BIT(12)
986#define MVPP2_B_HDR_INFO_IS_LAST(info) \
987 ((info & MVPP2_B_HDR_INFO_LAST_MASK) >> MVPP2_B_HDR_INFO_LAST_OFFS)
988
989/* Static declaractions */
990
991/* Number of RXQs used by single port */
992static int rxq_number = MVPP2_DEFAULT_RXQ;
993/* Number of TXQs used by single port */
994static int txq_number = MVPP2_DEFAULT_TXQ;
995
996#define MVPP2_DRIVER_NAME "mvpp2"
997#define MVPP2_DRIVER_VERSION "1.0"
998
999/*
1000 * U-Boot internal data, mostly uncached buffers for descriptors and data
1001 */
1002struct buffer_location {
1003 struct mvpp2_tx_desc *aggr_tx_descs;
1004 struct mvpp2_tx_desc *tx_descs;
1005 struct mvpp2_rx_desc *rx_descs;
1006 u32 *bm_pool[MVPP2_BM_POOLS_NUM];
1007 u32 *rx_buffer[MVPP2_BM_LONG_BUF_NUM];
1008 int first_rxq;
1009};
1010
1011/*
1012 * All 4 interfaces use the same global buffer, since only one interface
1013 * can be enabled at once
1014 */
1015static struct buffer_location buffer_loc;
1016
1017/*
1018 * Page table entries are set to 1MB, or multiples of 1MB
1019 * (not < 1MB). driver uses less bd's so use 1MB bdspace.
1020 */
1021#define BD_SPACE (1 << 20)
1022
1023/* Utility/helper methods */
1024
1025static void mvpp2_write(struct mvpp2 *priv, u32 offset, u32 data)
1026{
1027 writel(data, priv->base + offset);
1028}
1029
1030static u32 mvpp2_read(struct mvpp2 *priv, u32 offset)
1031{
1032 return readl(priv->base + offset);
1033}
1034
1035static void mvpp2_txq_inc_get(struct mvpp2_txq_pcpu *txq_pcpu)
1036{
1037 txq_pcpu->txq_get_index++;
1038 if (txq_pcpu->txq_get_index == txq_pcpu->size)
1039 txq_pcpu->txq_get_index = 0;
1040}
1041
1042/* Get number of physical egress port */
1043static inline int mvpp2_egress_port(struct mvpp2_port *port)
1044{
1045 return MVPP2_MAX_TCONT + port->id;
1046}
1047
1048/* Get number of physical TXQ */
1049static inline int mvpp2_txq_phys(int port, int txq)
1050{
1051 return (MVPP2_MAX_TCONT + port) * MVPP2_MAX_TXQ + txq;
1052}
1053
1054/* Parser configuration routines */
1055
1056/* Update parser tcam and sram hw entries */
1057static int mvpp2_prs_hw_write(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
1058{
1059 int i;
1060
1061 if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
1062 return -EINVAL;
1063
1064 /* Clear entry invalidation bit */
1065 pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] &= ~MVPP2_PRS_TCAM_INV_MASK;
1066
1067 /* Write tcam index - indirect access */
1068 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1069 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1070 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), pe->tcam.word[i]);
1071
1072 /* Write sram index - indirect access */
1073 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1074 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1075 mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), pe->sram.word[i]);
1076
1077 return 0;
1078}
1079
1080/* Read tcam entry from hw */
1081static int mvpp2_prs_hw_read(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
1082{
1083 int i;
1084
1085 if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
1086 return -EINVAL;
1087
1088 /* Write tcam index - indirect access */
1089 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1090
1091 pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] = mvpp2_read(priv,
1092 MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD));
1093 if (pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] & MVPP2_PRS_TCAM_INV_MASK)
1094 return MVPP2_PRS_TCAM_ENTRY_INVALID;
1095
1096 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1097 pe->tcam.word[i] = mvpp2_read(priv, MVPP2_PRS_TCAM_DATA_REG(i));
1098
1099 /* Write sram index - indirect access */
1100 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1101 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1102 pe->sram.word[i] = mvpp2_read(priv, MVPP2_PRS_SRAM_DATA_REG(i));
1103
1104 return 0;
1105}
1106
1107/* Invalidate tcam hw entry */
1108static void mvpp2_prs_hw_inv(struct mvpp2 *priv, int index)
1109{
1110 /* Write index - indirect access */
1111 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
1112 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD),
1113 MVPP2_PRS_TCAM_INV_MASK);
1114}
1115
1116/* Enable shadow table entry and set its lookup ID */
1117static void mvpp2_prs_shadow_set(struct mvpp2 *priv, int index, int lu)
1118{
1119 priv->prs_shadow[index].valid = true;
1120 priv->prs_shadow[index].lu = lu;
1121}
1122
1123/* Update ri fields in shadow table entry */
1124static void mvpp2_prs_shadow_ri_set(struct mvpp2 *priv, int index,
1125 unsigned int ri, unsigned int ri_mask)
1126{
1127 priv->prs_shadow[index].ri_mask = ri_mask;
1128 priv->prs_shadow[index].ri = ri;
1129}
1130
1131/* Update lookup field in tcam sw entry */
1132static void mvpp2_prs_tcam_lu_set(struct mvpp2_prs_entry *pe, unsigned int lu)
1133{
1134 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_LU_BYTE);
1135
1136 pe->tcam.byte[MVPP2_PRS_TCAM_LU_BYTE] = lu;
1137 pe->tcam.byte[enable_off] = MVPP2_PRS_LU_MASK;
1138}
1139
1140/* Update mask for single port in tcam sw entry */
1141static void mvpp2_prs_tcam_port_set(struct mvpp2_prs_entry *pe,
1142 unsigned int port, bool add)
1143{
1144 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1145
1146 if (add)
1147 pe->tcam.byte[enable_off] &= ~(1 << port);
1148 else
1149 pe->tcam.byte[enable_off] |= 1 << port;
1150}
1151
1152/* Update port map in tcam sw entry */
1153static void mvpp2_prs_tcam_port_map_set(struct mvpp2_prs_entry *pe,
1154 unsigned int ports)
1155{
1156 unsigned char port_mask = MVPP2_PRS_PORT_MASK;
1157 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1158
1159 pe->tcam.byte[MVPP2_PRS_TCAM_PORT_BYTE] = 0;
1160 pe->tcam.byte[enable_off] &= ~port_mask;
1161 pe->tcam.byte[enable_off] |= ~ports & MVPP2_PRS_PORT_MASK;
1162}
1163
1164/* Obtain port map from tcam sw entry */
1165static unsigned int mvpp2_prs_tcam_port_map_get(struct mvpp2_prs_entry *pe)
1166{
1167 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1168
1169 return ~(pe->tcam.byte[enable_off]) & MVPP2_PRS_PORT_MASK;
1170}
1171
1172/* Set byte of data and its enable bits in tcam sw entry */
1173static void mvpp2_prs_tcam_data_byte_set(struct mvpp2_prs_entry *pe,
1174 unsigned int offs, unsigned char byte,
1175 unsigned char enable)
1176{
1177 pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)] = byte;
1178 pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)] = enable;
1179}
1180
1181/* Get byte of data and its enable bits from tcam sw entry */
1182static void mvpp2_prs_tcam_data_byte_get(struct mvpp2_prs_entry *pe,
1183 unsigned int offs, unsigned char *byte,
1184 unsigned char *enable)
1185{
1186 *byte = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)];
1187 *enable = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)];
1188}
1189
1190/* Set ethertype in tcam sw entry */
1191static void mvpp2_prs_match_etype(struct mvpp2_prs_entry *pe, int offset,
1192 unsigned short ethertype)
1193{
1194 mvpp2_prs_tcam_data_byte_set(pe, offset + 0, ethertype >> 8, 0xff);
1195 mvpp2_prs_tcam_data_byte_set(pe, offset + 1, ethertype & 0xff, 0xff);
1196}
1197
1198/* Set bits in sram sw entry */
1199static void mvpp2_prs_sram_bits_set(struct mvpp2_prs_entry *pe, int bit_num,
1200 int val)
1201{
1202 pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] |= (val << (bit_num % 8));
1203}
1204
1205/* Clear bits in sram sw entry */
1206static void mvpp2_prs_sram_bits_clear(struct mvpp2_prs_entry *pe, int bit_num,
1207 int val)
1208{
1209 pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] &= ~(val << (bit_num % 8));
1210}
1211
1212/* Update ri bits in sram sw entry */
1213static void mvpp2_prs_sram_ri_update(struct mvpp2_prs_entry *pe,
1214 unsigned int bits, unsigned int mask)
1215{
1216 unsigned int i;
1217
1218 for (i = 0; i < MVPP2_PRS_SRAM_RI_CTRL_BITS; i++) {
1219 int ri_off = MVPP2_PRS_SRAM_RI_OFFS;
1220
1221 if (!(mask & BIT(i)))
1222 continue;
1223
1224 if (bits & BIT(i))
1225 mvpp2_prs_sram_bits_set(pe, ri_off + i, 1);
1226 else
1227 mvpp2_prs_sram_bits_clear(pe, ri_off + i, 1);
1228
1229 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_RI_CTRL_OFFS + i, 1);
1230 }
1231}
1232
1233/* Update ai bits in sram sw entry */
1234static void mvpp2_prs_sram_ai_update(struct mvpp2_prs_entry *pe,
1235 unsigned int bits, unsigned int mask)
1236{
1237 unsigned int i;
1238 int ai_off = MVPP2_PRS_SRAM_AI_OFFS;
1239
1240 for (i = 0; i < MVPP2_PRS_SRAM_AI_CTRL_BITS; i++) {
1241
1242 if (!(mask & BIT(i)))
1243 continue;
1244
1245 if (bits & BIT(i))
1246 mvpp2_prs_sram_bits_set(pe, ai_off + i, 1);
1247 else
1248 mvpp2_prs_sram_bits_clear(pe, ai_off + i, 1);
1249
1250 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_AI_CTRL_OFFS + i, 1);
1251 }
1252}
1253
1254/* Read ai bits from sram sw entry */
1255static int mvpp2_prs_sram_ai_get(struct mvpp2_prs_entry *pe)
1256{
1257 u8 bits;
1258 int ai_off = MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_AI_OFFS);
1259 int ai_en_off = ai_off + 1;
1260 int ai_shift = MVPP2_PRS_SRAM_AI_OFFS % 8;
1261
1262 bits = (pe->sram.byte[ai_off] >> ai_shift) |
1263 (pe->sram.byte[ai_en_off] << (8 - ai_shift));
1264
1265 return bits;
1266}
1267
1268/* In sram sw entry set lookup ID field of the tcam key to be used in the next
1269 * lookup interation
1270 */
1271static void mvpp2_prs_sram_next_lu_set(struct mvpp2_prs_entry *pe,
1272 unsigned int lu)
1273{
1274 int sram_next_off = MVPP2_PRS_SRAM_NEXT_LU_OFFS;
1275
1276 mvpp2_prs_sram_bits_clear(pe, sram_next_off,
1277 MVPP2_PRS_SRAM_NEXT_LU_MASK);
1278 mvpp2_prs_sram_bits_set(pe, sram_next_off, lu);
1279}
1280
1281/* In the sram sw entry set sign and value of the next lookup offset
1282 * and the offset value generated to the classifier
1283 */
1284static void mvpp2_prs_sram_shift_set(struct mvpp2_prs_entry *pe, int shift,
1285 unsigned int op)
1286{
1287 /* Set sign */
1288 if (shift < 0) {
1289 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1290 shift = 0 - shift;
1291 } else {
1292 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1293 }
1294
1295 /* Set value */
1296 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_SHIFT_OFFS)] =
1297 (unsigned char)shift;
1298
1299 /* Reset and set operation */
1300 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS,
1301 MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK);
1302 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS, op);
1303
1304 /* Set base offset as current */
1305 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1306}
1307
1308/* In the sram sw entry set sign and value of the user defined offset
1309 * generated to the classifier
1310 */
1311static void mvpp2_prs_sram_offset_set(struct mvpp2_prs_entry *pe,
1312 unsigned int type, int offset,
1313 unsigned int op)
1314{
1315 /* Set sign */
1316 if (offset < 0) {
1317 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1318 offset = 0 - offset;
1319 } else {
1320 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1321 }
1322
1323 /* Set value */
1324 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_OFFS,
1325 MVPP2_PRS_SRAM_UDF_MASK);
1326 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_OFFS, offset);
1327 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1328 MVPP2_PRS_SRAM_UDF_BITS)] &=
1329 ~(MVPP2_PRS_SRAM_UDF_MASK >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1330 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1331 MVPP2_PRS_SRAM_UDF_BITS)] |=
1332 (offset >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1333
1334 /* Set offset type */
1335 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS,
1336 MVPP2_PRS_SRAM_UDF_TYPE_MASK);
1337 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS, type);
1338
1339 /* Set offset operation */
1340 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS,
1341 MVPP2_PRS_SRAM_OP_SEL_UDF_MASK);
1342 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS, op);
1343
1344 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1345 MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] &=
1346 ~(MVPP2_PRS_SRAM_OP_SEL_UDF_MASK >>
1347 (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1348
1349 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1350 MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] |=
1351 (op >> (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1352
1353 /* Set base offset as current */
1354 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1355}
1356
1357/* Find parser flow entry */
1358static struct mvpp2_prs_entry *mvpp2_prs_flow_find(struct mvpp2 *priv, int flow)
1359{
1360 struct mvpp2_prs_entry *pe;
1361 int tid;
1362
1363 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1364 if (!pe)
1365 return NULL;
1366 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
1367
1368 /* Go through the all entires with MVPP2_PRS_LU_FLOWS */
1369 for (tid = MVPP2_PRS_TCAM_SRAM_SIZE - 1; tid >= 0; tid--) {
1370 u8 bits;
1371
1372 if (!priv->prs_shadow[tid].valid ||
1373 priv->prs_shadow[tid].lu != MVPP2_PRS_LU_FLOWS)
1374 continue;
1375
1376 pe->index = tid;
1377 mvpp2_prs_hw_read(priv, pe);
1378 bits = mvpp2_prs_sram_ai_get(pe);
1379
1380 /* Sram store classification lookup ID in AI bits [5:0] */
1381 if ((bits & MVPP2_PRS_FLOW_ID_MASK) == flow)
1382 return pe;
1383 }
1384 kfree(pe);
1385
1386 return NULL;
1387}
1388
1389/* Return first free tcam index, seeking from start to end */
1390static int mvpp2_prs_tcam_first_free(struct mvpp2 *priv, unsigned char start,
1391 unsigned char end)
1392{
1393 int tid;
1394
1395 if (start > end)
1396 swap(start, end);
1397
1398 if (end >= MVPP2_PRS_TCAM_SRAM_SIZE)
1399 end = MVPP2_PRS_TCAM_SRAM_SIZE - 1;
1400
1401 for (tid = start; tid <= end; tid++) {
1402 if (!priv->prs_shadow[tid].valid)
1403 return tid;
1404 }
1405
1406 return -EINVAL;
1407}
1408
1409/* Enable/disable dropping all mac da's */
1410static void mvpp2_prs_mac_drop_all_set(struct mvpp2 *priv, int port, bool add)
1411{
1412 struct mvpp2_prs_entry pe;
1413
1414 if (priv->prs_shadow[MVPP2_PE_DROP_ALL].valid) {
1415 /* Entry exist - update port only */
1416 pe.index = MVPP2_PE_DROP_ALL;
1417 mvpp2_prs_hw_read(priv, &pe);
1418 } else {
1419 /* Entry doesn't exist - create new */
1420 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1421 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1422 pe.index = MVPP2_PE_DROP_ALL;
1423
1424 /* Non-promiscuous mode for all ports - DROP unknown packets */
1425 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
1426 MVPP2_PRS_RI_DROP_MASK);
1427
1428 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1429 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1430
1431 /* Update shadow table */
1432 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1433
1434 /* Mask all ports */
1435 mvpp2_prs_tcam_port_map_set(&pe, 0);
1436 }
1437
1438 /* Update port mask */
1439 mvpp2_prs_tcam_port_set(&pe, port, add);
1440
1441 mvpp2_prs_hw_write(priv, &pe);
1442}
1443
1444/* Set port to promiscuous mode */
1445static void mvpp2_prs_mac_promisc_set(struct mvpp2 *priv, int port, bool add)
1446{
1447 struct mvpp2_prs_entry pe;
1448
1449 /* Promiscuous mode - Accept unknown packets */
1450
1451 if (priv->prs_shadow[MVPP2_PE_MAC_PROMISCUOUS].valid) {
1452 /* Entry exist - update port only */
1453 pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1454 mvpp2_prs_hw_read(priv, &pe);
1455 } else {
1456 /* Entry doesn't exist - create new */
1457 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1458 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1459 pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1460
1461 /* Continue - set next lookup */
1462 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1463
1464 /* Set result info bits */
1465 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_UCAST,
1466 MVPP2_PRS_RI_L2_CAST_MASK);
1467
1468 /* Shift to ethertype */
1469 mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1470 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1471
1472 /* Mask all ports */
1473 mvpp2_prs_tcam_port_map_set(&pe, 0);
1474
1475 /* Update shadow table */
1476 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1477 }
1478
1479 /* Update port mask */
1480 mvpp2_prs_tcam_port_set(&pe, port, add);
1481
1482 mvpp2_prs_hw_write(priv, &pe);
1483}
1484
1485/* Accept multicast */
1486static void mvpp2_prs_mac_multi_set(struct mvpp2 *priv, int port, int index,
1487 bool add)
1488{
1489 struct mvpp2_prs_entry pe;
1490 unsigned char da_mc;
1491
1492 /* Ethernet multicast address first byte is
1493 * 0x01 for IPv4 and 0x33 for IPv6
1494 */
1495 da_mc = (index == MVPP2_PE_MAC_MC_ALL) ? 0x01 : 0x33;
1496
1497 if (priv->prs_shadow[index].valid) {
1498 /* Entry exist - update port only */
1499 pe.index = index;
1500 mvpp2_prs_hw_read(priv, &pe);
1501 } else {
1502 /* Entry doesn't exist - create new */
1503 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1504 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1505 pe.index = index;
1506
1507 /* Continue - set next lookup */
1508 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1509
1510 /* Set result info bits */
1511 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_MCAST,
1512 MVPP2_PRS_RI_L2_CAST_MASK);
1513
1514 /* Update tcam entry data first byte */
1515 mvpp2_prs_tcam_data_byte_set(&pe, 0, da_mc, 0xff);
1516
1517 /* Shift to ethertype */
1518 mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1519 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1520
1521 /* Mask all ports */
1522 mvpp2_prs_tcam_port_map_set(&pe, 0);
1523
1524 /* Update shadow table */
1525 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1526 }
1527
1528 /* Update port mask */
1529 mvpp2_prs_tcam_port_set(&pe, port, add);
1530
1531 mvpp2_prs_hw_write(priv, &pe);
1532}
1533
1534/* Parser per-port initialization */
1535static void mvpp2_prs_hw_port_init(struct mvpp2 *priv, int port, int lu_first,
1536 int lu_max, int offset)
1537{
1538 u32 val;
1539
1540 /* Set lookup ID */
1541 val = mvpp2_read(priv, MVPP2_PRS_INIT_LOOKUP_REG);
1542 val &= ~MVPP2_PRS_PORT_LU_MASK(port);
1543 val |= MVPP2_PRS_PORT_LU_VAL(port, lu_first);
1544 mvpp2_write(priv, MVPP2_PRS_INIT_LOOKUP_REG, val);
1545
1546 /* Set maximum number of loops for packet received from port */
1547 val = mvpp2_read(priv, MVPP2_PRS_MAX_LOOP_REG(port));
1548 val &= ~MVPP2_PRS_MAX_LOOP_MASK(port);
1549 val |= MVPP2_PRS_MAX_LOOP_VAL(port, lu_max);
1550 mvpp2_write(priv, MVPP2_PRS_MAX_LOOP_REG(port), val);
1551
1552 /* Set initial offset for packet header extraction for the first
1553 * searching loop
1554 */
1555 val = mvpp2_read(priv, MVPP2_PRS_INIT_OFFS_REG(port));
1556 val &= ~MVPP2_PRS_INIT_OFF_MASK(port);
1557 val |= MVPP2_PRS_INIT_OFF_VAL(port, offset);
1558 mvpp2_write(priv, MVPP2_PRS_INIT_OFFS_REG(port), val);
1559}
1560
1561/* Default flow entries initialization for all ports */
1562static void mvpp2_prs_def_flow_init(struct mvpp2 *priv)
1563{
1564 struct mvpp2_prs_entry pe;
1565 int port;
1566
1567 for (port = 0; port < MVPP2_MAX_PORTS; port++) {
1568 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1569 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1570 pe.index = MVPP2_PE_FIRST_DEFAULT_FLOW - port;
1571
1572 /* Mask all ports */
1573 mvpp2_prs_tcam_port_map_set(&pe, 0);
1574
1575 /* Set flow ID*/
1576 mvpp2_prs_sram_ai_update(&pe, port, MVPP2_PRS_FLOW_ID_MASK);
1577 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
1578
1579 /* Update shadow table and hw entry */
1580 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_FLOWS);
1581 mvpp2_prs_hw_write(priv, &pe);
1582 }
1583}
1584
1585/* Set default entry for Marvell Header field */
1586static void mvpp2_prs_mh_init(struct mvpp2 *priv)
1587{
1588 struct mvpp2_prs_entry pe;
1589
1590 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1591
1592 pe.index = MVPP2_PE_MH_DEFAULT;
1593 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MH);
1594 mvpp2_prs_sram_shift_set(&pe, MVPP2_MH_SIZE,
1595 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1596 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_MAC);
1597
1598 /* Unmask all ports */
1599 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
1600
1601 /* Update shadow table and hw entry */
1602 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MH);
1603 mvpp2_prs_hw_write(priv, &pe);
1604}
1605
1606/* Set default entires (place holder) for promiscuous, non-promiscuous and
1607 * multicast MAC addresses
1608 */
1609static void mvpp2_prs_mac_init(struct mvpp2 *priv)
1610{
1611 struct mvpp2_prs_entry pe;
1612
1613 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1614
1615 /* Non-promiscuous mode for all ports - DROP unknown packets */
1616 pe.index = MVPP2_PE_MAC_NON_PROMISCUOUS;
1617 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1618
1619 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
1620 MVPP2_PRS_RI_DROP_MASK);
1621 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1622 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1623
1624 /* Unmask all ports */
1625 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
1626
1627 /* Update shadow table and hw entry */
1628 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1629 mvpp2_prs_hw_write(priv, &pe);
1630
1631 /* place holders only - no ports */
1632 mvpp2_prs_mac_drop_all_set(priv, 0, false);
1633 mvpp2_prs_mac_promisc_set(priv, 0, false);
1634 mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_ALL, 0, false);
1635 mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_IP6, 0, false);
1636}
1637
1638/* Match basic ethertypes */
1639static int mvpp2_prs_etype_init(struct mvpp2 *priv)
1640{
1641 struct mvpp2_prs_entry pe;
1642 int tid;
1643
1644 /* Ethertype: PPPoE */
1645 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1646 MVPP2_PE_LAST_FREE_TID);
1647 if (tid < 0)
1648 return tid;
1649
1650 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1651 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
1652 pe.index = tid;
1653
1654 mvpp2_prs_match_etype(&pe, 0, PROT_PPP_SES);
1655
1656 mvpp2_prs_sram_shift_set(&pe, MVPP2_PPPOE_HDR_SIZE,
1657 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1658 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
1659 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_PPPOE_MASK,
1660 MVPP2_PRS_RI_PPPOE_MASK);
1661
1662 /* Update shadow table and hw entry */
1663 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
1664 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
1665 priv->prs_shadow[pe.index].finish = false;
1666 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_PPPOE_MASK,
1667 MVPP2_PRS_RI_PPPOE_MASK);
1668 mvpp2_prs_hw_write(priv, &pe);
1669
1670 /* Ethertype: ARP */
1671 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1672 MVPP2_PE_LAST_FREE_TID);
1673 if (tid < 0)
1674 return tid;
1675
1676 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1677 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
1678 pe.index = tid;
1679
1680 mvpp2_prs_match_etype(&pe, 0, PROT_ARP);
1681
1682 /* Generate flow in the next iteration*/
1683 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1684 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1685 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_ARP,
1686 MVPP2_PRS_RI_L3_PROTO_MASK);
1687 /* Set L3 offset */
1688 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
1689 MVPP2_ETH_TYPE_LEN,
1690 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
1691
1692 /* Update shadow table and hw entry */
1693 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
1694 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
1695 priv->prs_shadow[pe.index].finish = true;
1696 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_ARP,
1697 MVPP2_PRS_RI_L3_PROTO_MASK);
1698 mvpp2_prs_hw_write(priv, &pe);
1699
1700 /* Ethertype: LBTD */
1701 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1702 MVPP2_PE_LAST_FREE_TID);
1703 if (tid < 0)
1704 return tid;
1705
1706 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1707 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
1708 pe.index = tid;
1709
1710 mvpp2_prs_match_etype(&pe, 0, MVPP2_IP_LBDT_TYPE);
1711
1712 /* Generate flow in the next iteration*/
1713 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1714 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1715 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
1716 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
1717 MVPP2_PRS_RI_CPU_CODE_MASK |
1718 MVPP2_PRS_RI_UDF3_MASK);
1719 /* Set L3 offset */
1720 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
1721 MVPP2_ETH_TYPE_LEN,
1722 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
1723
1724 /* Update shadow table and hw entry */
1725 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
1726 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
1727 priv->prs_shadow[pe.index].finish = true;
1728 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
1729 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
1730 MVPP2_PRS_RI_CPU_CODE_MASK |
1731 MVPP2_PRS_RI_UDF3_MASK);
1732 mvpp2_prs_hw_write(priv, &pe);
1733
1734 /* Ethertype: IPv4 without options */
1735 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1736 MVPP2_PE_LAST_FREE_TID);
1737 if (tid < 0)
1738 return tid;
1739
1740 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1741 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
1742 pe.index = tid;
1743
1744 mvpp2_prs_match_etype(&pe, 0, PROT_IP);
1745 mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
1746 MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
1747 MVPP2_PRS_IPV4_HEAD_MASK |
1748 MVPP2_PRS_IPV4_IHL_MASK);
1749
1750 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
1751 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
1752 MVPP2_PRS_RI_L3_PROTO_MASK);
1753 /* Skip eth_type + 4 bytes of IP header */
1754 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
1755 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1756 /* Set L3 offset */
1757 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
1758 MVPP2_ETH_TYPE_LEN,
1759 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
1760
1761 /* Update shadow table and hw entry */
1762 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
1763 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
1764 priv->prs_shadow[pe.index].finish = false;
1765 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4,
1766 MVPP2_PRS_RI_L3_PROTO_MASK);
1767 mvpp2_prs_hw_write(priv, &pe);
1768
1769 /* Ethertype: IPv4 with options */
1770 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1771 MVPP2_PE_LAST_FREE_TID);
1772 if (tid < 0)
1773 return tid;
1774
1775 pe.index = tid;
1776
1777 /* Clear tcam data before updating */
1778 pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(MVPP2_ETH_TYPE_LEN)] = 0x0;
1779 pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(MVPP2_ETH_TYPE_LEN)] = 0x0;
1780
1781 mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
1782 MVPP2_PRS_IPV4_HEAD,
1783 MVPP2_PRS_IPV4_HEAD_MASK);
1784
1785 /* Clear ri before updating */
1786 pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
1787 pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
1788 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
1789 MVPP2_PRS_RI_L3_PROTO_MASK);
1790
1791 /* Update shadow table and hw entry */
1792 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
1793 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
1794 priv->prs_shadow[pe.index].finish = false;
1795 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4_OPT,
1796 MVPP2_PRS_RI_L3_PROTO_MASK);
1797 mvpp2_prs_hw_write(priv, &pe);
1798
1799 /* Ethertype: IPv6 without options */
1800 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1801 MVPP2_PE_LAST_FREE_TID);
1802 if (tid < 0)
1803 return tid;
1804
1805 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1806 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
1807 pe.index = tid;
1808
1809 mvpp2_prs_match_etype(&pe, 0, PROT_IPV6);
1810
1811 /* Skip DIP of IPV6 header */
1812 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 8 +
1813 MVPP2_MAX_L3_ADDR_SIZE,
1814 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1815 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
1816 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
1817 MVPP2_PRS_RI_L3_PROTO_MASK);
1818 /* Set L3 offset */
1819 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
1820 MVPP2_ETH_TYPE_LEN,
1821 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
1822
1823 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
1824 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
1825 priv->prs_shadow[pe.index].finish = false;
1826 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP6,
1827 MVPP2_PRS_RI_L3_PROTO_MASK);
1828 mvpp2_prs_hw_write(priv, &pe);
1829
1830 /* Default entry for MVPP2_PRS_LU_L2 - Unknown ethtype */
1831 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1832 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
1833 pe.index = MVPP2_PE_ETH_TYPE_UN;
1834
1835 /* Unmask all ports */
1836 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
1837
1838 /* Generate flow in the next iteration*/
1839 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1840 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1841 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
1842 MVPP2_PRS_RI_L3_PROTO_MASK);
1843 /* Set L3 offset even it's unknown L3 */
1844 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
1845 MVPP2_ETH_TYPE_LEN,
1846 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
1847
1848 /* Update shadow table and hw entry */
1849 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
1850 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
1851 priv->prs_shadow[pe.index].finish = true;
1852 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_UN,
1853 MVPP2_PRS_RI_L3_PROTO_MASK);
1854 mvpp2_prs_hw_write(priv, &pe);
1855
1856 return 0;
1857}
1858
1859/* Parser default initialization */
1860static int mvpp2_prs_default_init(struct udevice *dev,
1861 struct mvpp2 *priv)
1862{
1863 int err, index, i;
1864
1865 /* Enable tcam table */
1866 mvpp2_write(priv, MVPP2_PRS_TCAM_CTRL_REG, MVPP2_PRS_TCAM_EN_MASK);
1867
1868 /* Clear all tcam and sram entries */
1869 for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++) {
1870 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
1871 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1872 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), 0);
1873
1874 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, index);
1875 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1876 mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), 0);
1877 }
1878
1879 /* Invalidate all tcam entries */
1880 for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++)
1881 mvpp2_prs_hw_inv(priv, index);
1882
1883 priv->prs_shadow = devm_kcalloc(dev, MVPP2_PRS_TCAM_SRAM_SIZE,
1884 sizeof(struct mvpp2_prs_shadow),
1885 GFP_KERNEL);
1886 if (!priv->prs_shadow)
1887 return -ENOMEM;
1888
1889 /* Always start from lookup = 0 */
1890 for (index = 0; index < MVPP2_MAX_PORTS; index++)
1891 mvpp2_prs_hw_port_init(priv, index, MVPP2_PRS_LU_MH,
1892 MVPP2_PRS_PORT_LU_MAX, 0);
1893
1894 mvpp2_prs_def_flow_init(priv);
1895
1896 mvpp2_prs_mh_init(priv);
1897
1898 mvpp2_prs_mac_init(priv);
1899
1900 err = mvpp2_prs_etype_init(priv);
1901 if (err)
1902 return err;
1903
1904 return 0;
1905}
1906
1907/* Compare MAC DA with tcam entry data */
1908static bool mvpp2_prs_mac_range_equals(struct mvpp2_prs_entry *pe,
1909 const u8 *da, unsigned char *mask)
1910{
1911 unsigned char tcam_byte, tcam_mask;
1912 int index;
1913
1914 for (index = 0; index < ETH_ALEN; index++) {
1915 mvpp2_prs_tcam_data_byte_get(pe, index, &tcam_byte, &tcam_mask);
1916 if (tcam_mask != mask[index])
1917 return false;
1918
1919 if ((tcam_mask & tcam_byte) != (da[index] & mask[index]))
1920 return false;
1921 }
1922
1923 return true;
1924}
1925
1926/* Find tcam entry with matched pair <MAC DA, port> */
1927static struct mvpp2_prs_entry *
1928mvpp2_prs_mac_da_range_find(struct mvpp2 *priv, int pmap, const u8 *da,
1929 unsigned char *mask, int udf_type)
1930{
1931 struct mvpp2_prs_entry *pe;
1932 int tid;
1933
1934 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1935 if (!pe)
1936 return NULL;
1937 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
1938
1939 /* Go through the all entires with MVPP2_PRS_LU_MAC */
1940 for (tid = MVPP2_PE_FIRST_FREE_TID;
1941 tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
1942 unsigned int entry_pmap;
1943
1944 if (!priv->prs_shadow[tid].valid ||
1945 (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
1946 (priv->prs_shadow[tid].udf != udf_type))
1947 continue;
1948
1949 pe->index = tid;
1950 mvpp2_prs_hw_read(priv, pe);
1951 entry_pmap = mvpp2_prs_tcam_port_map_get(pe);
1952
1953 if (mvpp2_prs_mac_range_equals(pe, da, mask) &&
1954 entry_pmap == pmap)
1955 return pe;
1956 }
1957 kfree(pe);
1958
1959 return NULL;
1960}
1961
1962/* Update parser's mac da entry */
1963static int mvpp2_prs_mac_da_accept(struct mvpp2 *priv, int port,
1964 const u8 *da, bool add)
1965{
1966 struct mvpp2_prs_entry *pe;
1967 unsigned int pmap, len, ri;
1968 unsigned char mask[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1969 int tid;
1970
1971 /* Scan TCAM and see if entry with this <MAC DA, port> already exist */
1972 pe = mvpp2_prs_mac_da_range_find(priv, (1 << port), da, mask,
1973 MVPP2_PRS_UDF_MAC_DEF);
1974
1975 /* No such entry */
1976 if (!pe) {
1977 if (!add)
1978 return 0;
1979
1980 /* Create new TCAM entry */
1981 /* Find first range mac entry*/
1982 for (tid = MVPP2_PE_FIRST_FREE_TID;
1983 tid <= MVPP2_PE_LAST_FREE_TID; tid++)
1984 if (priv->prs_shadow[tid].valid &&
1985 (priv->prs_shadow[tid].lu == MVPP2_PRS_LU_MAC) &&
1986 (priv->prs_shadow[tid].udf ==
1987 MVPP2_PRS_UDF_MAC_RANGE))
1988 break;
1989
1990 /* Go through the all entries from first to last */
1991 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1992 tid - 1);
1993 if (tid < 0)
1994 return tid;
1995
1996 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1997 if (!pe)
1998 return -1;
1999 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
2000 pe->index = tid;
2001
2002 /* Mask all ports */
2003 mvpp2_prs_tcam_port_map_set(pe, 0);
2004 }
2005
2006 /* Update port mask */
2007 mvpp2_prs_tcam_port_set(pe, port, add);
2008
2009 /* Invalidate the entry if no ports are left enabled */
2010 pmap = mvpp2_prs_tcam_port_map_get(pe);
2011 if (pmap == 0) {
2012 if (add) {
2013 kfree(pe);
2014 return -1;
2015 }
2016 mvpp2_prs_hw_inv(priv, pe->index);
2017 priv->prs_shadow[pe->index].valid = false;
2018 kfree(pe);
2019 return 0;
2020 }
2021
2022 /* Continue - set next lookup */
2023 mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_DSA);
2024
2025 /* Set match on DA */
2026 len = ETH_ALEN;
2027 while (len--)
2028 mvpp2_prs_tcam_data_byte_set(pe, len, da[len], 0xff);
2029
2030 /* Set result info bits */
2031 ri = MVPP2_PRS_RI_L2_UCAST | MVPP2_PRS_RI_MAC_ME_MASK;
2032
2033 mvpp2_prs_sram_ri_update(pe, ri, MVPP2_PRS_RI_L2_CAST_MASK |
2034 MVPP2_PRS_RI_MAC_ME_MASK);
2035 mvpp2_prs_shadow_ri_set(priv, pe->index, ri, MVPP2_PRS_RI_L2_CAST_MASK |
2036 MVPP2_PRS_RI_MAC_ME_MASK);
2037
2038 /* Shift to ethertype */
2039 mvpp2_prs_sram_shift_set(pe, 2 * ETH_ALEN,
2040 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2041
2042 /* Update shadow table and hw entry */
2043 priv->prs_shadow[pe->index].udf = MVPP2_PRS_UDF_MAC_DEF;
2044 mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_MAC);
2045 mvpp2_prs_hw_write(priv, pe);
2046
2047 kfree(pe);
2048
2049 return 0;
2050}
2051
2052static int mvpp2_prs_update_mac_da(struct mvpp2_port *port, const u8 *da)
2053{
2054 int err;
2055
2056 /* Remove old parser entry */
2057 err = mvpp2_prs_mac_da_accept(port->priv, port->id, port->dev_addr,
2058 false);
2059 if (err)
2060 return err;
2061
2062 /* Add new parser entry */
2063 err = mvpp2_prs_mac_da_accept(port->priv, port->id, da, true);
2064 if (err)
2065 return err;
2066
2067 /* Set addr in the device */
2068 memcpy(port->dev_addr, da, ETH_ALEN);
2069
2070 return 0;
2071}
2072
2073/* Set prs flow for the port */
2074static int mvpp2_prs_def_flow(struct mvpp2_port *port)
2075{
2076 struct mvpp2_prs_entry *pe;
2077 int tid;
2078
2079 pe = mvpp2_prs_flow_find(port->priv, port->id);
2080
2081 /* Such entry not exist */
2082 if (!pe) {
2083 /* Go through the all entires from last to first */
2084 tid = mvpp2_prs_tcam_first_free(port->priv,
2085 MVPP2_PE_LAST_FREE_TID,
2086 MVPP2_PE_FIRST_FREE_TID);
2087 if (tid < 0)
2088 return tid;
2089
2090 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2091 if (!pe)
2092 return -ENOMEM;
2093
2094 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
2095 pe->index = tid;
2096
2097 /* Set flow ID*/
2098 mvpp2_prs_sram_ai_update(pe, port->id, MVPP2_PRS_FLOW_ID_MASK);
2099 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
2100
2101 /* Update shadow table */
2102 mvpp2_prs_shadow_set(port->priv, pe->index, MVPP2_PRS_LU_FLOWS);
2103 }
2104
2105 mvpp2_prs_tcam_port_map_set(pe, (1 << port->id));
2106 mvpp2_prs_hw_write(port->priv, pe);
2107 kfree(pe);
2108
2109 return 0;
2110}
2111
2112/* Classifier configuration routines */
2113
2114/* Update classification flow table registers */
2115static void mvpp2_cls_flow_write(struct mvpp2 *priv,
2116 struct mvpp2_cls_flow_entry *fe)
2117{
2118 mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index);
2119 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG, fe->data[0]);
2120 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG, fe->data[1]);
2121 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG, fe->data[2]);
2122}
2123
2124/* Update classification lookup table register */
2125static void mvpp2_cls_lookup_write(struct mvpp2 *priv,
2126 struct mvpp2_cls_lookup_entry *le)
2127{
2128 u32 val;
2129
2130 val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid;
2131 mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
2132 mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data);
2133}
2134
2135/* Classifier default initialization */
2136static void mvpp2_cls_init(struct mvpp2 *priv)
2137{
2138 struct mvpp2_cls_lookup_entry le;
2139 struct mvpp2_cls_flow_entry fe;
2140 int index;
2141
2142 /* Enable classifier */
2143 mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK);
2144
2145 /* Clear classifier flow table */
2146 memset(&fe.data, 0, MVPP2_CLS_FLOWS_TBL_DATA_WORDS);
2147 for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) {
2148 fe.index = index;
2149 mvpp2_cls_flow_write(priv, &fe);
2150 }
2151
2152 /* Clear classifier lookup table */
2153 le.data = 0;
2154 for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) {
2155 le.lkpid = index;
2156 le.way = 0;
2157 mvpp2_cls_lookup_write(priv, &le);
2158
2159 le.way = 1;
2160 mvpp2_cls_lookup_write(priv, &le);
2161 }
2162}
2163
2164static void mvpp2_cls_port_config(struct mvpp2_port *port)
2165{
2166 struct mvpp2_cls_lookup_entry le;
2167 u32 val;
2168
2169 /* Set way for the port */
2170 val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG);
2171 val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id);
2172 mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val);
2173
2174 /* Pick the entry to be accessed in lookup ID decoding table
2175 * according to the way and lkpid.
2176 */
2177 le.lkpid = port->id;
2178 le.way = 0;
2179 le.data = 0;
2180
2181 /* Set initial CPU queue for receiving packets */
2182 le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK;
2183 le.data |= port->first_rxq;
2184
2185 /* Disable classification engines */
2186 le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;
2187
2188 /* Update lookup ID table entry */
2189 mvpp2_cls_lookup_write(port->priv, &le);
2190}
2191
2192/* Set CPU queue number for oversize packets */
2193static void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port)
2194{
2195 u32 val;
2196
2197 mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id),
2198 port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK);
2199
2200 mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id),
2201 (port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS));
2202
2203 val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG);
2204 val |= MVPP2_CLS_SWFWD_PCTRL_MASK(port->id);
2205 mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val);
2206}
2207
2208/* Buffer Manager configuration routines */
2209
2210/* Create pool */
2211static int mvpp2_bm_pool_create(struct udevice *dev,
2212 struct mvpp2 *priv,
2213 struct mvpp2_bm_pool *bm_pool, int size)
2214{
2215 u32 val;
2216
2217 bm_pool->virt_addr = buffer_loc.bm_pool[bm_pool->id];
2218 bm_pool->phys_addr = (dma_addr_t)buffer_loc.bm_pool[bm_pool->id];
2219 if (!bm_pool->virt_addr)
2220 return -ENOMEM;
2221
2222 if (!IS_ALIGNED((u32)bm_pool->virt_addr, MVPP2_BM_POOL_PTR_ALIGN)) {
2223 dev_err(&pdev->dev, "BM pool %d is not %d bytes aligned\n",
2224 bm_pool->id, MVPP2_BM_POOL_PTR_ALIGN);
2225 return -ENOMEM;
2226 }
2227
2228 mvpp2_write(priv, MVPP2_BM_POOL_BASE_REG(bm_pool->id),
2229 bm_pool->phys_addr);
2230 mvpp2_write(priv, MVPP2_BM_POOL_SIZE_REG(bm_pool->id), size);
2231
2232 val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
2233 val |= MVPP2_BM_START_MASK;
2234 mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
2235
2236 bm_pool->type = MVPP2_BM_FREE;
2237 bm_pool->size = size;
2238 bm_pool->pkt_size = 0;
2239 bm_pool->buf_num = 0;
2240
2241 return 0;
2242}
2243
2244/* Set pool buffer size */
2245static void mvpp2_bm_pool_bufsize_set(struct mvpp2 *priv,
2246 struct mvpp2_bm_pool *bm_pool,
2247 int buf_size)
2248{
2249 u32 val;
2250
2251 bm_pool->buf_size = buf_size;
2252
2253 val = ALIGN(buf_size, 1 << MVPP2_POOL_BUF_SIZE_OFFSET);
2254 mvpp2_write(priv, MVPP2_POOL_BUF_SIZE_REG(bm_pool->id), val);
2255}
2256
2257/* Free all buffers from the pool */
2258static void mvpp2_bm_bufs_free(struct udevice *dev, struct mvpp2 *priv,
2259 struct mvpp2_bm_pool *bm_pool)
2260{
2261 bm_pool->buf_num = 0;
2262}
2263
2264/* Cleanup pool */
2265static int mvpp2_bm_pool_destroy(struct udevice *dev,
2266 struct mvpp2 *priv,
2267 struct mvpp2_bm_pool *bm_pool)
2268{
2269 u32 val;
2270
2271 mvpp2_bm_bufs_free(dev, priv, bm_pool);
2272 if (bm_pool->buf_num) {
2273 dev_err(dev, "cannot free all buffers in pool %d\n", bm_pool->id);
2274 return 0;
2275 }
2276
2277 val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
2278 val |= MVPP2_BM_STOP_MASK;
2279 mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
2280
2281 return 0;
2282}
2283
2284static int mvpp2_bm_pools_init(struct udevice *dev,
2285 struct mvpp2 *priv)
2286{
2287 int i, err, size;
2288 struct mvpp2_bm_pool *bm_pool;
2289
2290 /* Create all pools with maximum size */
2291 size = MVPP2_BM_POOL_SIZE_MAX;
2292 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
2293 bm_pool = &priv->bm_pools[i];
2294 bm_pool->id = i;
2295 err = mvpp2_bm_pool_create(dev, priv, bm_pool, size);
2296 if (err)
2297 goto err_unroll_pools;
2298 mvpp2_bm_pool_bufsize_set(priv, bm_pool, 0);
2299 }
2300 return 0;
2301
2302err_unroll_pools:
2303 dev_err(&pdev->dev, "failed to create BM pool %d, size %d\n", i, size);
2304 for (i = i - 1; i >= 0; i--)
2305 mvpp2_bm_pool_destroy(dev, priv, &priv->bm_pools[i]);
2306 return err;
2307}
2308
2309static int mvpp2_bm_init(struct udevice *dev, struct mvpp2 *priv)
2310{
2311 int i, err;
2312
2313 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
2314 /* Mask BM all interrupts */
2315 mvpp2_write(priv, MVPP2_BM_INTR_MASK_REG(i), 0);
2316 /* Clear BM cause register */
2317 mvpp2_write(priv, MVPP2_BM_INTR_CAUSE_REG(i), 0);
2318 }
2319
2320 /* Allocate and initialize BM pools */
2321 priv->bm_pools = devm_kcalloc(dev, MVPP2_BM_POOLS_NUM,
2322 sizeof(struct mvpp2_bm_pool), GFP_KERNEL);
2323 if (!priv->bm_pools)
2324 return -ENOMEM;
2325
2326 err = mvpp2_bm_pools_init(dev, priv);
2327 if (err < 0)
2328 return err;
2329 return 0;
2330}
2331
2332/* Attach long pool to rxq */
2333static void mvpp2_rxq_long_pool_set(struct mvpp2_port *port,
2334 int lrxq, int long_pool)
2335{
2336 u32 val;
2337 int prxq;
2338
2339 /* Get queue physical ID */
2340 prxq = port->rxqs[lrxq]->id;
2341
2342 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
2343 val &= ~MVPP2_RXQ_POOL_LONG_MASK;
2344 val |= ((long_pool << MVPP2_RXQ_POOL_LONG_OFFS) &
2345 MVPP2_RXQ_POOL_LONG_MASK);
2346
2347 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
2348}
2349
2350/* Set pool number in a BM cookie */
2351static inline u32 mvpp2_bm_cookie_pool_set(u32 cookie, int pool)
2352{
2353 u32 bm;
2354
2355 bm = cookie & ~(0xFF << MVPP2_BM_COOKIE_POOL_OFFS);
2356 bm |= ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS);
2357
2358 return bm;
2359}
2360
2361/* Get pool number from a BM cookie */
2362static inline int mvpp2_bm_cookie_pool_get(u32 cookie)
2363{
2364 return (cookie >> MVPP2_BM_COOKIE_POOL_OFFS) & 0xFF;
2365}
2366
2367/* Release buffer to BM */
2368static inline void mvpp2_bm_pool_put(struct mvpp2_port *port, int pool,
2369 u32 buf_phys_addr, u32 buf_virt_addr)
2370{
2371 mvpp2_write(port->priv, MVPP2_BM_VIRT_RLS_REG, buf_virt_addr);
2372 mvpp2_write(port->priv, MVPP2_BM_PHY_RLS_REG(pool), buf_phys_addr);
2373}
2374
2375/* Refill BM pool */
2376static void mvpp2_pool_refill(struct mvpp2_port *port, u32 bm,
2377 u32 phys_addr, u32 cookie)
2378{
2379 int pool = mvpp2_bm_cookie_pool_get(bm);
2380
2381 mvpp2_bm_pool_put(port, pool, phys_addr, cookie);
2382}
2383
2384/* Allocate buffers for the pool */
2385static int mvpp2_bm_bufs_add(struct mvpp2_port *port,
2386 struct mvpp2_bm_pool *bm_pool, int buf_num)
2387{
2388 int i;
Stefan Roese99d4c6d2016-02-10 07:22:10 +01002389
2390 if (buf_num < 0 ||
2391 (buf_num + bm_pool->buf_num > bm_pool->size)) {
2392 netdev_err(port->dev,
2393 "cannot allocate %d buffers for pool %d\n",
2394 buf_num, bm_pool->id);
2395 return 0;
2396 }
2397
Stefan Roese99d4c6d2016-02-10 07:22:10 +01002398 for (i = 0; i < buf_num; i++) {
Thomas Petazzonif1060f02017-02-15 12:13:43 +01002399 mvpp2_bm_pool_put(port, bm_pool->id,
2400 (u32)buffer_loc.rx_buffer[i],
Stefan Roese99d4c6d2016-02-10 07:22:10 +01002401 (u32)buffer_loc.rx_buffer[i]);
Thomas Petazzonif1060f02017-02-15 12:13:43 +01002402
Stefan Roese99d4c6d2016-02-10 07:22:10 +01002403 }
2404
2405 /* Update BM driver with number of buffers added to pool */
2406 bm_pool->buf_num += i;
2407 bm_pool->in_use_thresh = bm_pool->buf_num / 4;
2408
2409 return i;
2410}
2411
2412/* Notify the driver that BM pool is being used as specific type and return the
2413 * pool pointer on success
2414 */
2415static struct mvpp2_bm_pool *
2416mvpp2_bm_pool_use(struct mvpp2_port *port, int pool, enum mvpp2_bm_type type,
2417 int pkt_size)
2418{
2419 struct mvpp2_bm_pool *new_pool = &port->priv->bm_pools[pool];
2420 int num;
2421
2422 if (new_pool->type != MVPP2_BM_FREE && new_pool->type != type) {
2423 netdev_err(port->dev, "mixing pool types is forbidden\n");
2424 return NULL;
2425 }
2426
2427 if (new_pool->type == MVPP2_BM_FREE)
2428 new_pool->type = type;
2429
2430 /* Allocate buffers in case BM pool is used as long pool, but packet
2431 * size doesn't match MTU or BM pool hasn't being used yet
2432 */
2433 if (((type == MVPP2_BM_SWF_LONG) && (pkt_size > new_pool->pkt_size)) ||
2434 (new_pool->pkt_size == 0)) {
2435 int pkts_num;
2436
2437 /* Set default buffer number or free all the buffers in case
2438 * the pool is not empty
2439 */
2440 pkts_num = new_pool->buf_num;
2441 if (pkts_num == 0)
2442 pkts_num = type == MVPP2_BM_SWF_LONG ?
2443 MVPP2_BM_LONG_BUF_NUM :
2444 MVPP2_BM_SHORT_BUF_NUM;
2445 else
2446 mvpp2_bm_bufs_free(NULL,
2447 port->priv, new_pool);
2448
2449 new_pool->pkt_size = pkt_size;
2450
2451 /* Allocate buffers for this pool */
2452 num = mvpp2_bm_bufs_add(port, new_pool, pkts_num);
2453 if (num != pkts_num) {
2454 dev_err(dev, "pool %d: %d of %d allocated\n",
2455 new_pool->id, num, pkts_num);
2456 return NULL;
2457 }
2458 }
2459
2460 mvpp2_bm_pool_bufsize_set(port->priv, new_pool,
2461 MVPP2_RX_BUF_SIZE(new_pool->pkt_size));
2462
2463 return new_pool;
2464}
2465
2466/* Initialize pools for swf */
2467static int mvpp2_swf_bm_pool_init(struct mvpp2_port *port)
2468{
2469 int rxq;
2470
2471 if (!port->pool_long) {
2472 port->pool_long =
2473 mvpp2_bm_pool_use(port, MVPP2_BM_SWF_LONG_POOL(port->id),
2474 MVPP2_BM_SWF_LONG,
2475 port->pkt_size);
2476 if (!port->pool_long)
2477 return -ENOMEM;
2478
2479 port->pool_long->port_map |= (1 << port->id);
2480
2481 for (rxq = 0; rxq < rxq_number; rxq++)
2482 mvpp2_rxq_long_pool_set(port, rxq, port->pool_long->id);
2483 }
2484
2485 return 0;
2486}
2487
2488/* Port configuration routines */
2489
2490static void mvpp2_port_mii_set(struct mvpp2_port *port)
2491{
2492 u32 val;
2493
2494 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
2495
2496 switch (port->phy_interface) {
2497 case PHY_INTERFACE_MODE_SGMII:
2498 val |= MVPP2_GMAC_INBAND_AN_MASK;
2499 break;
2500 case PHY_INTERFACE_MODE_RGMII:
2501 val |= MVPP2_GMAC_PORT_RGMII_MASK;
2502 default:
2503 val &= ~MVPP2_GMAC_PCS_ENABLE_MASK;
2504 }
2505
2506 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
2507}
2508
2509static void mvpp2_port_fc_adv_enable(struct mvpp2_port *port)
2510{
2511 u32 val;
2512
2513 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
2514 val |= MVPP2_GMAC_FC_ADV_EN;
2515 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
2516}
2517
2518static void mvpp2_port_enable(struct mvpp2_port *port)
2519{
2520 u32 val;
2521
2522 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
2523 val |= MVPP2_GMAC_PORT_EN_MASK;
2524 val |= MVPP2_GMAC_MIB_CNTR_EN_MASK;
2525 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
2526}
2527
2528static void mvpp2_port_disable(struct mvpp2_port *port)
2529{
2530 u32 val;
2531
2532 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
2533 val &= ~(MVPP2_GMAC_PORT_EN_MASK);
2534 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
2535}
2536
2537/* Set IEEE 802.3x Flow Control Xon Packet Transmission Mode */
2538static void mvpp2_port_periodic_xon_disable(struct mvpp2_port *port)
2539{
2540 u32 val;
2541
2542 val = readl(port->base + MVPP2_GMAC_CTRL_1_REG) &
2543 ~MVPP2_GMAC_PERIODIC_XON_EN_MASK;
2544 writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
2545}
2546
2547/* Configure loopback port */
2548static void mvpp2_port_loopback_set(struct mvpp2_port *port)
2549{
2550 u32 val;
2551
2552 val = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
2553
2554 if (port->speed == 1000)
2555 val |= MVPP2_GMAC_GMII_LB_EN_MASK;
2556 else
2557 val &= ~MVPP2_GMAC_GMII_LB_EN_MASK;
2558
2559 if (port->phy_interface == PHY_INTERFACE_MODE_SGMII)
2560 val |= MVPP2_GMAC_PCS_LB_EN_MASK;
2561 else
2562 val &= ~MVPP2_GMAC_PCS_LB_EN_MASK;
2563
2564 writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
2565}
2566
2567static void mvpp2_port_reset(struct mvpp2_port *port)
2568{
2569 u32 val;
2570
2571 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
2572 ~MVPP2_GMAC_PORT_RESET_MASK;
2573 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
2574
2575 while (readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
2576 MVPP2_GMAC_PORT_RESET_MASK)
2577 continue;
2578}
2579
2580/* Change maximum receive size of the port */
2581static inline void mvpp2_gmac_max_rx_size_set(struct mvpp2_port *port)
2582{
2583 u32 val;
2584
2585 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
2586 val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK;
2587 val |= (((port->pkt_size - MVPP2_MH_SIZE) / 2) <<
2588 MVPP2_GMAC_MAX_RX_SIZE_OFFS);
2589 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
2590}
2591
2592/* Set defaults to the MVPP2 port */
2593static void mvpp2_defaults_set(struct mvpp2_port *port)
2594{
2595 int tx_port_num, val, queue, ptxq, lrxq;
2596
2597 /* Configure port to loopback if needed */
2598 if (port->flags & MVPP2_F_LOOPBACK)
2599 mvpp2_port_loopback_set(port);
2600
2601 /* Update TX FIFO MIN Threshold */
2602 val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
2603 val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
2604 /* Min. TX threshold must be less than minimal packet length */
2605 val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(64 - 4 - 2);
2606 writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
2607
2608 /* Disable Legacy WRR, Disable EJP, Release from reset */
2609 tx_port_num = mvpp2_egress_port(port);
2610 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG,
2611 tx_port_num);
2612 mvpp2_write(port->priv, MVPP2_TXP_SCHED_CMD_1_REG, 0);
2613
2614 /* Close bandwidth for all queues */
2615 for (queue = 0; queue < MVPP2_MAX_TXQ; queue++) {
2616 ptxq = mvpp2_txq_phys(port->id, queue);
2617 mvpp2_write(port->priv,
2618 MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(ptxq), 0);
2619 }
2620
2621 /* Set refill period to 1 usec, refill tokens
2622 * and bucket size to maximum
2623 */
2624 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PERIOD_REG, 0xc8);
2625 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_REFILL_REG);
2626 val &= ~MVPP2_TXP_REFILL_PERIOD_ALL_MASK;
2627 val |= MVPP2_TXP_REFILL_PERIOD_MASK(1);
2628 val |= MVPP2_TXP_REFILL_TOKENS_ALL_MASK;
2629 mvpp2_write(port->priv, MVPP2_TXP_SCHED_REFILL_REG, val);
2630 val = MVPP2_TXP_TOKEN_SIZE_MAX;
2631 mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
2632
2633 /* Set MaximumLowLatencyPacketSize value to 256 */
2634 mvpp2_write(port->priv, MVPP2_RX_CTRL_REG(port->id),
2635 MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK |
2636 MVPP2_RX_LOW_LATENCY_PKT_SIZE(256));
2637
2638 /* Enable Rx cache snoop */
2639 for (lrxq = 0; lrxq < rxq_number; lrxq++) {
2640 queue = port->rxqs[lrxq]->id;
2641 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
2642 val |= MVPP2_SNOOP_PKT_SIZE_MASK |
2643 MVPP2_SNOOP_BUF_HDR_MASK;
2644 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
2645 }
2646}
2647
2648/* Enable/disable receiving packets */
2649static void mvpp2_ingress_enable(struct mvpp2_port *port)
2650{
2651 u32 val;
2652 int lrxq, queue;
2653
2654 for (lrxq = 0; lrxq < rxq_number; lrxq++) {
2655 queue = port->rxqs[lrxq]->id;
2656 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
2657 val &= ~MVPP2_RXQ_DISABLE_MASK;
2658 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
2659 }
2660}
2661
2662static void mvpp2_ingress_disable(struct mvpp2_port *port)
2663{
2664 u32 val;
2665 int lrxq, queue;
2666
2667 for (lrxq = 0; lrxq < rxq_number; lrxq++) {
2668 queue = port->rxqs[lrxq]->id;
2669 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
2670 val |= MVPP2_RXQ_DISABLE_MASK;
2671 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
2672 }
2673}
2674
2675/* Enable transmit via physical egress queue
2676 * - HW starts take descriptors from DRAM
2677 */
2678static void mvpp2_egress_enable(struct mvpp2_port *port)
2679{
2680 u32 qmap;
2681 int queue;
2682 int tx_port_num = mvpp2_egress_port(port);
2683
2684 /* Enable all initialized TXs. */
2685 qmap = 0;
2686 for (queue = 0; queue < txq_number; queue++) {
2687 struct mvpp2_tx_queue *txq = port->txqs[queue];
2688
2689 if (txq->descs != NULL)
2690 qmap |= (1 << queue);
2691 }
2692
2693 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
2694 mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, qmap);
2695}
2696
2697/* Disable transmit via physical egress queue
2698 * - HW doesn't take descriptors from DRAM
2699 */
2700static void mvpp2_egress_disable(struct mvpp2_port *port)
2701{
2702 u32 reg_data;
2703 int delay;
2704 int tx_port_num = mvpp2_egress_port(port);
2705
2706 /* Issue stop command for active channels only */
2707 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
2708 reg_data = (mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG)) &
2709 MVPP2_TXP_SCHED_ENQ_MASK;
2710 if (reg_data != 0)
2711 mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG,
2712 (reg_data << MVPP2_TXP_SCHED_DISQ_OFFSET));
2713
2714 /* Wait for all Tx activity to terminate. */
2715 delay = 0;
2716 do {
2717 if (delay >= MVPP2_TX_DISABLE_TIMEOUT_MSEC) {
2718 netdev_warn(port->dev,
2719 "Tx stop timed out, status=0x%08x\n",
2720 reg_data);
2721 break;
2722 }
2723 mdelay(1);
2724 delay++;
2725
2726 /* Check port TX Command register that all
2727 * Tx queues are stopped
2728 */
2729 reg_data = mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG);
2730 } while (reg_data & MVPP2_TXP_SCHED_ENQ_MASK);
2731}
2732
2733/* Rx descriptors helper methods */
2734
2735/* Get number of Rx descriptors occupied by received packets */
2736static inline int
2737mvpp2_rxq_received(struct mvpp2_port *port, int rxq_id)
2738{
2739 u32 val = mvpp2_read(port->priv, MVPP2_RXQ_STATUS_REG(rxq_id));
2740
2741 return val & MVPP2_RXQ_OCCUPIED_MASK;
2742}
2743
2744/* Update Rx queue status with the number of occupied and available
2745 * Rx descriptor slots.
2746 */
2747static inline void
2748mvpp2_rxq_status_update(struct mvpp2_port *port, int rxq_id,
2749 int used_count, int free_count)
2750{
2751 /* Decrement the number of used descriptors and increment count
2752 * increment the number of free descriptors.
2753 */
2754 u32 val = used_count | (free_count << MVPP2_RXQ_NUM_NEW_OFFSET);
2755
2756 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_UPDATE_REG(rxq_id), val);
2757}
2758
2759/* Get pointer to next RX descriptor to be processed by SW */
2760static inline struct mvpp2_rx_desc *
2761mvpp2_rxq_next_desc_get(struct mvpp2_rx_queue *rxq)
2762{
2763 int rx_desc = rxq->next_desc_to_proc;
2764
2765 rxq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(rxq, rx_desc);
2766 prefetch(rxq->descs + rxq->next_desc_to_proc);
2767 return rxq->descs + rx_desc;
2768}
2769
2770/* Set rx queue offset */
2771static void mvpp2_rxq_offset_set(struct mvpp2_port *port,
2772 int prxq, int offset)
2773{
2774 u32 val;
2775
2776 /* Convert offset from bytes to units of 32 bytes */
2777 offset = offset >> 5;
2778
2779 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
2780 val &= ~MVPP2_RXQ_PACKET_OFFSET_MASK;
2781
2782 /* Offset is in */
2783 val |= ((offset << MVPP2_RXQ_PACKET_OFFSET_OFFS) &
2784 MVPP2_RXQ_PACKET_OFFSET_MASK);
2785
2786 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
2787}
2788
2789/* Obtain BM cookie information from descriptor */
2790static u32 mvpp2_bm_cookie_build(struct mvpp2_rx_desc *rx_desc)
2791{
2792 int pool = (rx_desc->status & MVPP2_RXD_BM_POOL_ID_MASK) >>
2793 MVPP2_RXD_BM_POOL_ID_OFFS;
2794 int cpu = smp_processor_id();
2795
2796 return ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS) |
2797 ((cpu & 0xFF) << MVPP2_BM_COOKIE_CPU_OFFS);
2798}
2799
2800/* Tx descriptors helper methods */
2801
2802/* Get number of Tx descriptors waiting to be transmitted by HW */
2803static int mvpp2_txq_pend_desc_num_get(struct mvpp2_port *port,
2804 struct mvpp2_tx_queue *txq)
2805{
2806 u32 val;
2807
2808 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
2809 val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
2810
2811 return val & MVPP2_TXQ_PENDING_MASK;
2812}
2813
2814/* Get pointer to next Tx descriptor to be processed (send) by HW */
2815static struct mvpp2_tx_desc *
2816mvpp2_txq_next_desc_get(struct mvpp2_tx_queue *txq)
2817{
2818 int tx_desc = txq->next_desc_to_proc;
2819
2820 txq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(txq, tx_desc);
2821 return txq->descs + tx_desc;
2822}
2823
2824/* Update HW with number of aggregated Tx descriptors to be sent */
2825static void mvpp2_aggr_txq_pend_desc_add(struct mvpp2_port *port, int pending)
2826{
2827 /* aggregated access - relevant TXQ number is written in TX desc */
2828 mvpp2_write(port->priv, MVPP2_AGGR_TXQ_UPDATE_REG, pending);
2829}
2830
2831/* Get number of sent descriptors and decrement counter.
2832 * The number of sent descriptors is returned.
2833 * Per-CPU access
2834 */
2835static inline int mvpp2_txq_sent_desc_proc(struct mvpp2_port *port,
2836 struct mvpp2_tx_queue *txq)
2837{
2838 u32 val;
2839
2840 /* Reading status reg resets transmitted descriptor counter */
2841 val = mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(txq->id));
2842
2843 return (val & MVPP2_TRANSMITTED_COUNT_MASK) >>
2844 MVPP2_TRANSMITTED_COUNT_OFFSET;
2845}
2846
2847static void mvpp2_txq_sent_counter_clear(void *arg)
2848{
2849 struct mvpp2_port *port = arg;
2850 int queue;
2851
2852 for (queue = 0; queue < txq_number; queue++) {
2853 int id = port->txqs[queue]->id;
2854
2855 mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(id));
2856 }
2857}
2858
2859/* Set max sizes for Tx queues */
2860static void mvpp2_txp_max_tx_size_set(struct mvpp2_port *port)
2861{
2862 u32 val, size, mtu;
2863 int txq, tx_port_num;
2864
2865 mtu = port->pkt_size * 8;
2866 if (mtu > MVPP2_TXP_MTU_MAX)
2867 mtu = MVPP2_TXP_MTU_MAX;
2868
2869 /* WA for wrong Token bucket update: Set MTU value = 3*real MTU value */
2870 mtu = 3 * mtu;
2871
2872 /* Indirect access to registers */
2873 tx_port_num = mvpp2_egress_port(port);
2874 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
2875
2876 /* Set MTU */
2877 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_MTU_REG);
2878 val &= ~MVPP2_TXP_MTU_MAX;
2879 val |= mtu;
2880 mvpp2_write(port->priv, MVPP2_TXP_SCHED_MTU_REG, val);
2881
2882 /* TXP token size and all TXQs token size must be larger that MTU */
2883 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG);
2884 size = val & MVPP2_TXP_TOKEN_SIZE_MAX;
2885 if (size < mtu) {
2886 size = mtu;
2887 val &= ~MVPP2_TXP_TOKEN_SIZE_MAX;
2888 val |= size;
2889 mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
2890 }
2891
2892 for (txq = 0; txq < txq_number; txq++) {
2893 val = mvpp2_read(port->priv,
2894 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq));
2895 size = val & MVPP2_TXQ_TOKEN_SIZE_MAX;
2896
2897 if (size < mtu) {
2898 size = mtu;
2899 val &= ~MVPP2_TXQ_TOKEN_SIZE_MAX;
2900 val |= size;
2901 mvpp2_write(port->priv,
2902 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq),
2903 val);
2904 }
2905 }
2906}
2907
2908/* Free Tx queue skbuffs */
2909static void mvpp2_txq_bufs_free(struct mvpp2_port *port,
2910 struct mvpp2_tx_queue *txq,
2911 struct mvpp2_txq_pcpu *txq_pcpu, int num)
2912{
2913 int i;
2914
2915 for (i = 0; i < num; i++)
2916 mvpp2_txq_inc_get(txq_pcpu);
2917}
2918
2919static inline struct mvpp2_rx_queue *mvpp2_get_rx_queue(struct mvpp2_port *port,
2920 u32 cause)
2921{
2922 int queue = fls(cause) - 1;
2923
2924 return port->rxqs[queue];
2925}
2926
2927static inline struct mvpp2_tx_queue *mvpp2_get_tx_queue(struct mvpp2_port *port,
2928 u32 cause)
2929{
2930 int queue = fls(cause) - 1;
2931
2932 return port->txqs[queue];
2933}
2934
2935/* Rx/Tx queue initialization/cleanup methods */
2936
2937/* Allocate and initialize descriptors for aggr TXQ */
2938static int mvpp2_aggr_txq_init(struct udevice *dev,
2939 struct mvpp2_tx_queue *aggr_txq,
2940 int desc_num, int cpu,
2941 struct mvpp2 *priv)
2942{
2943 /* Allocate memory for TX descriptors */
2944 aggr_txq->descs = buffer_loc.aggr_tx_descs;
2945 aggr_txq->descs_phys = (dma_addr_t)buffer_loc.aggr_tx_descs;
2946 if (!aggr_txq->descs)
2947 return -ENOMEM;
2948
2949 /* Make sure descriptor address is cache line size aligned */
2950 BUG_ON(aggr_txq->descs !=
2951 PTR_ALIGN(aggr_txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
2952
2953 aggr_txq->last_desc = aggr_txq->size - 1;
2954
2955 /* Aggr TXQ no reset WA */
2956 aggr_txq->next_desc_to_proc = mvpp2_read(priv,
2957 MVPP2_AGGR_TXQ_INDEX_REG(cpu));
2958
2959 /* Set Tx descriptors queue starting address */
2960 /* indirect access */
2961 mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu),
2962 aggr_txq->descs_phys);
2963 mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu), desc_num);
2964
2965 return 0;
2966}
2967
2968/* Create a specified Rx queue */
2969static int mvpp2_rxq_init(struct mvpp2_port *port,
2970 struct mvpp2_rx_queue *rxq)
2971
2972{
2973 rxq->size = port->rx_ring_size;
2974
2975 /* Allocate memory for RX descriptors */
2976 rxq->descs = buffer_loc.rx_descs;
2977 rxq->descs_phys = (dma_addr_t)buffer_loc.rx_descs;
2978 if (!rxq->descs)
2979 return -ENOMEM;
2980
2981 BUG_ON(rxq->descs !=
2982 PTR_ALIGN(rxq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
2983
2984 rxq->last_desc = rxq->size - 1;
2985
2986 /* Zero occupied and non-occupied counters - direct access */
2987 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
2988
2989 /* Set Rx descriptors queue starting address - indirect access */
2990 mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
2991 mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, rxq->descs_phys);
2992 mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, rxq->size);
2993 mvpp2_write(port->priv, MVPP2_RXQ_INDEX_REG, 0);
2994
2995 /* Set Offset */
2996 mvpp2_rxq_offset_set(port, rxq->id, NET_SKB_PAD);
2997
2998 /* Add number of descriptors ready for receiving packets */
2999 mvpp2_rxq_status_update(port, rxq->id, 0, rxq->size);
3000
3001 return 0;
3002}
3003
3004/* Push packets received by the RXQ to BM pool */
3005static void mvpp2_rxq_drop_pkts(struct mvpp2_port *port,
3006 struct mvpp2_rx_queue *rxq)
3007{
3008 int rx_received, i;
3009
3010 rx_received = mvpp2_rxq_received(port, rxq->id);
3011 if (!rx_received)
3012 return;
3013
3014 for (i = 0; i < rx_received; i++) {
3015 struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
3016 u32 bm = mvpp2_bm_cookie_build(rx_desc);
3017
3018 mvpp2_pool_refill(port, bm, rx_desc->buf_phys_addr,
3019 rx_desc->buf_cookie);
3020 }
3021 mvpp2_rxq_status_update(port, rxq->id, rx_received, rx_received);
3022}
3023
3024/* Cleanup Rx queue */
3025static void mvpp2_rxq_deinit(struct mvpp2_port *port,
3026 struct mvpp2_rx_queue *rxq)
3027{
3028 mvpp2_rxq_drop_pkts(port, rxq);
3029
3030 rxq->descs = NULL;
3031 rxq->last_desc = 0;
3032 rxq->next_desc_to_proc = 0;
3033 rxq->descs_phys = 0;
3034
3035 /* Clear Rx descriptors queue starting address and size;
3036 * free descriptor number
3037 */
3038 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
3039 mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
3040 mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, 0);
3041 mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, 0);
3042}
3043
3044/* Create and initialize a Tx queue */
3045static int mvpp2_txq_init(struct mvpp2_port *port,
3046 struct mvpp2_tx_queue *txq)
3047{
3048 u32 val;
3049 int cpu, desc, desc_per_txq, tx_port_num;
3050 struct mvpp2_txq_pcpu *txq_pcpu;
3051
3052 txq->size = port->tx_ring_size;
3053
3054 /* Allocate memory for Tx descriptors */
3055 txq->descs = buffer_loc.tx_descs;
3056 txq->descs_phys = (dma_addr_t)buffer_loc.tx_descs;
3057 if (!txq->descs)
3058 return -ENOMEM;
3059
3060 /* Make sure descriptor address is cache line size aligned */
3061 BUG_ON(txq->descs !=
3062 PTR_ALIGN(txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
3063
3064 txq->last_desc = txq->size - 1;
3065
3066 /* Set Tx descriptors queue starting address - indirect access */
3067 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
3068 mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, txq->descs_phys);
3069 mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, txq->size &
3070 MVPP2_TXQ_DESC_SIZE_MASK);
3071 mvpp2_write(port->priv, MVPP2_TXQ_INDEX_REG, 0);
3072 mvpp2_write(port->priv, MVPP2_TXQ_RSVD_CLR_REG,
3073 txq->id << MVPP2_TXQ_RSVD_CLR_OFFSET);
3074 val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
3075 val &= ~MVPP2_TXQ_PENDING_MASK;
3076 mvpp2_write(port->priv, MVPP2_TXQ_PENDING_REG, val);
3077
3078 /* Calculate base address in prefetch buffer. We reserve 16 descriptors
3079 * for each existing TXQ.
3080 * TCONTS for PON port must be continuous from 0 to MVPP2_MAX_TCONT
3081 * GBE ports assumed to be continious from 0 to MVPP2_MAX_PORTS
3082 */
3083 desc_per_txq = 16;
3084 desc = (port->id * MVPP2_MAX_TXQ * desc_per_txq) +
3085 (txq->log_id * desc_per_txq);
3086
3087 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG,
3088 MVPP2_PREF_BUF_PTR(desc) | MVPP2_PREF_BUF_SIZE_16 |
3089 MVPP2_PREF_BUF_THRESH(desc_per_txq/2));
3090
3091 /* WRR / EJP configuration - indirect access */
3092 tx_port_num = mvpp2_egress_port(port);
3093 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
3094
3095 val = mvpp2_read(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id));
3096 val &= ~MVPP2_TXQ_REFILL_PERIOD_ALL_MASK;
3097 val |= MVPP2_TXQ_REFILL_PERIOD_MASK(1);
3098 val |= MVPP2_TXQ_REFILL_TOKENS_ALL_MASK;
3099 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id), val);
3100
3101 val = MVPP2_TXQ_TOKEN_SIZE_MAX;
3102 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq->log_id),
3103 val);
3104
3105 for_each_present_cpu(cpu) {
3106 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
3107 txq_pcpu->size = txq->size;
3108 }
3109
3110 return 0;
3111}
3112
3113/* Free allocated TXQ resources */
3114static void mvpp2_txq_deinit(struct mvpp2_port *port,
3115 struct mvpp2_tx_queue *txq)
3116{
3117 txq->descs = NULL;
3118 txq->last_desc = 0;
3119 txq->next_desc_to_proc = 0;
3120 txq->descs_phys = 0;
3121
3122 /* Set minimum bandwidth for disabled TXQs */
3123 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(txq->id), 0);
3124
3125 /* Set Tx descriptors queue starting address and size */
3126 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
3127 mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, 0);
3128 mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, 0);
3129}
3130
3131/* Cleanup Tx ports */
3132static void mvpp2_txq_clean(struct mvpp2_port *port, struct mvpp2_tx_queue *txq)
3133{
3134 struct mvpp2_txq_pcpu *txq_pcpu;
3135 int delay, pending, cpu;
3136 u32 val;
3137
3138 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
3139 val = mvpp2_read(port->priv, MVPP2_TXQ_PREF_BUF_REG);
3140 val |= MVPP2_TXQ_DRAIN_EN_MASK;
3141 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
3142
3143 /* The napi queue has been stopped so wait for all packets
3144 * to be transmitted.
3145 */
3146 delay = 0;
3147 do {
3148 if (delay >= MVPP2_TX_PENDING_TIMEOUT_MSEC) {
3149 netdev_warn(port->dev,
3150 "port %d: cleaning queue %d timed out\n",
3151 port->id, txq->log_id);
3152 break;
3153 }
3154 mdelay(1);
3155 delay++;
3156
3157 pending = mvpp2_txq_pend_desc_num_get(port, txq);
3158 } while (pending);
3159
3160 val &= ~MVPP2_TXQ_DRAIN_EN_MASK;
3161 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
3162
3163 for_each_present_cpu(cpu) {
3164 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
3165
3166 /* Release all packets */
3167 mvpp2_txq_bufs_free(port, txq, txq_pcpu, txq_pcpu->count);
3168
3169 /* Reset queue */
3170 txq_pcpu->count = 0;
3171 txq_pcpu->txq_put_index = 0;
3172 txq_pcpu->txq_get_index = 0;
3173 }
3174}
3175
3176/* Cleanup all Tx queues */
3177static void mvpp2_cleanup_txqs(struct mvpp2_port *port)
3178{
3179 struct mvpp2_tx_queue *txq;
3180 int queue;
3181 u32 val;
3182
3183 val = mvpp2_read(port->priv, MVPP2_TX_PORT_FLUSH_REG);
3184
3185 /* Reset Tx ports and delete Tx queues */
3186 val |= MVPP2_TX_PORT_FLUSH_MASK(port->id);
3187 mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
3188
3189 for (queue = 0; queue < txq_number; queue++) {
3190 txq = port->txqs[queue];
3191 mvpp2_txq_clean(port, txq);
3192 mvpp2_txq_deinit(port, txq);
3193 }
3194
3195 mvpp2_txq_sent_counter_clear(port);
3196
3197 val &= ~MVPP2_TX_PORT_FLUSH_MASK(port->id);
3198 mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
3199}
3200
3201/* Cleanup all Rx queues */
3202static void mvpp2_cleanup_rxqs(struct mvpp2_port *port)
3203{
3204 int queue;
3205
3206 for (queue = 0; queue < rxq_number; queue++)
3207 mvpp2_rxq_deinit(port, port->rxqs[queue]);
3208}
3209
3210/* Init all Rx queues for port */
3211static int mvpp2_setup_rxqs(struct mvpp2_port *port)
3212{
3213 int queue, err;
3214
3215 for (queue = 0; queue < rxq_number; queue++) {
3216 err = mvpp2_rxq_init(port, port->rxqs[queue]);
3217 if (err)
3218 goto err_cleanup;
3219 }
3220 return 0;
3221
3222err_cleanup:
3223 mvpp2_cleanup_rxqs(port);
3224 return err;
3225}
3226
3227/* Init all tx queues for port */
3228static int mvpp2_setup_txqs(struct mvpp2_port *port)
3229{
3230 struct mvpp2_tx_queue *txq;
3231 int queue, err;
3232
3233 for (queue = 0; queue < txq_number; queue++) {
3234 txq = port->txqs[queue];
3235 err = mvpp2_txq_init(port, txq);
3236 if (err)
3237 goto err_cleanup;
3238 }
3239
3240 mvpp2_txq_sent_counter_clear(port);
3241 return 0;
3242
3243err_cleanup:
3244 mvpp2_cleanup_txqs(port);
3245 return err;
3246}
3247
3248/* Adjust link */
3249static void mvpp2_link_event(struct mvpp2_port *port)
3250{
3251 struct phy_device *phydev = port->phy_dev;
3252 int status_change = 0;
3253 u32 val;
3254
3255 if (phydev->link) {
3256 if ((port->speed != phydev->speed) ||
3257 (port->duplex != phydev->duplex)) {
3258 u32 val;
3259
3260 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3261 val &= ~(MVPP2_GMAC_CONFIG_MII_SPEED |
3262 MVPP2_GMAC_CONFIG_GMII_SPEED |
3263 MVPP2_GMAC_CONFIG_FULL_DUPLEX |
3264 MVPP2_GMAC_AN_SPEED_EN |
3265 MVPP2_GMAC_AN_DUPLEX_EN);
3266
3267 if (phydev->duplex)
3268 val |= MVPP2_GMAC_CONFIG_FULL_DUPLEX;
3269
3270 if (phydev->speed == SPEED_1000)
3271 val |= MVPP2_GMAC_CONFIG_GMII_SPEED;
3272 else if (phydev->speed == SPEED_100)
3273 val |= MVPP2_GMAC_CONFIG_MII_SPEED;
3274
3275 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3276
3277 port->duplex = phydev->duplex;
3278 port->speed = phydev->speed;
3279 }
3280 }
3281
3282 if (phydev->link != port->link) {
3283 if (!phydev->link) {
3284 port->duplex = -1;
3285 port->speed = 0;
3286 }
3287
3288 port->link = phydev->link;
3289 status_change = 1;
3290 }
3291
3292 if (status_change) {
3293 if (phydev->link) {
3294 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3295 val |= (MVPP2_GMAC_FORCE_LINK_PASS |
3296 MVPP2_GMAC_FORCE_LINK_DOWN);
3297 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3298 mvpp2_egress_enable(port);
3299 mvpp2_ingress_enable(port);
3300 } else {
3301 mvpp2_ingress_disable(port);
3302 mvpp2_egress_disable(port);
3303 }
3304 }
3305}
3306
3307/* Main RX/TX processing routines */
3308
3309/* Display more error info */
3310static void mvpp2_rx_error(struct mvpp2_port *port,
3311 struct mvpp2_rx_desc *rx_desc)
3312{
3313 u32 status = rx_desc->status;
3314
3315 switch (status & MVPP2_RXD_ERR_CODE_MASK) {
3316 case MVPP2_RXD_ERR_CRC:
3317 netdev_err(port->dev, "bad rx status %08x (crc error), size=%d\n",
3318 status, rx_desc->data_size);
3319 break;
3320 case MVPP2_RXD_ERR_OVERRUN:
3321 netdev_err(port->dev, "bad rx status %08x (overrun error), size=%d\n",
3322 status, rx_desc->data_size);
3323 break;
3324 case MVPP2_RXD_ERR_RESOURCE:
3325 netdev_err(port->dev, "bad rx status %08x (resource error), size=%d\n",
3326 status, rx_desc->data_size);
3327 break;
3328 }
3329}
3330
3331/* Reuse skb if possible, or allocate a new skb and add it to BM pool */
3332static int mvpp2_rx_refill(struct mvpp2_port *port,
3333 struct mvpp2_bm_pool *bm_pool,
3334 u32 bm, u32 phys_addr)
3335{
3336 mvpp2_pool_refill(port, bm, phys_addr, phys_addr);
3337 return 0;
3338}
3339
3340/* Set hw internals when starting port */
3341static void mvpp2_start_dev(struct mvpp2_port *port)
3342{
3343 mvpp2_gmac_max_rx_size_set(port);
3344 mvpp2_txp_max_tx_size_set(port);
3345
3346 mvpp2_port_enable(port);
3347}
3348
3349/* Set hw internals when stopping port */
3350static void mvpp2_stop_dev(struct mvpp2_port *port)
3351{
3352 /* Stop new packets from arriving to RXQs */
3353 mvpp2_ingress_disable(port);
3354
3355 mvpp2_egress_disable(port);
3356 mvpp2_port_disable(port);
3357}
3358
3359static int mvpp2_phy_connect(struct udevice *dev, struct mvpp2_port *port)
3360{
3361 struct phy_device *phy_dev;
3362
3363 if (!port->init || port->link == 0) {
3364 phy_dev = phy_connect(port->priv->bus, port->phyaddr, dev,
3365 port->phy_interface);
3366 port->phy_dev = phy_dev;
3367 if (!phy_dev) {
3368 netdev_err(port->dev, "cannot connect to phy\n");
3369 return -ENODEV;
3370 }
3371 phy_dev->supported &= PHY_GBIT_FEATURES;
3372 phy_dev->advertising = phy_dev->supported;
3373
3374 port->phy_dev = phy_dev;
3375 port->link = 0;
3376 port->duplex = 0;
3377 port->speed = 0;
3378
3379 phy_config(phy_dev);
3380 phy_startup(phy_dev);
3381 if (!phy_dev->link) {
3382 printf("%s: No link\n", phy_dev->dev->name);
3383 return -1;
3384 }
3385
3386 port->init = 1;
3387 } else {
3388 mvpp2_egress_enable(port);
3389 mvpp2_ingress_enable(port);
3390 }
3391
3392 return 0;
3393}
3394
3395static int mvpp2_open(struct udevice *dev, struct mvpp2_port *port)
3396{
3397 unsigned char mac_bcast[ETH_ALEN] = {
3398 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
3399 int err;
3400
3401 err = mvpp2_prs_mac_da_accept(port->priv, port->id, mac_bcast, true);
3402 if (err) {
3403 netdev_err(dev, "mvpp2_prs_mac_da_accept BC failed\n");
3404 return err;
3405 }
3406 err = mvpp2_prs_mac_da_accept(port->priv, port->id,
3407 port->dev_addr, true);
3408 if (err) {
3409 netdev_err(dev, "mvpp2_prs_mac_da_accept MC failed\n");
3410 return err;
3411 }
3412 err = mvpp2_prs_def_flow(port);
3413 if (err) {
3414 netdev_err(dev, "mvpp2_prs_def_flow failed\n");
3415 return err;
3416 }
3417
3418 /* Allocate the Rx/Tx queues */
3419 err = mvpp2_setup_rxqs(port);
3420 if (err) {
3421 netdev_err(port->dev, "cannot allocate Rx queues\n");
3422 return err;
3423 }
3424
3425 err = mvpp2_setup_txqs(port);
3426 if (err) {
3427 netdev_err(port->dev, "cannot allocate Tx queues\n");
3428 return err;
3429 }
3430
3431 err = mvpp2_phy_connect(dev, port);
3432 if (err < 0)
3433 return err;
3434
3435 mvpp2_link_event(port);
3436
3437 mvpp2_start_dev(port);
3438
3439 return 0;
3440}
3441
3442/* No Device ops here in U-Boot */
3443
3444/* Driver initialization */
3445
3446static void mvpp2_port_power_up(struct mvpp2_port *port)
3447{
3448 mvpp2_port_mii_set(port);
3449 mvpp2_port_periodic_xon_disable(port);
3450 mvpp2_port_fc_adv_enable(port);
3451 mvpp2_port_reset(port);
3452}
3453
3454/* Initialize port HW */
3455static int mvpp2_port_init(struct udevice *dev, struct mvpp2_port *port)
3456{
3457 struct mvpp2 *priv = port->priv;
3458 struct mvpp2_txq_pcpu *txq_pcpu;
3459 int queue, cpu, err;
3460
3461 if (port->first_rxq + rxq_number > MVPP2_RXQ_TOTAL_NUM)
3462 return -EINVAL;
3463
3464 /* Disable port */
3465 mvpp2_egress_disable(port);
3466 mvpp2_port_disable(port);
3467
3468 port->txqs = devm_kcalloc(dev, txq_number, sizeof(*port->txqs),
3469 GFP_KERNEL);
3470 if (!port->txqs)
3471 return -ENOMEM;
3472
3473 /* Associate physical Tx queues to this port and initialize.
3474 * The mapping is predefined.
3475 */
3476 for (queue = 0; queue < txq_number; queue++) {
3477 int queue_phy_id = mvpp2_txq_phys(port->id, queue);
3478 struct mvpp2_tx_queue *txq;
3479
3480 txq = devm_kzalloc(dev, sizeof(*txq), GFP_KERNEL);
3481 if (!txq)
3482 return -ENOMEM;
3483
3484 txq->pcpu = devm_kzalloc(dev, sizeof(struct mvpp2_txq_pcpu),
3485 GFP_KERNEL);
3486 if (!txq->pcpu)
3487 return -ENOMEM;
3488
3489 txq->id = queue_phy_id;
3490 txq->log_id = queue;
3491 txq->done_pkts_coal = MVPP2_TXDONE_COAL_PKTS_THRESH;
3492 for_each_present_cpu(cpu) {
3493 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
3494 txq_pcpu->cpu = cpu;
3495 }
3496
3497 port->txqs[queue] = txq;
3498 }
3499
3500 port->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*port->rxqs),
3501 GFP_KERNEL);
3502 if (!port->rxqs)
3503 return -ENOMEM;
3504
3505 /* Allocate and initialize Rx queue for this port */
3506 for (queue = 0; queue < rxq_number; queue++) {
3507 struct mvpp2_rx_queue *rxq;
3508
3509 /* Map physical Rx queue to port's logical Rx queue */
3510 rxq = devm_kzalloc(dev, sizeof(*rxq), GFP_KERNEL);
3511 if (!rxq)
3512 return -ENOMEM;
3513 /* Map this Rx queue to a physical queue */
3514 rxq->id = port->first_rxq + queue;
3515 rxq->port = port->id;
3516 rxq->logic_rxq = queue;
3517
3518 port->rxqs[queue] = rxq;
3519 }
3520
3521 /* Configure Rx queue group interrupt for this port */
3522 mvpp2_write(priv, MVPP2_ISR_RXQ_GROUP_REG(port->id), CONFIG_MV_ETH_RXQ);
3523
3524 /* Create Rx descriptor rings */
3525 for (queue = 0; queue < rxq_number; queue++) {
3526 struct mvpp2_rx_queue *rxq = port->rxqs[queue];
3527
3528 rxq->size = port->rx_ring_size;
3529 rxq->pkts_coal = MVPP2_RX_COAL_PKTS;
3530 rxq->time_coal = MVPP2_RX_COAL_USEC;
3531 }
3532
3533 mvpp2_ingress_disable(port);
3534
3535 /* Port default configuration */
3536 mvpp2_defaults_set(port);
3537
3538 /* Port's classifier configuration */
3539 mvpp2_cls_oversize_rxq_set(port);
3540 mvpp2_cls_port_config(port);
3541
3542 /* Provide an initial Rx packet size */
3543 port->pkt_size = MVPP2_RX_PKT_SIZE(PKTSIZE_ALIGN);
3544
3545 /* Initialize pools for swf */
3546 err = mvpp2_swf_bm_pool_init(port);
3547 if (err)
3548 return err;
3549
3550 return 0;
3551}
3552
3553/* Ports initialization */
3554static int mvpp2_port_probe(struct udevice *dev,
3555 struct mvpp2_port *port,
3556 int port_node,
3557 struct mvpp2 *priv,
3558 int *next_first_rxq)
3559{
3560 int phy_node;
3561 u32 id;
3562 u32 phyaddr;
3563 const char *phy_mode_str;
3564 int phy_mode = -1;
3565 int priv_common_regs_num = 2;
3566 int err;
3567
3568 phy_node = fdtdec_lookup_phandle(gd->fdt_blob, port_node, "phy");
3569 if (phy_node < 0) {
3570 dev_err(&pdev->dev, "missing phy\n");
3571 return -ENODEV;
3572 }
3573
3574 phy_mode_str = fdt_getprop(gd->fdt_blob, port_node, "phy-mode", NULL);
3575 if (phy_mode_str)
3576 phy_mode = phy_get_interface_by_name(phy_mode_str);
3577 if (phy_mode == -1) {
3578 dev_err(&pdev->dev, "incorrect phy mode\n");
3579 return -EINVAL;
3580 }
3581
3582 id = fdtdec_get_int(gd->fdt_blob, port_node, "port-id", -1);
3583 if (id == -1) {
3584 dev_err(&pdev->dev, "missing port-id value\n");
3585 return -EINVAL;
3586 }
3587
3588 phyaddr = fdtdec_get_int(gd->fdt_blob, phy_node, "reg", 0);
3589
3590 port->priv = priv;
3591 port->id = id;
3592 port->first_rxq = *next_first_rxq;
3593 port->phy_node = phy_node;
3594 port->phy_interface = phy_mode;
3595 port->phyaddr = phyaddr;
3596
3597 port->base = (void __iomem *)dev_get_addr_index(dev->parent,
3598 priv_common_regs_num
3599 + id);
3600 if (IS_ERR(port->base))
3601 return PTR_ERR(port->base);
3602
3603 port->tx_ring_size = MVPP2_MAX_TXD;
3604 port->rx_ring_size = MVPP2_MAX_RXD;
3605
3606 err = mvpp2_port_init(dev, port);
3607 if (err < 0) {
3608 dev_err(&pdev->dev, "failed to init port %d\n", id);
3609 return err;
3610 }
3611 mvpp2_port_power_up(port);
3612
3613 /* Increment the first Rx queue number to be used by the next port */
3614 *next_first_rxq += CONFIG_MV_ETH_RXQ;
3615 priv->port_list[id] = port;
3616 return 0;
3617}
3618
3619/* Initialize decoding windows */
3620static void mvpp2_conf_mbus_windows(const struct mbus_dram_target_info *dram,
3621 struct mvpp2 *priv)
3622{
3623 u32 win_enable;
3624 int i;
3625
3626 for (i = 0; i < 6; i++) {
3627 mvpp2_write(priv, MVPP2_WIN_BASE(i), 0);
3628 mvpp2_write(priv, MVPP2_WIN_SIZE(i), 0);
3629
3630 if (i < 4)
3631 mvpp2_write(priv, MVPP2_WIN_REMAP(i), 0);
3632 }
3633
3634 win_enable = 0;
3635
3636 for (i = 0; i < dram->num_cs; i++) {
3637 const struct mbus_dram_window *cs = dram->cs + i;
3638
3639 mvpp2_write(priv, MVPP2_WIN_BASE(i),
3640 (cs->base & 0xffff0000) | (cs->mbus_attr << 8) |
3641 dram->mbus_dram_target_id);
3642
3643 mvpp2_write(priv, MVPP2_WIN_SIZE(i),
3644 (cs->size - 1) & 0xffff0000);
3645
3646 win_enable |= (1 << i);
3647 }
3648
3649 mvpp2_write(priv, MVPP2_BASE_ADDR_ENABLE, win_enable);
3650}
3651
3652/* Initialize Rx FIFO's */
3653static void mvpp2_rx_fifo_init(struct mvpp2 *priv)
3654{
3655 int port;
3656
3657 for (port = 0; port < MVPP2_MAX_PORTS; port++) {
3658 mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port),
3659 MVPP2_RX_FIFO_PORT_DATA_SIZE);
3660 mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
3661 MVPP2_RX_FIFO_PORT_ATTR_SIZE);
3662 }
3663
3664 mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG,
3665 MVPP2_RX_FIFO_PORT_MIN_PKT);
3666 mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1);
3667}
3668
3669/* Initialize network controller common part HW */
3670static int mvpp2_init(struct udevice *dev, struct mvpp2 *priv)
3671{
3672 const struct mbus_dram_target_info *dram_target_info;
3673 int err, i;
3674 u32 val;
3675
3676 /* Checks for hardware constraints (U-Boot uses only one rxq) */
3677 if ((rxq_number > MVPP2_MAX_RXQ) || (txq_number > MVPP2_MAX_TXQ)) {
3678 dev_err(&pdev->dev, "invalid queue size parameter\n");
3679 return -EINVAL;
3680 }
3681
3682 /* MBUS windows configuration */
3683 dram_target_info = mvebu_mbus_dram_info();
3684 if (dram_target_info)
3685 mvpp2_conf_mbus_windows(dram_target_info, priv);
3686
3687 /* Disable HW PHY polling */
3688 val = readl(priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
3689 val |= MVPP2_PHY_AN_STOP_SMI0_MASK;
3690 writel(val, priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
3691
3692 /* Allocate and initialize aggregated TXQs */
3693 priv->aggr_txqs = devm_kcalloc(dev, num_present_cpus(),
3694 sizeof(struct mvpp2_tx_queue),
3695 GFP_KERNEL);
3696 if (!priv->aggr_txqs)
3697 return -ENOMEM;
3698
3699 for_each_present_cpu(i) {
3700 priv->aggr_txqs[i].id = i;
3701 priv->aggr_txqs[i].size = MVPP2_AGGR_TXQ_SIZE;
3702 err = mvpp2_aggr_txq_init(dev, &priv->aggr_txqs[i],
3703 MVPP2_AGGR_TXQ_SIZE, i, priv);
3704 if (err < 0)
3705 return err;
3706 }
3707
3708 /* Rx Fifo Init */
3709 mvpp2_rx_fifo_init(priv);
3710
3711 /* Reset Rx queue group interrupt configuration */
3712 for (i = 0; i < MVPP2_MAX_PORTS; i++)
3713 mvpp2_write(priv, MVPP2_ISR_RXQ_GROUP_REG(i),
3714 CONFIG_MV_ETH_RXQ);
3715
3716 writel(MVPP2_EXT_GLOBAL_CTRL_DEFAULT,
3717 priv->lms_base + MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG);
3718
3719 /* Allow cache snoop when transmiting packets */
3720 mvpp2_write(priv, MVPP2_TX_SNOOP_REG, 0x1);
3721
3722 /* Buffer Manager initialization */
3723 err = mvpp2_bm_init(dev, priv);
3724 if (err < 0)
3725 return err;
3726
3727 /* Parser default initialization */
3728 err = mvpp2_prs_default_init(dev, priv);
3729 if (err < 0)
3730 return err;
3731
3732 /* Classifier default initialization */
3733 mvpp2_cls_init(priv);
3734
3735 return 0;
3736}
3737
3738/* SMI / MDIO functions */
3739
3740static int smi_wait_ready(struct mvpp2 *priv)
3741{
3742 u32 timeout = MVPP2_SMI_TIMEOUT;
3743 u32 smi_reg;
3744
3745 /* wait till the SMI is not busy */
3746 do {
3747 /* read smi register */
3748 smi_reg = readl(priv->lms_base + MVPP2_SMI);
3749 if (timeout-- == 0) {
3750 printf("Error: SMI busy timeout\n");
3751 return -EFAULT;
3752 }
3753 } while (smi_reg & MVPP2_SMI_BUSY);
3754
3755 return 0;
3756}
3757
3758/*
3759 * mpp2_mdio_read - miiphy_read callback function.
3760 *
3761 * Returns 16bit phy register value, or 0xffff on error
3762 */
3763static int mpp2_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
3764{
3765 struct mvpp2 *priv = bus->priv;
3766 u32 smi_reg;
3767 u32 timeout;
3768
3769 /* check parameters */
3770 if (addr > MVPP2_PHY_ADDR_MASK) {
3771 printf("Error: Invalid PHY address %d\n", addr);
3772 return -EFAULT;
3773 }
3774
3775 if (reg > MVPP2_PHY_REG_MASK) {
3776 printf("Err: Invalid register offset %d\n", reg);
3777 return -EFAULT;
3778 }
3779
3780 /* wait till the SMI is not busy */
3781 if (smi_wait_ready(priv) < 0)
3782 return -EFAULT;
3783
3784 /* fill the phy address and regiser offset and read opcode */
3785 smi_reg = (addr << MVPP2_SMI_DEV_ADDR_OFFS)
3786 | (reg << MVPP2_SMI_REG_ADDR_OFFS)
3787 | MVPP2_SMI_OPCODE_READ;
3788
3789 /* write the smi register */
3790 writel(smi_reg, priv->lms_base + MVPP2_SMI);
3791
3792 /* wait till read value is ready */
3793 timeout = MVPP2_SMI_TIMEOUT;
3794
3795 do {
3796 /* read smi register */
3797 smi_reg = readl(priv->lms_base + MVPP2_SMI);
3798 if (timeout-- == 0) {
3799 printf("Err: SMI read ready timeout\n");
3800 return -EFAULT;
3801 }
3802 } while (!(smi_reg & MVPP2_SMI_READ_VALID));
3803
3804 /* Wait for the data to update in the SMI register */
3805 for (timeout = 0; timeout < MVPP2_SMI_TIMEOUT; timeout++)
3806 ;
3807
3808 return readl(priv->lms_base + MVPP2_SMI) & MVPP2_SMI_DATA_MASK;
3809}
3810
3811/*
3812 * mpp2_mdio_write - miiphy_write callback function.
3813 *
3814 * Returns 0 if write succeed, -EINVAL on bad parameters
3815 * -ETIME on timeout
3816 */
3817static int mpp2_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
3818 u16 value)
3819{
3820 struct mvpp2 *priv = bus->priv;
3821 u32 smi_reg;
3822
3823 /* check parameters */
3824 if (addr > MVPP2_PHY_ADDR_MASK) {
3825 printf("Error: Invalid PHY address %d\n", addr);
3826 return -EFAULT;
3827 }
3828
3829 if (reg > MVPP2_PHY_REG_MASK) {
3830 printf("Err: Invalid register offset %d\n", reg);
3831 return -EFAULT;
3832 }
3833
3834 /* wait till the SMI is not busy */
3835 if (smi_wait_ready(priv) < 0)
3836 return -EFAULT;
3837
3838 /* fill the phy addr and reg offset and write opcode and data */
3839 smi_reg = value << MVPP2_SMI_DATA_OFFS;
3840 smi_reg |= (addr << MVPP2_SMI_DEV_ADDR_OFFS)
3841 | (reg << MVPP2_SMI_REG_ADDR_OFFS);
3842 smi_reg &= ~MVPP2_SMI_OPCODE_READ;
3843
3844 /* write the smi register */
3845 writel(smi_reg, priv->lms_base + MVPP2_SMI);
3846
3847 return 0;
3848}
3849
3850static int mvpp2_recv(struct udevice *dev, int flags, uchar **packetp)
3851{
3852 struct mvpp2_port *port = dev_get_priv(dev);
3853 struct mvpp2_rx_desc *rx_desc;
3854 struct mvpp2_bm_pool *bm_pool;
3855 dma_addr_t phys_addr;
3856 u32 bm, rx_status;
3857 int pool, rx_bytes, err;
3858 int rx_received;
3859 struct mvpp2_rx_queue *rxq;
3860 u32 cause_rx_tx, cause_rx, cause_misc;
3861 u8 *data;
3862
3863 cause_rx_tx = mvpp2_read(port->priv,
3864 MVPP2_ISR_RX_TX_CAUSE_REG(port->id));
3865 cause_rx_tx &= ~MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK;
3866 cause_misc = cause_rx_tx & MVPP2_CAUSE_MISC_SUM_MASK;
3867 if (!cause_rx_tx && !cause_misc)
3868 return 0;
3869
3870 cause_rx = cause_rx_tx & MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK;
3871
3872 /* Process RX packets */
3873 cause_rx |= port->pending_cause_rx;
3874 rxq = mvpp2_get_rx_queue(port, cause_rx);
3875
3876 /* Get number of received packets and clamp the to-do */
3877 rx_received = mvpp2_rxq_received(port, rxq->id);
3878
3879 /* Return if no packets are received */
3880 if (!rx_received)
3881 return 0;
3882
3883 rx_desc = mvpp2_rxq_next_desc_get(rxq);
3884 rx_status = rx_desc->status;
3885 rx_bytes = rx_desc->data_size - MVPP2_MH_SIZE;
3886 phys_addr = rx_desc->buf_phys_addr;
3887
3888 bm = mvpp2_bm_cookie_build(rx_desc);
3889 pool = mvpp2_bm_cookie_pool_get(bm);
3890 bm_pool = &port->priv->bm_pools[pool];
3891
3892 /* Check if buffer header is used */
3893 if (rx_status & MVPP2_RXD_BUF_HDR)
3894 return 0;
3895
3896 /* In case of an error, release the requested buffer pointer
3897 * to the Buffer Manager. This request process is controlled
3898 * by the hardware, and the information about the buffer is
3899 * comprised by the RX descriptor.
3900 */
3901 if (rx_status & MVPP2_RXD_ERR_SUMMARY) {
3902 mvpp2_rx_error(port, rx_desc);
3903 /* Return the buffer to the pool */
3904 mvpp2_pool_refill(port, bm, rx_desc->buf_phys_addr,
3905 rx_desc->buf_cookie);
3906 return 0;
3907 }
3908
3909 err = mvpp2_rx_refill(port, bm_pool, bm, phys_addr);
3910 if (err) {
3911 netdev_err(port->dev, "failed to refill BM pools\n");
3912 return 0;
3913 }
3914
3915 /* Update Rx queue management counters */
3916 mb();
3917 mvpp2_rxq_status_update(port, rxq->id, 1, 1);
3918
3919 /* give packet to stack - skip on first n bytes */
3920 data = (u8 *)phys_addr + 2 + 32;
3921
3922 if (rx_bytes <= 0)
3923 return 0;
3924
3925 /*
3926 * No cache invalidation needed here, since the rx_buffer's are
3927 * located in a uncached memory region
3928 */
3929 *packetp = data;
3930
3931 return rx_bytes;
3932}
3933
3934/* Drain Txq */
3935static void mvpp2_txq_drain(struct mvpp2_port *port, struct mvpp2_tx_queue *txq,
3936 int enable)
3937{
3938 u32 val;
3939
3940 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
3941 val = mvpp2_read(port->priv, MVPP2_TXQ_PREF_BUF_REG);
3942 if (enable)
3943 val |= MVPP2_TXQ_DRAIN_EN_MASK;
3944 else
3945 val &= ~MVPP2_TXQ_DRAIN_EN_MASK;
3946 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
3947}
3948
3949static int mvpp2_send(struct udevice *dev, void *packet, int length)
3950{
3951 struct mvpp2_port *port = dev_get_priv(dev);
3952 struct mvpp2_tx_queue *txq, *aggr_txq;
3953 struct mvpp2_tx_desc *tx_desc;
3954 int tx_done;
3955 int timeout;
3956
3957 txq = port->txqs[0];
3958 aggr_txq = &port->priv->aggr_txqs[smp_processor_id()];
3959
3960 /* Get a descriptor for the first part of the packet */
3961 tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
3962 tx_desc->phys_txq = txq->id;
3963 tx_desc->data_size = length;
3964 tx_desc->packet_offset = (u32)packet & MVPP2_TX_DESC_ALIGN;
3965 tx_desc->buf_phys_addr = (u32)packet & ~MVPP2_TX_DESC_ALIGN;
3966 /* First and Last descriptor */
3967 tx_desc->command = MVPP2_TXD_L4_CSUM_NOT | MVPP2_TXD_IP_CSUM_DISABLE
3968 | MVPP2_TXD_F_DESC | MVPP2_TXD_L_DESC;
3969
3970 /* Flush tx data */
Stefan Roesef811e042017-02-16 13:58:37 +01003971 flush_dcache_range((unsigned long)packet,
3972 (unsigned long)packet + ALIGN(length, PKTALIGN));
Stefan Roese99d4c6d2016-02-10 07:22:10 +01003973
3974 /* Enable transmit */
3975 mb();
3976 mvpp2_aggr_txq_pend_desc_add(port, 1);
3977
3978 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
3979
3980 timeout = 0;
3981 do {
3982 if (timeout++ > 10000) {
3983 printf("timeout: packet not sent from aggregated to phys TXQ\n");
3984 return 0;
3985 }
3986 tx_done = mvpp2_txq_pend_desc_num_get(port, txq);
3987 } while (tx_done);
3988
3989 /* Enable TXQ drain */
3990 mvpp2_txq_drain(port, txq, 1);
3991
3992 timeout = 0;
3993 do {
3994 if (timeout++ > 10000) {
3995 printf("timeout: packet not sent\n");
3996 return 0;
3997 }
3998 tx_done = mvpp2_txq_sent_desc_proc(port, txq);
3999 } while (!tx_done);
4000
4001 /* Disable TXQ drain */
4002 mvpp2_txq_drain(port, txq, 0);
4003
4004 return 0;
4005}
4006
4007static int mvpp2_start(struct udevice *dev)
4008{
4009 struct eth_pdata *pdata = dev_get_platdata(dev);
4010 struct mvpp2_port *port = dev_get_priv(dev);
4011
4012 /* Load current MAC address */
4013 memcpy(port->dev_addr, pdata->enetaddr, ETH_ALEN);
4014
4015 /* Reconfigure parser accept the original MAC address */
4016 mvpp2_prs_update_mac_da(port, port->dev_addr);
4017
4018 mvpp2_port_power_up(port);
4019
4020 mvpp2_open(dev, port);
4021
4022 return 0;
4023}
4024
4025static void mvpp2_stop(struct udevice *dev)
4026{
4027 struct mvpp2_port *port = dev_get_priv(dev);
4028
4029 mvpp2_stop_dev(port);
4030 mvpp2_cleanup_rxqs(port);
4031 mvpp2_cleanup_txqs(port);
4032}
4033
4034static int mvpp2_probe(struct udevice *dev)
4035{
4036 struct mvpp2_port *port = dev_get_priv(dev);
4037 struct mvpp2 *priv = dev_get_priv(dev->parent);
4038 int err;
4039
4040 /* Initialize network controller */
4041 err = mvpp2_init(dev, priv);
4042 if (err < 0) {
4043 dev_err(&pdev->dev, "failed to initialize controller\n");
4044 return err;
4045 }
4046
Simon Glasse160f7d2017-01-17 16:52:55 -07004047 return mvpp2_port_probe(dev, port, dev_of_offset(dev), priv,
Stefan Roese99d4c6d2016-02-10 07:22:10 +01004048 &buffer_loc.first_rxq);
4049}
4050
4051static const struct eth_ops mvpp2_ops = {
4052 .start = mvpp2_start,
4053 .send = mvpp2_send,
4054 .recv = mvpp2_recv,
4055 .stop = mvpp2_stop,
4056};
4057
4058static struct driver mvpp2_driver = {
4059 .name = "mvpp2",
4060 .id = UCLASS_ETH,
4061 .probe = mvpp2_probe,
4062 .ops = &mvpp2_ops,
4063 .priv_auto_alloc_size = sizeof(struct mvpp2_port),
4064 .platdata_auto_alloc_size = sizeof(struct eth_pdata),
4065};
4066
4067/*
4068 * Use a MISC device to bind the n instances (child nodes) of the
4069 * network base controller in UCLASS_ETH.
4070 */
4071static int mvpp2_base_probe(struct udevice *dev)
4072{
4073 struct mvpp2 *priv = dev_get_priv(dev);
4074 struct mii_dev *bus;
4075 void *bd_space;
4076 u32 size = 0;
4077 int i;
4078
4079 /*
4080 * U-Boot special buffer handling:
4081 *
4082 * Allocate buffer area for descs and rx_buffers. This is only
4083 * done once for all interfaces. As only one interface can
4084 * be active. Make this area DMA-safe by disabling the D-cache
4085 */
4086
4087 /* Align buffer area for descs and rx_buffers to 1MiB */
4088 bd_space = memalign(1 << MMU_SECTION_SHIFT, BD_SPACE);
4089 mmu_set_region_dcache_behaviour((u32)bd_space, BD_SPACE, DCACHE_OFF);
4090
4091 buffer_loc.aggr_tx_descs = (struct mvpp2_tx_desc *)bd_space;
4092 size += MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE;
4093
4094 buffer_loc.tx_descs = (struct mvpp2_tx_desc *)((u32)bd_space + size);
4095 size += MVPP2_MAX_TXD * MVPP2_DESC_ALIGNED_SIZE;
4096
4097 buffer_loc.rx_descs = (struct mvpp2_rx_desc *)((u32)bd_space + size);
4098 size += MVPP2_MAX_RXD * MVPP2_DESC_ALIGNED_SIZE;
4099
4100 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
4101 buffer_loc.bm_pool[i] = (u32 *)((u32)bd_space + size);
4102 size += MVPP2_BM_POOL_SIZE_MAX * sizeof(u32);
4103 }
4104
4105 for (i = 0; i < MVPP2_BM_LONG_BUF_NUM; i++) {
4106 buffer_loc.rx_buffer[i] = (u32 *)((u32)bd_space + size);
4107 size += RX_BUFFER_SIZE;
4108 }
4109
4110 /* Save base addresses for later use */
4111 priv->base = (void *)dev_get_addr_index(dev, 0);
4112 if (IS_ERR(priv->base))
4113 return PTR_ERR(priv->base);
4114
4115 priv->lms_base = (void *)dev_get_addr_index(dev, 1);
4116 if (IS_ERR(priv->lms_base))
4117 return PTR_ERR(priv->lms_base);
4118
4119 /* Finally create and register the MDIO bus driver */
4120 bus = mdio_alloc();
4121 if (!bus) {
4122 printf("Failed to allocate MDIO bus\n");
4123 return -ENOMEM;
4124 }
4125
4126 bus->read = mpp2_mdio_read;
4127 bus->write = mpp2_mdio_write;
4128 snprintf(bus->name, sizeof(bus->name), dev->name);
4129 bus->priv = (void *)priv;
4130 priv->bus = bus;
4131
4132 return mdio_register(bus);
4133}
4134
4135static int mvpp2_base_bind(struct udevice *parent)
4136{
4137 const void *blob = gd->fdt_blob;
Simon Glasse160f7d2017-01-17 16:52:55 -07004138 int node = dev_of_offset(parent);
Stefan Roese99d4c6d2016-02-10 07:22:10 +01004139 struct uclass_driver *drv;
4140 struct udevice *dev;
4141 struct eth_pdata *plat;
4142 char *name;
4143 int subnode;
4144 u32 id;
4145
4146 /* Lookup eth driver */
4147 drv = lists_uclass_lookup(UCLASS_ETH);
4148 if (!drv) {
4149 puts("Cannot find eth driver\n");
4150 return -ENOENT;
4151 }
4152
Simon Glassdf87e6b2016-10-02 17:59:29 -06004153 fdt_for_each_subnode(subnode, blob, node) {
Stefan Roese99d4c6d2016-02-10 07:22:10 +01004154 /* Skip disabled ports */
4155 if (!fdtdec_get_is_enabled(blob, subnode))
4156 continue;
4157
4158 plat = calloc(1, sizeof(*plat));
4159 if (!plat)
4160 return -ENOMEM;
4161
4162 id = fdtdec_get_int(blob, subnode, "port-id", -1);
4163
4164 name = calloc(1, 16);
4165 sprintf(name, "mvpp2-%d", id);
4166
4167 /* Create child device UCLASS_ETH and bind it */
4168 device_bind(parent, &mvpp2_driver, name, plat, subnode, &dev);
Simon Glasse160f7d2017-01-17 16:52:55 -07004169 dev_set_of_offset(dev, subnode);
Stefan Roese99d4c6d2016-02-10 07:22:10 +01004170 }
4171
4172 return 0;
4173}
4174
4175static const struct udevice_id mvpp2_ids[] = {
4176 { .compatible = "marvell,armada-375-pp2" },
4177 { }
4178};
4179
4180U_BOOT_DRIVER(mvpp2_base) = {
4181 .name = "mvpp2_base",
4182 .id = UCLASS_MISC,
4183 .of_match = mvpp2_ids,
4184 .bind = mvpp2_base_bind,
4185 .probe = mvpp2_base_probe,
4186 .priv_auto_alloc_size = sizeof(struct mvpp2),
4187};