blob: ceff60c40e6c98e50fcce23a5b7c1c22e7a2140c [file] [log] [blame]
Simon Glasse761ecd2013-04-17 16:13:36 +00001/*
2 * Copyright (c) 2012 The Chromium OS Authors.
3 *
Bin Meng076bb442014-11-09 22:19:13 +08004 * TSC calibration codes are adapted from Linux kernel
5 * arch/x86/kernel/tsc_msr.c and arch/x86/kernel/tsc.c
6 *
Wolfgang Denk1a459662013-07-08 09:37:19 +02007 * SPDX-License-Identifier: GPL-2.0+
Simon Glasse761ecd2013-04-17 16:13:36 +00008 */
9
10#include <common.h>
11#include <malloc.h>
12#include <asm/io.h>
13#include <asm/i8254.h>
14#include <asm/ibmpc.h>
15#include <asm/msr.h>
16#include <asm/u-boot-x86.h>
17
Bin Meng076bb442014-11-09 22:19:13 +080018/* CPU reference clock frequency: in KHz */
19#define FREQ_83 83200
20#define FREQ_100 99840
21#define FREQ_133 133200
22#define FREQ_166 166400
23
24#define MAX_NUM_FREQS 8
25
Simon Glasse761ecd2013-04-17 16:13:36 +000026DECLARE_GLOBAL_DATA_PTR;
27
Bin Meng076bb442014-11-09 22:19:13 +080028/*
29 * According to Intel 64 and IA-32 System Programming Guide,
30 * if MSR_PERF_STAT[31] is set, the maximum resolved bus ratio can be
31 * read in MSR_PLATFORM_ID[12:8], otherwise in MSR_PERF_STAT[44:40].
32 * Unfortunately some Intel Atom SoCs aren't quite compliant to this,
33 * so we need manually differentiate SoC families. This is what the
34 * field msr_plat does.
35 */
36struct freq_desc {
37 u8 x86_family; /* CPU family */
38 u8 x86_model; /* model */
39 u8 msr_plat; /* 1: use MSR_PLATFORM_INFO, 0: MSR_IA32_PERF_STATUS */
40 u32 freqs[MAX_NUM_FREQS];
41};
42
43static struct freq_desc freq_desc_tables[] = {
44 /* PNW */
45 { 6, 0x27, 0, { 0, 0, 0, 0, 0, FREQ_100, 0, FREQ_83 } },
46 /* CLV+ */
47 { 6, 0x35, 0, { 0, FREQ_133, 0, 0, 0, FREQ_100, 0, FREQ_83 } },
48 /* TNG */
49 { 6, 0x4a, 1, { 0, FREQ_100, FREQ_133, 0, 0, 0, 0, 0 } },
50 /* VLV2 */
51 { 6, 0x37, 1, { FREQ_83, FREQ_100, FREQ_133, FREQ_166, 0, 0, 0, 0 } },
52 /* ANN */
53 { 6, 0x5a, 1, { FREQ_83, FREQ_100, FREQ_133, FREQ_100, 0, 0, 0, 0 } },
54};
55
56static int match_cpu(u8 family, u8 model)
57{
58 int i;
59
60 for (i = 0; i < ARRAY_SIZE(freq_desc_tables); i++) {
61 if ((family == freq_desc_tables[i].x86_family) &&
62 (model == freq_desc_tables[i].x86_model))
63 return i;
64 }
65
66 return -1;
67}
68
69/* Map CPU reference clock freq ID(0-7) to CPU reference clock freq(KHz) */
70#define id_to_freq(cpu_index, freq_id) \
71 (freq_desc_tables[cpu_index].freqs[freq_id])
72
73/*
74 * Do MSR calibration only for known/supported CPUs.
75 *
76 * Returns the calibration value or 0 if MSR calibration failed.
77 */
78static unsigned long try_msr_calibrate_tsc(void)
79{
80 u32 lo, hi, ratio, freq_id, freq;
81 unsigned long res;
82 int cpu_index;
83
84 cpu_index = match_cpu(gd->arch.x86, gd->arch.x86_model);
85 if (cpu_index < 0)
86 return 0;
87
88 if (freq_desc_tables[cpu_index].msr_plat) {
89 rdmsr(MSR_PLATFORM_INFO, lo, hi);
90 ratio = (lo >> 8) & 0x1f;
91 } else {
92 rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
93 ratio = (hi >> 8) & 0x1f;
94 }
95 debug("Maximum core-clock to bus-clock ratio: 0x%x\n", ratio);
96
97 if (!ratio)
98 goto fail;
99
100 /* Get FSB FREQ ID */
101 rdmsr(MSR_FSB_FREQ, lo, hi);
102 freq_id = lo & 0x7;
103 freq = id_to_freq(cpu_index, freq_id);
104 debug("Resolved frequency ID: %u, frequency: %u KHz\n", freq_id, freq);
105 if (!freq)
106 goto fail;
107
108 /* TSC frequency = maximum resolved freq * maximum resolved bus ratio */
109 res = freq * ratio / 1000;
110 debug("TSC runs at %lu MHz\n", res);
111
112 return res;
113
114fail:
115 debug("Fast TSC calibration using MSR failed\n");
116 return 0;
117}
118
Bin Meng80de0492014-11-09 22:19:25 +0800119/*
120 * This reads the current MSB of the PIT counter, and
121 * checks if we are running on sufficiently fast and
122 * non-virtualized hardware.
123 *
124 * Our expectations are:
125 *
126 * - the PIT is running at roughly 1.19MHz
127 *
128 * - each IO is going to take about 1us on real hardware,
129 * but we allow it to be much faster (by a factor of 10) or
130 * _slightly_ slower (ie we allow up to a 2us read+counter
131 * update - anything else implies a unacceptably slow CPU
132 * or PIT for the fast calibration to work.
133 *
134 * - with 256 PIT ticks to read the value, we have 214us to
135 * see the same MSB (and overhead like doing a single TSC
136 * read per MSB value etc).
137 *
138 * - We're doing 2 reads per loop (LSB, MSB), and we expect
139 * them each to take about a microsecond on real hardware.
140 * So we expect a count value of around 100. But we'll be
141 * generous, and accept anything over 50.
142 *
143 * - if the PIT is stuck, and we see *many* more reads, we
144 * return early (and the next caller of pit_expect_msb()
145 * then consider it a failure when they don't see the
146 * next expected value).
147 *
148 * These expectations mean that we know that we have seen the
149 * transition from one expected value to another with a fairly
150 * high accuracy, and we didn't miss any events. We can thus
151 * use the TSC value at the transitions to calculate a pretty
152 * good value for the TSC frequencty.
153 */
154static inline int pit_verify_msb(unsigned char val)
155{
156 /* Ignore LSB */
157 inb(0x42);
158 return inb(0x42) == val;
159}
160
161static inline int pit_expect_msb(unsigned char val, u64 *tscp,
162 unsigned long *deltap)
163{
164 int count;
165 u64 tsc = 0, prev_tsc = 0;
166
167 for (count = 0; count < 50000; count++) {
168 if (!pit_verify_msb(val))
169 break;
170 prev_tsc = tsc;
171 tsc = rdtsc();
172 }
173 *deltap = rdtsc() - prev_tsc;
174 *tscp = tsc;
175
176 /*
177 * We require _some_ success, but the quality control
178 * will be based on the error terms on the TSC values.
179 */
180 return count > 5;
181}
182
183/*
184 * How many MSB values do we want to see? We aim for
185 * a maximum error rate of 500ppm (in practice the
186 * real error is much smaller), but refuse to spend
187 * more than 50ms on it.
188 */
189#define MAX_QUICK_PIT_MS 50
190#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
191
192static unsigned long quick_pit_calibrate(void)
193{
194 int i;
195 u64 tsc, delta;
196 unsigned long d1, d2;
197
198 /* Set the Gate high, disable speaker */
199 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
200
201 /*
202 * Counter 2, mode 0 (one-shot), binary count
203 *
204 * NOTE! Mode 2 decrements by two (and then the
205 * output is flipped each time, giving the same
206 * final output frequency as a decrement-by-one),
207 * so mode 0 is much better when looking at the
208 * individual counts.
209 */
210 outb(0xb0, 0x43);
211
212 /* Start at 0xffff */
213 outb(0xff, 0x42);
214 outb(0xff, 0x42);
215
216 /*
217 * The PIT starts counting at the next edge, so we
218 * need to delay for a microsecond. The easiest way
219 * to do that is to just read back the 16-bit counter
220 * once from the PIT.
221 */
222 pit_verify_msb(0);
223
224 if (pit_expect_msb(0xff, &tsc, &d1)) {
225 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
226 if (!pit_expect_msb(0xff-i, &delta, &d2))
227 break;
228
229 /*
230 * Iterate until the error is less than 500 ppm
231 */
232 delta -= tsc;
233 if (d1+d2 >= delta >> 11)
234 continue;
235
236 /*
237 * Check the PIT one more time to verify that
238 * all TSC reads were stable wrt the PIT.
239 *
240 * This also guarantees serialization of the
241 * last cycle read ('d2') in pit_expect_msb.
242 */
243 if (!pit_verify_msb(0xfe - i))
244 break;
245 goto success;
246 }
247 }
248 debug("Fast TSC calibration failed\n");
249 return 0;
250
251success:
252 /*
253 * Ok, if we get here, then we've seen the
254 * MSB of the PIT decrement 'i' times, and the
255 * error has shrunk to less than 500 ppm.
256 *
257 * As a result, we can depend on there not being
258 * any odd delays anywhere, and the TSC reads are
259 * reliable (within the error).
260 *
261 * kHz = ticks / time-in-seconds / 1000;
262 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
263 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
264 */
265 delta *= PIT_TICK_RATE;
266 delta /= (i*256*1000);
267 debug("Fast TSC calibration using PIT\n");
268 return delta / 1000;
269}
270
Simon Glasse761ecd2013-04-17 16:13:36 +0000271void timer_set_base(u64 base)
272{
273 gd->arch.tsc_base = base;
274}
275
276/*
277 * Get the number of CPU time counter ticks since it was read first time after
278 * restart. This yields a free running counter guaranteed to take almost 6
279 * years to wrap around even at 100GHz clock rate.
280 */
Simon Glassd8819f92013-06-11 11:14:52 -0700281u64 __attribute__((no_instrument_function)) get_ticks(void)
Simon Glasse761ecd2013-04-17 16:13:36 +0000282{
283 u64 now_tick = rdtsc();
284
285 /* We assume that 0 means the base hasn't been set yet */
286 if (!gd->arch.tsc_base)
287 panic("No tick base available");
288 return now_tick - gd->arch.tsc_base;
289}
290
Simon Glasse761ecd2013-04-17 16:13:36 +0000291/* Get the speed of the TSC timer in MHz */
Simon Glassd8819f92013-06-11 11:14:52 -0700292unsigned __attribute__((no_instrument_function)) long get_tbclk_mhz(void)
Simon Glasse761ecd2013-04-17 16:13:36 +0000293{
Bin Meng076bb442014-11-09 22:19:13 +0800294 unsigned long fast_calibrate;
Simon Glasse761ecd2013-04-17 16:13:36 +0000295
Bin Meng076bb442014-11-09 22:19:13 +0800296 fast_calibrate = try_msr_calibrate_tsc();
Bin Meng80de0492014-11-09 22:19:25 +0800297 if (fast_calibrate)
298 return fast_calibrate;
299
300 fast_calibrate = quick_pit_calibrate();
Bin Meng076bb442014-11-09 22:19:13 +0800301 if (!fast_calibrate)
302 panic("TSC frequency is ZERO");
303
304 return fast_calibrate;
Simon Glasse761ecd2013-04-17 16:13:36 +0000305}
306
307unsigned long get_tbclk(void)
308{
309 return get_tbclk_mhz() * 1000 * 1000;
310}
311
312static ulong get_ms_timer(void)
313{
314 return (get_ticks() * 1000) / get_tbclk();
315}
316
317ulong get_timer(ulong base)
318{
319 return get_ms_timer() - base;
320}
321
Simon Glassd8819f92013-06-11 11:14:52 -0700322ulong __attribute__((no_instrument_function)) timer_get_us(void)
Simon Glasse761ecd2013-04-17 16:13:36 +0000323{
324 return get_ticks() / get_tbclk_mhz();
325}
326
327ulong timer_get_boot_us(void)
328{
329 return timer_get_us();
330}
331
332void __udelay(unsigned long usec)
333{
334 u64 now = get_ticks();
335 u64 stop;
336
337 stop = now + usec * get_tbclk_mhz();
338
339 while ((int64_t)(stop - get_ticks()) > 0)
340 ;
341}
342
343int timer_init(void)
344{
Simon Glassd0b6f242013-04-17 16:13:39 +0000345#ifdef CONFIG_SYS_PCAT_TIMER
346 /* Set up the PCAT timer if required */
347 pcat_timer_init();
348#endif
349
Simon Glasse761ecd2013-04-17 16:13:36 +0000350 return 0;
351}