blob: bb8d3b2e345ca9a1443feea8ca4302697e64b68f [file] [log] [blame]
Tom Rini83d290c2018-05-06 17:58:06 -04001// SPDX-License-Identifier: GPL-2.0+
Stefan Roese33357862016-05-23 11:12:05 +02002/*
3 * Copyright (C) 2015-2016 Marvell International Ltd.
Stefan Roese33357862016-05-23 11:12:05 +02004 */
5
6#include <common.h>
7#include <fdtdec.h>
8#include <asm/io.h>
9#include <asm/arch/cpu.h>
10#include <asm/arch/soc.h>
11
12#include "comphy_a3700.h"
13
14DECLARE_GLOBAL_DATA_PTR;
15
16struct sgmii_phy_init_data_fix {
17 u16 addr;
18 u16 value;
19};
20
21/* Changes to 40M1G25 mode data required for running 40M3G125 init mode */
22static struct sgmii_phy_init_data_fix sgmii_phy_init_fix[] = {
23 {0x005, 0x07CC}, {0x015, 0x0000}, {0x01B, 0x0000}, {0x01D, 0x0000},
24 {0x01E, 0x0000}, {0x01F, 0x0000}, {0x020, 0x0000}, {0x021, 0x0030},
25 {0x026, 0x0888}, {0x04D, 0x0152}, {0x04F, 0xA020}, {0x050, 0x07CC},
26 {0x053, 0xE9CA}, {0x055, 0xBD97}, {0x071, 0x3015}, {0x076, 0x03AA},
27 {0x07C, 0x0FDF}, {0x0C2, 0x3030}, {0x0C3, 0x8000}, {0x0E2, 0x5550},
28 {0x0E3, 0x12A4}, {0x0E4, 0x7D00}, {0x0E6, 0x0C83}, {0x101, 0xFCC0},
29 {0x104, 0x0C10}
30};
31
32/* 40M1G25 mode init data */
33static u16 sgmii_phy_init[512] = {
34 /* 0 1 2 3 4 5 6 7 */
35 /*-----------------------------------------------------------*/
36 /* 8 9 A B C D E F */
37 0x3110, 0xFD83, 0x6430, 0x412F, 0x82C0, 0x06FA, 0x4500, 0x6D26, /* 00 */
38 0xAFC0, 0x8000, 0xC000, 0x0000, 0x2000, 0x49CC, 0x0BC9, 0x2A52, /* 08 */
39 0x0BD2, 0x0CDE, 0x13D2, 0x0CE8, 0x1149, 0x10E0, 0x0000, 0x0000, /* 10 */
40 0x0000, 0x0000, 0x0000, 0x0001, 0x0000, 0x4134, 0x0D2D, 0xFFFF, /* 18 */
41 0xFFE0, 0x4030, 0x1016, 0x0030, 0x0000, 0x0800, 0x0866, 0x0000, /* 20 */
42 0x0000, 0x0000, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, /* 28 */
43 0xFFFF, 0xFFFF, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* 30 */
44 0x0000, 0x0000, 0x000F, 0x6A62, 0x1988, 0x3100, 0x3100, 0x3100, /* 38 */
45 0x3100, 0xA708, 0x2430, 0x0830, 0x1030, 0x4610, 0xFF00, 0xFF00, /* 40 */
46 0x0060, 0x1000, 0x0400, 0x0040, 0x00F0, 0x0155, 0x1100, 0xA02A, /* 48 */
47 0x06FA, 0x0080, 0xB008, 0xE3ED, 0x5002, 0xB592, 0x7A80, 0x0001, /* 50 */
48 0x020A, 0x8820, 0x6014, 0x8054, 0xACAA, 0xFC88, 0x2A02, 0x45CF, /* 58 */
49 0x000F, 0x1817, 0x2860, 0x064F, 0x0000, 0x0204, 0x1800, 0x6000, /* 60 */
50 0x810F, 0x4F23, 0x4000, 0x4498, 0x0850, 0x0000, 0x000E, 0x1002, /* 68 */
51 0x9D3A, 0x3009, 0xD066, 0x0491, 0x0001, 0x6AB0, 0x0399, 0x3780, /* 70 */
52 0x0040, 0x5AC0, 0x4A80, 0x0000, 0x01DF, 0x0000, 0x0007, 0x0000, /* 78 */
53 0x2D54, 0x00A1, 0x4000, 0x0100, 0xA20A, 0x0000, 0x0000, 0x0000, /* 80 */
54 0x0000, 0x0000, 0x0000, 0x7400, 0x0E81, 0x1000, 0x1242, 0x0210, /* 88 */
55 0x80DF, 0x0F1F, 0x2F3F, 0x4F5F, 0x6F7F, 0x0F1F, 0x2F3F, 0x4F5F, /* 90 */
56 0x6F7F, 0x4BAD, 0x0000, 0x0000, 0x0800, 0x0000, 0x2400, 0xB651, /* 98 */
57 0xC9E0, 0x4247, 0x0A24, 0x0000, 0xAF19, 0x1004, 0x0000, 0x0000, /* A0 */
58 0x0000, 0x0013, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* A8 */
59 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* B0 */
60 0x0000, 0x0000, 0x0000, 0x0060, 0x0000, 0x0000, 0x0000, 0x0000, /* B8 */
61 0x0000, 0x0000, 0x3010, 0xFA00, 0x0000, 0x0000, 0x0000, 0x0003, /* C0 */
62 0x1618, 0x8200, 0x8000, 0x0400, 0x050F, 0x0000, 0x0000, 0x0000, /* C8 */
63 0x4C93, 0x0000, 0x1000, 0x1120, 0x0010, 0x1242, 0x1242, 0x1E00, /* D0 */
64 0x0000, 0x0000, 0x0000, 0x00F8, 0x0000, 0x0041, 0x0800, 0x0000, /* D8 */
65 0x82A0, 0x572E, 0x2490, 0x14A9, 0x4E00, 0x0000, 0x0803, 0x0541, /* E0 */
66 0x0C15, 0x0000, 0x0000, 0x0400, 0x2626, 0x0000, 0x0000, 0x4200, /* E8 */
67 0x0000, 0xAA55, 0x1020, 0x0000, 0x0000, 0x5010, 0x0000, 0x0000, /* F0 */
68 0x0000, 0x0000, 0x5000, 0x0000, 0x0000, 0x0000, 0x02F2, 0x0000, /* F8 */
69 0x101F, 0xFDC0, 0x4000, 0x8010, 0x0110, 0x0006, 0x0000, 0x0000, /*100 */
70 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*108 */
71 0x04CF, 0x0000, 0x04CF, 0x0000, 0x04CF, 0x0000, 0x04C6, 0x0000, /*110 */
72 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*118 */
73 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*120 */
74 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*128 */
75 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*130 */
76 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*138 */
77 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*140 */
78 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*148 */
79 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*150 */
80 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*158 */
81 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*160 */
82 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*168 */
83 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*170 */
84 0x0000, 0x0000, 0x0000, 0x00F0, 0x08A2, 0x3112, 0x0A14, 0x0000, /*178 */
85 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*180 */
86 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*188 */
87 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*190 */
88 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*198 */
89 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1A0 */
90 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1A8 */
91 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1B0 */
92 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1B8 */
93 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1C0 */
94 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1C8 */
95 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1D0 */
96 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1D8 */
97 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1E0 */
98 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1E8 */
99 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1F0 */
100 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000 /*1F8 */
101};
102
103/*
104 * comphy_poll_reg
105 *
106 * return: 1 on success, 0 on timeout
107 */
108static u32 comphy_poll_reg(void *addr, u32 val, u32 mask, u32 timeout,
109 u8 op_type)
110{
111 u32 rval = 0xDEAD;
112
113 for (; timeout > 0; timeout--) {
114 if (op_type == POLL_16B_REG)
115 rval = readw(addr); /* 16 bit */
116 else
117 rval = readl(addr) ; /* 32 bit */
118
119 if ((rval & mask) == val)
120 return 1;
121
122 udelay(10000);
123 }
124
125 debug("Time out waiting (%p = %#010x)\n", addr, rval);
126 return 0;
127}
128
129/*
130 * comphy_pcie_power_up
131 *
132 * return: 1 if PLL locked (OK), 0 otherwise (FAIL)
133 */
134static int comphy_pcie_power_up(u32 speed, u32 invert)
135{
136 int ret;
137
138 debug_enter();
139
140 /*
141 * 1. Enable max PLL.
142 */
143 reg_set16((void __iomem *)LANE_CFG1_ADDR(PCIE),
144 bf_use_max_pll_rate, 0);
145
146 /*
147 * 2. Select 20 bit SERDES interface.
148 */
149 reg_set16((void __iomem *)GLOB_CLK_SRC_LO_ADDR(PCIE),
150 bf_cfg_sel_20b, 0);
151
152 /*
153 * 3. Force to use reg setting for PCIe mode
154 */
155 reg_set16((void __iomem *)MISC_REG1_ADDR(PCIE),
156 bf_sel_bits_pcie_force, 0);
157
158 /*
159 * 4. Change RX wait
160 */
161 reg_set16((void __iomem *)PWR_MGM_TIM1_ADDR(PCIE), 0x10C, 0xFFFF);
162
163 /*
164 * 5. Enable idle sync
165 */
166 reg_set16((void __iomem *)UNIT_CTRL_ADDR(PCIE),
167 0x60 | rb_idle_sync_en, 0xFFFF);
168
169 /*
170 * 6. Enable the output of 100M/125M/500M clock
171 */
172 reg_set16((void __iomem *)MISC_REG0_ADDR(PCIE),
173 0xA00D | rb_clk500m_en | rb_clk100m_125m_en, 0xFFFF);
174
175 /*
176 * 7. Enable TX
177 */
178 reg_set((void __iomem *)PHY_REF_CLK_ADDR, 0x1342, 0xFFFFFFFF);
179
180 /*
181 * 8. Check crystal jumper setting and program the Power and PLL
182 * Control accordingly
183 */
184 if (get_ref_clk() == 40) {
185 reg_set16((void __iomem *)PWR_PLL_CTRL_ADDR(PCIE),
186 0xFC63, 0xFFFF); /* 40 MHz */
187 } else {
188 reg_set16((void __iomem *)PWR_PLL_CTRL_ADDR(PCIE),
189 0xFC62, 0xFFFF); /* 25 MHz */
190 }
191
192 /*
193 * 9. Override Speed_PLL value and use MAC PLL
194 */
195 reg_set16((void __iomem *)KVCO_CAL_CTRL_ADDR(PCIE),
196 0x0040 | rb_use_max_pll_rate, 0xFFFF);
197
198 /*
199 * 10. Check the Polarity invert bit
200 */
201 if (invert & PHY_POLARITY_TXD_INVERT) {
202 reg_set16((void __iomem *)SYNC_PATTERN_ADDR(PCIE),
203 phy_txd_inv, 0);
204 }
205
206 if (invert & PHY_POLARITY_RXD_INVERT) {
207 reg_set16((void __iomem *)SYNC_PATTERN_ADDR(PCIE),
208 phy_rxd_inv, 0);
209 }
210
211 /*
212 * 11. Release SW reset
213 */
214 reg_set16((void __iomem *)GLOB_PHY_CTRL0_ADDR(PCIE),
215 rb_mode_core_clk_freq_sel | rb_mode_pipe_width_32,
216 bf_soft_rst | bf_mode_refdiv);
217
218 /* Wait for > 55 us to allow PCLK be enabled */
219 udelay(PLL_SET_DELAY_US);
220
221 /* Assert PCLK enabled */
222 ret = comphy_poll_reg((void *)LANE_STAT1_ADDR(PCIE), /* address */
223 rb_txdclk_pclk_en, /* value */
224 rb_txdclk_pclk_en, /* mask */
225 PLL_LOCK_TIMEOUT, /* timeout */
226 POLL_16B_REG); /* 16bit */
227 if (ret == 0)
228 printf("Failed to lock PCIe PLL\n");
229
230 debug_exit();
231
232 /* Return the status of the PLL */
233 return ret;
234}
235
236/*
237 * comphy_sata_power_up
238 *
239 * return: 1 if PLL locked (OK), 0 otherwise (FAIL)
240 */
241static int comphy_sata_power_up(void)
242{
243 int ret;
244
245 debug_enter();
246
247 /*
248 * 0. Swap SATA TX lines
249 */
250 reg_set((void __iomem *)rh_vsreg_addr,
251 vphy_sync_pattern_reg, 0xFFFFFFFF);
252 reg_set((void __iomem *)rh_vsreg_data, bs_txd_inv, bs_txd_inv);
253
254 /*
255 * 1. Select 40-bit data width width
256 */
257 reg_set((void __iomem *)rh_vsreg_addr, vphy_loopback_reg0, 0xFFFFFFFF);
258 reg_set((void __iomem *)rh_vsreg_data, 0x800, bs_phyintf_40bit);
259
260 /*
261 * 2. Select reference clock and PHY mode (SATA)
262 */
263 reg_set((void __iomem *)rh_vsreg_addr, vphy_power_reg0, 0xFFFFFFFF);
264 if (get_ref_clk() == 40) {
265 reg_set((void __iomem *)rh_vsreg_data,
266 0x3, 0x00FF); /* 40 MHz */
267 } else {
268 reg_set((void __iomem *)rh_vsreg_data,
269 0x1, 0x00FF); /* 25 MHz */
270 }
271
272 /*
273 * 3. Use maximum PLL rate (no power save)
274 */
275 reg_set((void __iomem *)rh_vsreg_addr, vphy_calctl_reg, 0xFFFFFFFF);
276 reg_set((void __iomem *)rh_vsreg_data,
277 bs_max_pll_rate, bs_max_pll_rate);
278
279 /*
280 * 4. Reset reserved bit (??)
281 */
282 reg_set((void __iomem *)rh_vsreg_addr, vphy_reserve_reg, 0xFFFFFFFF);
283 reg_set((void __iomem *)rh_vsreg_data, 0, bs_phyctrl_frm_pin);
284
285 /*
286 * 5. Set vendor-specific configuration (??)
287 */
288 reg_set((void __iomem *)rh_vs0_a, vsata_ctrl_reg, 0xFFFFFFFF);
289 reg_set((void __iomem *)rh_vs0_d, bs_phy_pu_pll, bs_phy_pu_pll);
290
291 /* Wait for > 55 us to allow PLL be enabled */
292 udelay(PLL_SET_DELAY_US);
293
294 /* Assert SATA PLL enabled */
295 reg_set((void __iomem *)rh_vsreg_addr, vphy_loopback_reg0, 0xFFFFFFFF);
296 ret = comphy_poll_reg((void *)rh_vsreg_data, /* address */
297 bs_pll_ready_tx, /* value */
298 bs_pll_ready_tx, /* mask */
299 PLL_LOCK_TIMEOUT, /* timeout */
300 POLL_32B_REG); /* 32bit */
301 if (ret == 0)
302 printf("Failed to lock SATA PLL\n");
303
304 debug_exit();
305
306 return ret;
307}
308
309/*
310 * comphy_usb3_power_up
311 *
312 * return: 1 if PLL locked (OK), 0 otherwise (FAIL)
313 */
314static int comphy_usb3_power_up(u32 type, u32 speed, u32 invert)
315{
316 int ret;
317
318 debug_enter();
319
320 /*
321 * 1. Power up OTG module
322 */
323 reg_set((void __iomem *)USB2_PHY_OTG_CTRL_ADDR, rb_pu_otg, 0);
324
325 /*
326 * 2. Set counter for 100us pulse in USB3 Host and Device
327 * restore default burst size limit (Reference Clock 31:24)
328 */
329 reg_set((void __iomem *)USB3_CTRPUL_VAL_REG,
330 0x8 << 24, rb_usb3_ctr_100ns);
331
332
333 /* 0xd005c300 = 0x1001 */
334 /* set PRD_TXDEEMPH (3.5db de-emph) */
335 reg_set16((void __iomem *)LANE_CFG0_ADDR(USB3), 0x1, 0xFF);
336
337 /*
338 * unset BIT0: set Tx Electrical Idle Mode: Transmitter is in
339 * low impedance mode during electrical idle
340 */
341 /* unset BIT4: set G2 Tx Datapath with no Delayed Latency */
342 /* unset BIT6: set Tx Detect Rx Mode at LoZ mode */
343 reg_set16((void __iomem *)LANE_CFG1_ADDR(USB3), 0x0, 0xFFFF);
344
345
346 /* 0xd005c310 = 0x93: set Spread Spectrum Clock Enabled */
347 reg_set16((void __iomem *)LANE_CFG4_ADDR(USB3),
348 bf_spread_spectrum_clock_en, 0x80);
349
350 /*
351 * set Override Margining Controls From the MAC: Use margining signals
352 * from lane configuration
353 */
354 reg_set16((void __iomem *)TEST_MODE_CTRL_ADDR(USB3),
355 rb_mode_margin_override, 0xFFFF);
356
357 /* set Lane-to-Lane Bundle Clock Sampling Period = per PCLK cycles */
358 /* set Mode Clock Source = PCLK is generated from REFCLK */
359 reg_set16((void __iomem *)GLOB_CLK_SRC_LO_ADDR(USB3), 0x0, 0xFF);
360
361 /* set G2 Spread Spectrum Clock Amplitude at 4K */
362 reg_set16((void __iomem *)GEN2_SETTING_2_ADDR(USB3), g2_tx_ssc_amp,
363 0xF000);
364
365 /*
366 * unset G3 Spread Spectrum Clock Amplitude & set G3 TX and RX Register
367 * Master Current Select
368 */
369 reg_set16((void __iomem *)GEN2_SETTING_3_ADDR(USB3), 0x0, 0xFFFF);
370
371 /*
372 * 3. Check crystal jumper setting and program the Power and PLL
373 * Control accordingly
374 */
375 if (get_ref_clk() == 40) {
376 reg_set16((void __iomem *)PWR_PLL_CTRL_ADDR(USB3), 0xFCA3,
377 0xFFFF); /* 40 MHz */
378 } else {
379 reg_set16((void __iomem *)PWR_PLL_CTRL_ADDR(USB3), 0xFCA2,
380 0xFFFF); /* 25 MHz */
381 }
382
383 /*
384 * 4. Change RX wait
385 */
386 reg_set16((void __iomem *)PWR_MGM_TIM1_ADDR(USB3), 0x10C, 0xFFFF);
387
388 /*
389 * 5. Enable idle sync
390 */
391 reg_set16((void __iomem *)UNIT_CTRL_ADDR(USB3), 0x60 | rb_idle_sync_en,
392 0xFFFF);
393
394 /*
395 * 6. Enable the output of 500M clock
396 */
397 reg_set16((void __iomem *)MISC_REG0_ADDR(USB3), 0xA00D | rb_clk500m_en,
398 0xFFFF);
399
400 /*
401 * 7. Set 20-bit data width
402 */
403 reg_set16((void __iomem *)DIG_LB_EN_ADDR(USB3), 0x0400, 0xFFFF);
404
405 /*
406 * 8. Override Speed_PLL value and use MAC PLL
407 */
408 reg_set16((void __iomem *)KVCO_CAL_CTRL_ADDR(USB3),
409 0x0040 | rb_use_max_pll_rate, 0xFFFF);
410
411 /*
412 * 9. Check the Polarity invert bit
413 */
414 if (invert & PHY_POLARITY_TXD_INVERT) {
415 reg_set16((void __iomem *)SYNC_PATTERN_ADDR(USB3),
416 phy_txd_inv, 0);
417 }
418
419 if (invert & PHY_POLARITY_RXD_INVERT) {
420 reg_set16((void __iomem *)SYNC_PATTERN_ADDR(USB3),
421 phy_rxd_inv, 0);
422 }
423
424 /*
425 * 10. Release SW reset
426 */
427 reg_set16((void __iomem *)GLOB_PHY_CTRL0_ADDR(USB3),
428 rb_mode_core_clk_freq_sel | rb_mode_pipe_width_32 | 0x20,
429 0xFFFF);
430
431 /* Wait for > 55 us to allow PCLK be enabled */
432 udelay(PLL_SET_DELAY_US);
433
434 /* Assert PCLK enabled */
435 ret = comphy_poll_reg((void *)LANE_STAT1_ADDR(USB3), /* address */
436 rb_txdclk_pclk_en, /* value */
437 rb_txdclk_pclk_en, /* mask */
438 PLL_LOCK_TIMEOUT, /* timeout */
439 POLL_16B_REG); /* 16bit */
440 if (ret == 0)
441 printf("Failed to lock USB3 PLL\n");
442
443 /*
444 * Set Soft ID for Host mode (Device mode works with Hard ID
445 * detection)
446 */
447 if (type == PHY_TYPE_USB3_HOST0) {
448 /*
449 * set BIT0: set ID_MODE of Host/Device = "Soft ID" (BIT1)
450 * clear BIT1: set SOFT_ID = Host
451 * set BIT4: set INT_MODE = ID. Interrupt Mode: enable
452 * interrupt by ID instead of using both interrupts
453 * of HOST and Device ORed simultaneously
454 * INT_MODE=ID in order to avoid unexpected
455 * behaviour or both interrupts together
456 */
457 reg_set((void __iomem *)USB32_CTRL_BASE,
458 usb32_ctrl_id_mode | usb32_ctrl_int_mode,
459 usb32_ctrl_id_mode | usb32_ctrl_soft_id |
460 usb32_ctrl_int_mode);
461 }
462
463 debug_exit();
464
465 return ret;
466}
467
468/*
469 * comphy_usb2_power_up
470 *
471 * return: 1 if PLL locked (OK), 0 otherwise (FAIL)
472 */
473static int comphy_usb2_power_up(u8 usb32)
474{
475 int ret;
476
477 debug_enter();
478
479 if (usb32 != 0 && usb32 != 1) {
480 printf("invalid usb32 value: (%d), should be either 0 or 1\n",
481 usb32);
482 debug_exit();
483 return 0;
484 }
485
486 /*
487 * 0. Setup PLL. 40MHz clock uses defaults.
488 * See "PLL Settings for Typical REFCLK" table
489 */
490 if (get_ref_clk() == 25) {
491 reg_set((void __iomem *)USB2_PHY_BASE(usb32),
492 5 | (96 << 16), 0x3F | (0xFF << 16) | (0x3 << 28));
493 }
494
495 /*
496 * 1. PHY pull up and disable USB2 suspend
497 */
498 reg_set((void __iomem *)USB2_PHY_CTRL_ADDR(usb32),
499 RB_USB2PHY_SUSPM(usb32) | RB_USB2PHY_PU(usb32), 0);
500
501 if (usb32 != 0) {
502 /*
503 * 2. Power up OTG module
504 */
505 reg_set((void __iomem *)USB2_PHY_OTG_CTRL_ADDR, rb_pu_otg, 0);
506
507 /*
508 * 3. Configure PHY charger detection
509 */
510 reg_set((void __iomem *)USB2_PHY_CHRGR_DET_ADDR, 0,
511 rb_cdp_en | rb_dcp_en | rb_pd_en | rb_cdp_dm_auto |
512 rb_enswitch_dp | rb_enswitch_dm | rb_pu_chrg_dtc);
513 }
514
515 /* Assert PLL calibration done */
516 ret = comphy_poll_reg((void *)USB2_PHY_CAL_CTRL_ADDR(usb32),
517 rb_usb2phy_pllcal_done, /* value */
518 rb_usb2phy_pllcal_done, /* mask */
519 PLL_LOCK_TIMEOUT, /* timeout */
520 POLL_32B_REG); /* 32bit */
521 if (ret == 0)
522 printf("Failed to end USB2 PLL calibration\n");
523
524 /* Assert impedance calibration done */
525 ret = comphy_poll_reg((void *)USB2_PHY_CAL_CTRL_ADDR(usb32),
526 rb_usb2phy_impcal_done, /* value */
527 rb_usb2phy_impcal_done, /* mask */
528 PLL_LOCK_TIMEOUT, /* timeout */
529 POLL_32B_REG); /* 32bit */
530 if (ret == 0)
531 printf("Failed to end USB2 impedance calibration\n");
532
533 /* Assert squetch calibration done */
534 ret = comphy_poll_reg((void *)USB2_PHY_RX_CHAN_CTRL1_ADDR(usb32),
535 rb_usb2phy_sqcal_done, /* value */
536 rb_usb2phy_sqcal_done, /* mask */
537 PLL_LOCK_TIMEOUT, /* timeout */
538 POLL_32B_REG); /* 32bit */
539 if (ret == 0)
540 printf("Failed to end USB2 unknown calibration\n");
541
542 /* Assert PLL is ready */
543 ret = comphy_poll_reg((void *)USB2_PHY_PLL_CTRL0_ADDR(usb32),
544 rb_usb2phy_pll_ready, /* value */
545 rb_usb2phy_pll_ready, /* mask */
546 PLL_LOCK_TIMEOUT, /* timeout */
547 POLL_32B_REG); /* 32bit */
548
549 if (ret == 0)
550 printf("Failed to lock USB2 PLL\n");
551
552 debug_exit();
553
554 return ret;
555}
556
557/*
558 * comphy_emmc_power_up
559 *
560 * return: 1 if PLL locked (OK), 0 otherwise (FAIL)
561 */
562static int comphy_emmc_power_up(void)
563{
564 debug_enter();
565
566 /*
567 * 1. Bus power ON, Bus voltage 1.8V
568 */
569 reg_set((void __iomem *)SDIO_HOST_CTRL1_ADDR, 0xB00, 0xF00);
570
571 /*
572 * 2. Set FIFO parameters
573 */
574 reg_set((void __iomem *)SDIO_SDHC_FIFO_ADDR, 0x315, 0xFFFFFFFF);
575
576 /*
577 * 3. Set Capabilities 1_2
578 */
579 reg_set((void __iomem *)SDIO_CAP_12_ADDR, 0x25FAC8B2, 0xFFFFFFFF);
580
581 /*
582 * 4. Set Endian
583 */
584 reg_set((void __iomem *)SDIO_ENDIAN_ADDR, 0x00c00000, 0);
585
586 /*
587 * 4. Init PHY
588 */
589 reg_set((void __iomem *)SDIO_PHY_TIMING_ADDR, 0x80000000, 0x80000000);
590 reg_set((void __iomem *)SDIO_PHY_PAD_CTRL0_ADDR, 0x50000000,
591 0xF0000000);
592
593 /*
594 * 5. DLL reset
595 */
596 reg_set((void __iomem *)SDIO_DLL_RST_ADDR, 0xFFFEFFFF, 0);
597 reg_set((void __iomem *)SDIO_DLL_RST_ADDR, 0x00010000, 0);
598
599 debug_exit();
600
601 return 1;
602}
603
604/*
605 * comphy_sgmii_power_up
606 *
607 * return:
608 */
609static void comphy_sgmii_phy_init(u32 lane, u32 speed)
610{
611 const int fix_arr_sz = ARRAY_SIZE(sgmii_phy_init_fix);
612 int addr, fix_idx;
613 u16 val;
614
615 fix_idx = 0;
616 for (addr = 0; addr < 512; addr++) {
617 /*
618 * All PHY register values are defined in full for 3.125Gbps
619 * SERDES speed. The values required for 1.25 Gbps are almost
620 * the same and only few registers should be "fixed" in
621 * comparison to 3.125 Gbps values. These register values are
622 * stored in "sgmii_phy_init_fix" array.
623 */
624 if ((speed != PHY_SPEED_1_25G) &&
625 (sgmii_phy_init_fix[fix_idx].addr == addr)) {
626 /* Use new value */
627 val = sgmii_phy_init_fix[fix_idx].value;
628 if (fix_idx < fix_arr_sz)
629 fix_idx++;
630 } else {
631 val = sgmii_phy_init[addr];
632 }
633
634 phy_write16(lane, addr, val, 0xFFFF);
635 }
636}
637
638/*
639 * comphy_sgmii_power_up
640 *
641 * return: 1 if PLL locked (OK), 0 otherwise (FAIL)
642 */
643static int comphy_sgmii_power_up(u32 lane, u32 speed, u32 invert)
644{
645 int ret;
646
647 debug_enter();
648
649 /*
650 * 1. Configure PHY to SATA/SAS mode by setting pin PIN_PIPE_SEL=0
651 */
652 reg_set((void __iomem *)COMPHY_SEL_ADDR, 0, rf_compy_select(lane));
653
654 /*
655 * 2. Reset PHY by setting PHY input port PIN_RESET=1.
656 * 3. Set PHY input port PIN_TX_IDLE=1, PIN_PU_IVREF=1 to keep
657 * PHY TXP/TXN output to idle state during PHY initialization
658 * 4. Set PHY input port PIN_PU_PLL=0, PIN_PU_RX=0, PIN_PU_TX=0.
659 */
660 reg_set((void __iomem *)COMPHY_PHY_CFG1_ADDR(lane),
661 rb_pin_reset_comphy | rb_pin_tx_idle | rb_pin_pu_iveref,
662 rb_pin_reset_core | rb_pin_pu_pll |
663 rb_pin_pu_rx | rb_pin_pu_tx);
664
665 /*
666 * 5. Release reset to the PHY by setting PIN_RESET=0.
667 */
668 reg_set((void __iomem *)COMPHY_PHY_CFG1_ADDR(lane),
669 0, rb_pin_reset_comphy);
670
671 /*
672 * 7. Set PIN_PHY_GEN_TX[3:0] and PIN_PHY_GEN_RX[3:0] to decide
673 * COMPHY bit rate
674 */
675 if (speed == PHY_SPEED_3_125G) { /* 3.125 GHz */
676 reg_set((void __iomem *)COMPHY_PHY_CFG1_ADDR(lane),
677 (0x8 << rf_gen_rx_sel_shift) |
678 (0x8 << rf_gen_tx_sel_shift),
679 rf_gen_rx_select | rf_gen_tx_select);
680
681 } else if (speed == PHY_SPEED_1_25G) { /* 1.25 GHz */
682 reg_set((void __iomem *)COMPHY_PHY_CFG1_ADDR(lane),
683 (0x6 << rf_gen_rx_sel_shift) |
684 (0x6 << rf_gen_tx_sel_shift),
685 rf_gen_rx_select | rf_gen_tx_select);
686 } else {
687 printf("Unsupported COMPHY speed!\n");
688 return 0;
689 }
690
691 /*
692 * 8. Wait 1mS for bandgap and reference clocks to stabilize;
693 * then start SW programming.
694 */
695 mdelay(10);
696
697 /* 9. Program COMPHY register PHY_MODE */
698 phy_write16(lane, PHY_PWR_PLL_CTRL_ADDR,
699 PHY_MODE_SGMII << rf_phy_mode_shift, rf_phy_mode_mask);
700
701 /*
702 * 10. Set COMPHY register REFCLK_SEL to select the correct REFCLK
703 * source
704 */
705 phy_write16(lane, PHY_MISC_REG0_ADDR, 0, rb_ref_clk_sel);
706
707 /*
708 * 11. Set correct reference clock frequency in COMPHY register
709 * REF_FREF_SEL.
710 */
711 if (get_ref_clk() == 40) {
712 phy_write16(lane, PHY_PWR_PLL_CTRL_ADDR,
713 0x4 << rf_ref_freq_sel_shift, rf_ref_freq_sel_mask);
714 } else {
715 /* 25MHz */
716 phy_write16(lane, PHY_PWR_PLL_CTRL_ADDR,
717 0x1 << rf_ref_freq_sel_shift, rf_ref_freq_sel_mask);
718 }
719
720 /* 12. Program COMPHY register PHY_GEN_MAX[1:0] */
721 /*
722 * This step is mentioned in the flow received from verification team.
723 * However the PHY_GEN_MAX value is only meaningful for other
724 * interfaces (not SGMII). For instance, it selects SATA speed
725 * 1.5/3/6 Gbps or PCIe speed 2.5/5 Gbps
726 */
727
728 /*
729 * 13. Program COMPHY register SEL_BITS to set correct parallel data
730 * bus width
731 */
732 /* 10bit */
733 phy_write16(lane, PHY_DIG_LB_EN_ADDR, 0, rf_data_width_mask);
734
735 /*
736 * 14. As long as DFE function needs to be enabled in any mode,
737 * COMPHY register DFE_UPDATE_EN[5:0] shall be programmed to 0x3F
738 * for real chip during COMPHY power on.
739 */
740 /*
741 * The step 14 exists (and empty) in the original initialization flow
742 * obtained from the verification team. According to the functional
743 * specification DFE_UPDATE_EN already has the default value 0x3F
744 */
745
746 /*
747 * 15. Program COMPHY GEN registers.
748 * These registers should be programmed based on the lab testing
749 * result to achieve optimal performance. Please contact the CEA
750 * group to get the related GEN table during real chip bring-up.
751 * We only requred to run though the entire registers programming
752 * flow defined by "comphy_sgmii_phy_init" when the REF clock is
753 * 40 MHz. For REF clock 25 MHz the default values stored in PHY
754 * registers are OK.
755 */
756 debug("Running C-DPI phy init %s mode\n",
757 speed == PHY_SPEED_3_125G ? "2G5" : "1G");
758 if (get_ref_clk() == 40)
759 comphy_sgmii_phy_init(lane, speed);
760
761 /*
762 * 16. [Simulation Only] should not be used for real chip.
763 * By pass power up calibration by programming EXT_FORCE_CAL_DONE
764 * (R02h[9]) to 1 to shorten COMPHY simulation time.
765 */
766 /*
767 * 17. [Simulation Only: should not be used for real chip]
768 * Program COMPHY register FAST_DFE_TIMER_EN=1 to shorten RX
769 * training simulation time.
770 */
771
772 /*
773 * 18. Check the PHY Polarity invert bit
774 */
775 if (invert & PHY_POLARITY_TXD_INVERT)
776 phy_write16(lane, PHY_SYNC_PATTERN_ADDR, phy_txd_inv, 0);
777
778 if (invert & PHY_POLARITY_RXD_INVERT)
779 phy_write16(lane, PHY_SYNC_PATTERN_ADDR, phy_rxd_inv, 0);
780
781 /*
782 * 19. Set PHY input ports PIN_PU_PLL, PIN_PU_TX and PIN_PU_RX to 1
783 * to start PHY power up sequence. All the PHY register
784 * programming should be done before PIN_PU_PLL=1. There should be
785 * no register programming for normal PHY operation from this point.
786 */
787 reg_set((void __iomem *)COMPHY_PHY_CFG1_ADDR(lane),
788 rb_pin_pu_pll | rb_pin_pu_rx | rb_pin_pu_tx,
789 rb_pin_pu_pll | rb_pin_pu_rx | rb_pin_pu_tx);
790
791 /*
792 * 20. Wait for PHY power up sequence to finish by checking output ports
793 * PIN_PLL_READY_TX=1 and PIN_PLL_READY_RX=1.
794 */
795 ret = comphy_poll_reg((void *)COMPHY_PHY_STAT1_ADDR(lane), /* address */
796 rb_pll_ready_tx | rb_pll_ready_rx, /* value */
797 rb_pll_ready_tx | rb_pll_ready_rx, /* mask */
798 PLL_LOCK_TIMEOUT, /* timeout */
799 POLL_32B_REG); /* 32bit */
800 if (ret == 0)
801 printf("Failed to lock PLL for SGMII PHY %d\n", lane);
802
803 /*
804 * 21. Set COMPHY input port PIN_TX_IDLE=0
805 */
806 reg_set((void __iomem *)COMPHY_PHY_CFG1_ADDR(lane),
807 0x0, rb_pin_tx_idle);
808
809 /*
810 * 22. After valid data appear on PIN_RXDATA bus, set PIN_RX_INIT=1.
811 * to start RX initialization. PIN_RX_INIT_DONE will be cleared to
812 * 0 by the PHY. After RX initialization is done, PIN_RX_INIT_DONE
813 * will be set to 1 by COMPHY. Set PIN_RX_INIT=0 after
814 * PIN_RX_INIT_DONE= 1.
815 * Please refer to RX initialization part for details.
816 */
817 reg_set((void __iomem *)COMPHY_PHY_CFG1_ADDR(lane), rb_phy_rx_init,
818 0x0);
819
820 ret = comphy_poll_reg((void *)COMPHY_PHY_STAT1_ADDR(lane), /* address */
821 rb_rx_init_done, /* value */
822 rb_rx_init_done, /* mask */
823 PLL_LOCK_TIMEOUT, /* timeout */
824 POLL_32B_REG); /* 32bit */
825 if (ret == 0)
826 printf("Failed to init RX of SGMII PHY %d\n", lane);
827
828 debug_exit();
829
830 return ret;
831}
832
833void comphy_dedicated_phys_init(void)
834{
835 int node, usb32, ret = 1;
836 const void *blob = gd->fdt_blob;
837
838 debug_enter();
839
840 for (usb32 = 0; usb32 <= 1; usb32++) {
841 /*
842 * There are 2 UTMI PHYs in this SOC.
843 * One is independendent and one is paired with USB3 port (OTG)
844 */
845 if (usb32 == 0) {
846 node = fdt_node_offset_by_compatible(
847 blob, -1, "marvell,armada-3700-ehci");
848 } else {
849 node = fdt_node_offset_by_compatible(
850 blob, -1, "marvell,armada3700-xhci");
851 }
852
853 if (node > 0) {
854 if (fdtdec_get_is_enabled(blob, node)) {
855 ret = comphy_usb2_power_up(usb32);
856 if (ret == 0)
857 printf("Failed to initialize UTMI PHY\n");
858 else
859 debug("UTMI PHY init succeed\n");
860 } else {
861 debug("USB%d node is disabled\n",
862 usb32 == 0 ? 2 : 3);
863 }
864 } else {
865 debug("No USB%d node in DT\n", usb32 == 0 ? 2 : 3);
866 }
867 }
868
869 node = fdt_node_offset_by_compatible(blob, -1,
870 "marvell,armada-3700-ahci");
871 if (node > 0) {
872 if (fdtdec_get_is_enabled(blob, node)) {
873 ret = comphy_sata_power_up();
874 if (ret == 0)
875 printf("Failed to initialize SATA PHY\n");
876 else
877 debug("SATA PHY init succeed\n");
878 } else {
879 debug("SATA node is disabled\n");
880 }
881 } else {
882 debug("No SATA node in DT\n");
883 }
884
885 node = fdt_node_offset_by_compatible(blob, -1,
Stefan Roese14319902017-01-12 16:37:49 +0100886 "marvell,armada-8k-sdhci");
Stefan Roese33357862016-05-23 11:12:05 +0200887 if (node <= 0) {
Stefan Roese14319902017-01-12 16:37:49 +0100888 node = fdt_node_offset_by_compatible(
889 blob, -1, "marvell,armada-3700-sdhci");
Stefan Roese33357862016-05-23 11:12:05 +0200890 }
891
892 if (node > 0) {
893 if (fdtdec_get_is_enabled(blob, node)) {
894 ret = comphy_emmc_power_up();
895 if (ret == 0)
896 printf("Failed to initialize SDIO/eMMC PHY\n");
897 else
898 debug("SDIO/eMMC PHY init succeed\n");
899 } else {
900 debug("SDIO/eMMC node is disabled\n");
901 }
902 } else {
903 debug("No SDIO/eMMC node in DT\n");
904 }
905
906 debug_exit();
907}
908
909int comphy_a3700_init(struct chip_serdes_phy_config *chip_cfg,
910 struct comphy_map *serdes_map)
911{
912 struct comphy_map *comphy_map;
913 u32 comphy_max_count = chip_cfg->comphy_lanes_count;
914 u32 lane, ret = 0;
915
916 debug_enter();
917
918 for (lane = 0, comphy_map = serdes_map; lane < comphy_max_count;
919 lane++, comphy_map++) {
920 debug("Initialize serdes number %d\n", lane);
921 debug("Serdes type = 0x%x invert=%d\n",
922 comphy_map->type, comphy_map->invert);
923
924 switch (comphy_map->type) {
925 case PHY_TYPE_UNCONNECTED:
926 continue;
927 break;
928
929 case PHY_TYPE_PEX0:
930 ret = comphy_pcie_power_up(comphy_map->speed,
931 comphy_map->invert);
932 break;
933
934 case PHY_TYPE_USB3_HOST0:
935 case PHY_TYPE_USB3_DEVICE:
936 ret = comphy_usb3_power_up(comphy_map->type,
937 comphy_map->speed,
938 comphy_map->invert);
939 break;
940
941 case PHY_TYPE_SGMII0:
942 case PHY_TYPE_SGMII1:
943 ret = comphy_sgmii_power_up(lane, comphy_map->speed,
944 comphy_map->invert);
945 break;
946
947 default:
948 debug("Unknown SerDes type, skip initialize SerDes %d\n",
949 lane);
950 ret = 1;
951 break;
952 }
953 if (ret == 0)
954 printf("PLL is not locked - Failed to initialize lane %d\n",
955 lane);
956 }
957
958 debug_exit();
959 return ret;
960}