wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1 | /************************************************************************** |
| 2 | Inter Pro 1000 for ppcboot/das-u-boot |
| 3 | Drivers are port from Intel's Linux driver e1000-4.3.15 |
| 4 | and from Etherboot pro 1000 driver by mrakes at vivato dot net |
| 5 | tested on both gig copper and gig fiber boards |
| 6 | ***************************************************************************/ |
| 7 | /******************************************************************************* |
| 8 | |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame^] | 9 | |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 10 | Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved. |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame^] | 11 | |
| 12 | This program is free software; you can redistribute it and/or modify it |
| 13 | under the terms of the GNU General Public License as published by the Free |
| 14 | Software Foundation; either version 2 of the License, or (at your option) |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 15 | any later version. |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame^] | 16 | |
| 17 | This program is distributed in the hope that it will be useful, but WITHOUT |
| 18 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 19 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 20 | more details. |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame^] | 21 | |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 22 | You should have received a copy of the GNU General Public License along with |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame^] | 23 | this program; if not, write to the Free Software Foundation, Inc., 59 |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 24 | Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame^] | 25 | |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 26 | The full GNU General Public License is included in this distribution in the |
| 27 | file called LICENSE. |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame^] | 28 | |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 29 | Contact Information: |
| 30 | Linux NICS <linux.nics@intel.com> |
| 31 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| 32 | |
| 33 | *******************************************************************************/ |
| 34 | /* |
| 35 | * Copyright (C) Archway Digital Solutions. |
| 36 | * |
| 37 | * written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org> |
| 38 | * 2/9/2002 |
| 39 | * |
| 40 | * Copyright (C) Linux Networx. |
| 41 | * Massive upgrade to work with the new intel gigabit NICs. |
| 42 | * <ebiederman at lnxi dot com> |
| 43 | */ |
| 44 | |
| 45 | #include "e1000.h" |
| 46 | |
| 47 | #if (CONFIG_COMMANDS & CFG_CMD_NET) && defined(CONFIG_NET_MULTI) && \ |
| 48 | defined(CONFIG_E1000) |
| 49 | |
| 50 | #define TOUT_LOOP 100000 |
| 51 | |
| 52 | #undef virt_to_bus |
| 53 | #define virt_to_bus(x) ((unsigned long)x) |
| 54 | #define bus_to_phys(devno, a) pci_mem_to_phys(devno, a) |
| 55 | #define mdelay(n) udelay((n)*1000) |
| 56 | |
| 57 | #define E1000_DEFAULT_PBA 0x00000030 |
| 58 | |
| 59 | /* NIC specific static variables go here */ |
| 60 | |
| 61 | static char tx_pool[128 + 16]; |
| 62 | static char rx_pool[128 + 16]; |
| 63 | static char packet[2096]; |
| 64 | |
| 65 | static struct e1000_tx_desc *tx_base; |
| 66 | static struct e1000_rx_desc *rx_base; |
| 67 | |
| 68 | static int tx_tail; |
| 69 | static int rx_tail, rx_last; |
| 70 | |
| 71 | static struct pci_device_id supported[] = { |
| 72 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542}, |
| 73 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER}, |
| 74 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER}, |
| 75 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER}, |
| 76 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER}, |
| 77 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER}, |
| 78 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM}, |
| 79 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM}, |
| 80 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER}, |
| 81 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER}, |
| 82 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER}, |
| 83 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER}, |
| 84 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM}, |
| 85 | }; |
| 86 | |
| 87 | /* Function forward declarations */ |
| 88 | static int e1000_setup_link(struct eth_device *nic); |
| 89 | static int e1000_setup_fiber_link(struct eth_device *nic); |
| 90 | static int e1000_setup_copper_link(struct eth_device *nic); |
| 91 | static int e1000_phy_setup_autoneg(struct e1000_hw *hw); |
| 92 | static void e1000_config_collision_dist(struct e1000_hw *hw); |
| 93 | static int e1000_config_mac_to_phy(struct e1000_hw *hw); |
| 94 | static int e1000_config_fc_after_link_up(struct e1000_hw *hw); |
| 95 | static int e1000_check_for_link(struct eth_device *nic); |
| 96 | static int e1000_wait_autoneg(struct e1000_hw *hw); |
| 97 | static void e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed, |
| 98 | uint16_t * duplex); |
| 99 | static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, |
| 100 | uint16_t * phy_data); |
| 101 | static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, |
| 102 | uint16_t phy_data); |
| 103 | static void e1000_phy_hw_reset(struct e1000_hw *hw); |
| 104 | static int e1000_phy_reset(struct e1000_hw *hw); |
| 105 | static int e1000_detect_gig_phy(struct e1000_hw *hw); |
| 106 | |
| 107 | #define E1000_WRITE_REG(a, reg, value) (writel((value), ((a)->hw_addr + E1000_##reg))) |
| 108 | #define E1000_READ_REG(a, reg) (readl((a)->hw_addr + E1000_##reg)) |
| 109 | #define E1000_WRITE_REG_ARRAY(a, reg, offset, value) (\ |
| 110 | writel((value), ((a)->hw_addr + E1000_##reg + ((offset) << 2)))) |
| 111 | #define E1000_READ_REG_ARRAY(a, reg, offset) ( \ |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame^] | 112 | readl((a)->hw_addr + E1000_##reg + ((offset) << 2))) |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 113 | #define E1000_WRITE_FLUSH(a) {uint32_t x; x = E1000_READ_REG(a, STATUS);} |
| 114 | |
| 115 | /****************************************************************************** |
| 116 | * Raises the EEPROM's clock input. |
| 117 | * |
| 118 | * hw - Struct containing variables accessed by shared code |
| 119 | * eecd - EECD's current value |
| 120 | *****************************************************************************/ |
| 121 | static void |
| 122 | e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd) |
| 123 | { |
| 124 | /* Raise the clock input to the EEPROM (by setting the SK bit), and then |
| 125 | * wait 50 microseconds. |
| 126 | */ |
| 127 | *eecd = *eecd | E1000_EECD_SK; |
| 128 | E1000_WRITE_REG(hw, EECD, *eecd); |
| 129 | E1000_WRITE_FLUSH(hw); |
| 130 | udelay(50); |
| 131 | } |
| 132 | |
| 133 | /****************************************************************************** |
| 134 | * Lowers the EEPROM's clock input. |
| 135 | * |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame^] | 136 | * hw - Struct containing variables accessed by shared code |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 137 | * eecd - EECD's current value |
| 138 | *****************************************************************************/ |
| 139 | static void |
| 140 | e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd) |
| 141 | { |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame^] | 142 | /* Lower the clock input to the EEPROM (by clearing the SK bit), and then |
| 143 | * wait 50 microseconds. |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 144 | */ |
| 145 | *eecd = *eecd & ~E1000_EECD_SK; |
| 146 | E1000_WRITE_REG(hw, EECD, *eecd); |
| 147 | E1000_WRITE_FLUSH(hw); |
| 148 | udelay(50); |
| 149 | } |
| 150 | |
| 151 | /****************************************************************************** |
| 152 | * Shift data bits out to the EEPROM. |
| 153 | * |
| 154 | * hw - Struct containing variables accessed by shared code |
| 155 | * data - data to send to the EEPROM |
| 156 | * count - number of bits to shift out |
| 157 | *****************************************************************************/ |
| 158 | static void |
| 159 | e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count) |
| 160 | { |
| 161 | uint32_t eecd; |
| 162 | uint32_t mask; |
| 163 | |
| 164 | /* We need to shift "count" bits out to the EEPROM. So, value in the |
| 165 | * "data" parameter will be shifted out to the EEPROM one bit at a time. |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame^] | 166 | * In order to do this, "data" must be broken down into bits. |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 167 | */ |
| 168 | mask = 0x01 << (count - 1); |
| 169 | eecd = E1000_READ_REG(hw, EECD); |
| 170 | eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); |
| 171 | do { |
| 172 | /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1", |
| 173 | * and then raising and then lowering the clock (the SK bit controls |
| 174 | * the clock input to the EEPROM). A "0" is shifted out to the EEPROM |
| 175 | * by setting "DI" to "0" and then raising and then lowering the clock. |
| 176 | */ |
| 177 | eecd &= ~E1000_EECD_DI; |
| 178 | |
| 179 | if (data & mask) |
| 180 | eecd |= E1000_EECD_DI; |
| 181 | |
| 182 | E1000_WRITE_REG(hw, EECD, eecd); |
| 183 | E1000_WRITE_FLUSH(hw); |
| 184 | |
| 185 | udelay(50); |
| 186 | |
| 187 | e1000_raise_ee_clk(hw, &eecd); |
| 188 | e1000_lower_ee_clk(hw, &eecd); |
| 189 | |
| 190 | mask = mask >> 1; |
| 191 | |
| 192 | } while (mask); |
| 193 | |
| 194 | /* We leave the "DI" bit set to "0" when we leave this routine. */ |
| 195 | eecd &= ~E1000_EECD_DI; |
| 196 | E1000_WRITE_REG(hw, EECD, eecd); |
| 197 | } |
| 198 | |
| 199 | /****************************************************************************** |
| 200 | * Shift data bits in from the EEPROM |
| 201 | * |
| 202 | * hw - Struct containing variables accessed by shared code |
| 203 | *****************************************************************************/ |
| 204 | static uint16_t |
| 205 | e1000_shift_in_ee_bits(struct e1000_hw *hw) |
| 206 | { |
| 207 | uint32_t eecd; |
| 208 | uint32_t i; |
| 209 | uint16_t data; |
| 210 | |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame^] | 211 | /* In order to read a register from the EEPROM, we need to shift 16 bits |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 212 | * in from the EEPROM. Bits are "shifted in" by raising the clock input to |
| 213 | * the EEPROM (setting the SK bit), and then reading the value of the "DO" |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame^] | 214 | * bit. During this "shifting in" process the "DI" bit should always be |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 215 | * clear.. |
| 216 | */ |
| 217 | |
| 218 | eecd = E1000_READ_REG(hw, EECD); |
| 219 | |
| 220 | eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); |
| 221 | data = 0; |
| 222 | |
| 223 | for (i = 0; i < 16; i++) { |
| 224 | data = data << 1; |
| 225 | e1000_raise_ee_clk(hw, &eecd); |
| 226 | |
| 227 | eecd = E1000_READ_REG(hw, EECD); |
| 228 | |
| 229 | eecd &= ~(E1000_EECD_DI); |
| 230 | if (eecd & E1000_EECD_DO) |
| 231 | data |= 1; |
| 232 | |
| 233 | e1000_lower_ee_clk(hw, &eecd); |
| 234 | } |
| 235 | |
| 236 | return data; |
| 237 | } |
| 238 | |
| 239 | /****************************************************************************** |
| 240 | * Prepares EEPROM for access |
| 241 | * |
| 242 | * hw - Struct containing variables accessed by shared code |
| 243 | * |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame^] | 244 | * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 245 | * function should be called before issuing a command to the EEPROM. |
| 246 | *****************************************************************************/ |
| 247 | static void |
| 248 | e1000_setup_eeprom(struct e1000_hw *hw) |
| 249 | { |
| 250 | uint32_t eecd; |
| 251 | |
| 252 | eecd = E1000_READ_REG(hw, EECD); |
| 253 | |
| 254 | /* Clear SK and DI */ |
| 255 | eecd &= ~(E1000_EECD_SK | E1000_EECD_DI); |
| 256 | E1000_WRITE_REG(hw, EECD, eecd); |
| 257 | |
| 258 | /* Set CS */ |
| 259 | eecd |= E1000_EECD_CS; |
| 260 | E1000_WRITE_REG(hw, EECD, eecd); |
| 261 | } |
| 262 | |
| 263 | /****************************************************************************** |
| 264 | * Returns EEPROM to a "standby" state |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame^] | 265 | * |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 266 | * hw - Struct containing variables accessed by shared code |
| 267 | *****************************************************************************/ |
| 268 | static void |
| 269 | e1000_standby_eeprom(struct e1000_hw *hw) |
| 270 | { |
| 271 | uint32_t eecd; |
| 272 | |
| 273 | eecd = E1000_READ_REG(hw, EECD); |
| 274 | |
| 275 | /* Deselct EEPROM */ |
| 276 | eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); |
| 277 | E1000_WRITE_REG(hw, EECD, eecd); |
| 278 | E1000_WRITE_FLUSH(hw); |
| 279 | udelay(50); |
| 280 | |
| 281 | /* Clock high */ |
| 282 | eecd |= E1000_EECD_SK; |
| 283 | E1000_WRITE_REG(hw, EECD, eecd); |
| 284 | E1000_WRITE_FLUSH(hw); |
| 285 | udelay(50); |
| 286 | |
| 287 | /* Select EEPROM */ |
| 288 | eecd |= E1000_EECD_CS; |
| 289 | E1000_WRITE_REG(hw, EECD, eecd); |
| 290 | E1000_WRITE_FLUSH(hw); |
| 291 | udelay(50); |
| 292 | |
| 293 | /* Clock low */ |
| 294 | eecd &= ~E1000_EECD_SK; |
| 295 | E1000_WRITE_REG(hw, EECD, eecd); |
| 296 | E1000_WRITE_FLUSH(hw); |
| 297 | udelay(50); |
| 298 | } |
| 299 | |
| 300 | /****************************************************************************** |
| 301 | * Reads a 16 bit word from the EEPROM. |
| 302 | * |
| 303 | * hw - Struct containing variables accessed by shared code |
| 304 | * offset - offset of word in the EEPROM to read |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame^] | 305 | * data - word read from the EEPROM |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 306 | *****************************************************************************/ |
| 307 | static int |
| 308 | e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset, uint16_t * data) |
| 309 | { |
| 310 | uint32_t eecd; |
| 311 | uint32_t i = 0; |
| 312 | int large_eeprom = FALSE; |
| 313 | |
| 314 | /* Request EEPROM Access */ |
| 315 | if (hw->mac_type > e1000_82544) { |
| 316 | eecd = E1000_READ_REG(hw, EECD); |
| 317 | if (eecd & E1000_EECD_SIZE) |
| 318 | large_eeprom = TRUE; |
| 319 | eecd |= E1000_EECD_REQ; |
| 320 | E1000_WRITE_REG(hw, EECD, eecd); |
| 321 | eecd = E1000_READ_REG(hw, EECD); |
| 322 | while ((!(eecd & E1000_EECD_GNT)) && (i < 100)) { |
| 323 | i++; |
| 324 | udelay(10); |
| 325 | eecd = E1000_READ_REG(hw, EECD); |
| 326 | } |
| 327 | if (!(eecd & E1000_EECD_GNT)) { |
| 328 | eecd &= ~E1000_EECD_REQ; |
| 329 | E1000_WRITE_REG(hw, EECD, eecd); |
| 330 | DEBUGOUT("Could not acquire EEPROM grant\n"); |
| 331 | return -E1000_ERR_EEPROM; |
| 332 | } |
| 333 | } |
| 334 | |
| 335 | /* Prepare the EEPROM for reading */ |
| 336 | e1000_setup_eeprom(hw); |
| 337 | |
| 338 | /* Send the READ command (opcode + addr) */ |
| 339 | e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE, 3); |
| 340 | e1000_shift_out_ee_bits(hw, offset, (large_eeprom) ? 8 : 6); |
| 341 | |
| 342 | /* Read the data */ |
| 343 | *data = e1000_shift_in_ee_bits(hw); |
| 344 | |
| 345 | /* End this read operation */ |
| 346 | e1000_standby_eeprom(hw); |
| 347 | |
| 348 | /* Stop requesting EEPROM access */ |
| 349 | if (hw->mac_type > e1000_82544) { |
| 350 | eecd = E1000_READ_REG(hw, EECD); |
| 351 | eecd &= ~E1000_EECD_REQ; |
| 352 | E1000_WRITE_REG(hw, EECD, eecd); |
| 353 | } |
| 354 | |
| 355 | return 0; |
| 356 | } |
| 357 | |
| 358 | #if 0 |
| 359 | static void |
| 360 | e1000_eeprom_cleanup(struct e1000_hw *hw) |
| 361 | { |
| 362 | uint32_t eecd; |
| 363 | |
| 364 | eecd = E1000_READ_REG(hw, EECD); |
| 365 | eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); |
| 366 | E1000_WRITE_REG(hw, EECD, eecd); |
| 367 | e1000_raise_ee_clk(hw, &eecd); |
| 368 | e1000_lower_ee_clk(hw, &eecd); |
| 369 | } |
| 370 | |
| 371 | static uint16_t |
| 372 | e1000_wait_eeprom_done(struct e1000_hw *hw) |
| 373 | { |
| 374 | uint32_t eecd; |
| 375 | uint32_t i; |
| 376 | |
| 377 | e1000_standby_eeprom(hw); |
| 378 | for (i = 0; i < 200; i++) { |
| 379 | eecd = E1000_READ_REG(hw, EECD); |
| 380 | if (eecd & E1000_EECD_DO) |
| 381 | return (TRUE); |
| 382 | udelay(5); |
| 383 | } |
| 384 | return (FALSE); |
| 385 | } |
| 386 | |
| 387 | static int |
| 388 | e1000_write_eeprom(struct e1000_hw *hw, uint16_t Reg, uint16_t Data) |
| 389 | { |
| 390 | uint32_t eecd; |
| 391 | int large_eeprom = FALSE; |
| 392 | int i = 0; |
| 393 | |
| 394 | /* Request EEPROM Access */ |
| 395 | if (hw->mac_type > e1000_82544) { |
| 396 | eecd = E1000_READ_REG(hw, EECD); |
| 397 | if (eecd & E1000_EECD_SIZE) |
| 398 | large_eeprom = TRUE; |
| 399 | eecd |= E1000_EECD_REQ; |
| 400 | E1000_WRITE_REG(hw, EECD, eecd); |
| 401 | eecd = E1000_READ_REG(hw, EECD); |
| 402 | while ((!(eecd & E1000_EECD_GNT)) && (i < 100)) { |
| 403 | i++; |
| 404 | udelay(5); |
| 405 | eecd = E1000_READ_REG(hw, EECD); |
| 406 | } |
| 407 | if (!(eecd & E1000_EECD_GNT)) { |
| 408 | eecd &= ~E1000_EECD_REQ; |
| 409 | E1000_WRITE_REG(hw, EECD, eecd); |
| 410 | DEBUGOUT("Could not acquire EEPROM grant\n"); |
| 411 | return FALSE; |
| 412 | } |
| 413 | } |
| 414 | e1000_setup_eeprom(hw); |
| 415 | e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE, 5); |
| 416 | e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 6 : 4); |
| 417 | e1000_standby_eeprom(hw); |
| 418 | e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE, 3); |
| 419 | e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 8 : 6); |
| 420 | e1000_shift_out_ee_bits(hw, Data, 16); |
| 421 | if (!e1000_wait_eeprom_done(hw)) { |
| 422 | return FALSE; |
| 423 | } |
| 424 | e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE, 5); |
| 425 | e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 6 : 4); |
| 426 | e1000_eeprom_cleanup(hw); |
| 427 | |
| 428 | /* Stop requesting EEPROM access */ |
| 429 | if (hw->mac_type > e1000_82544) { |
| 430 | eecd = E1000_READ_REG(hw, EECD); |
| 431 | eecd &= ~E1000_EECD_REQ; |
| 432 | E1000_WRITE_REG(hw, EECD, eecd); |
| 433 | } |
| 434 | i = 0; |
| 435 | eecd = E1000_READ_REG(hw, EECD); |
| 436 | while (((eecd & E1000_EECD_GNT)) && (i < 500)) { |
| 437 | i++; |
| 438 | udelay(10); |
| 439 | eecd = E1000_READ_REG(hw, EECD); |
| 440 | } |
| 441 | if ((eecd & E1000_EECD_GNT)) { |
| 442 | DEBUGOUT("Could not release EEPROM grant\n"); |
| 443 | } |
| 444 | return TRUE; |
| 445 | } |
| 446 | #endif |
| 447 | |
| 448 | /****************************************************************************** |
| 449 | * Verifies that the EEPROM has a valid checksum |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame^] | 450 | * |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 451 | * hw - Struct containing variables accessed by shared code |
| 452 | * |
| 453 | * Reads the first 64 16 bit words of the EEPROM and sums the values read. |
| 454 | * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is |
| 455 | * valid. |
| 456 | *****************************************************************************/ |
| 457 | static int |
| 458 | e1000_validate_eeprom_checksum(struct eth_device *nic) |
| 459 | { |
| 460 | struct e1000_hw *hw = nic->priv; |
| 461 | uint16_t checksum = 0; |
| 462 | uint16_t i, eeprom_data; |
| 463 | |
| 464 | DEBUGFUNC(); |
| 465 | |
| 466 | for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { |
| 467 | if (e1000_read_eeprom(hw, i, &eeprom_data) < 0) { |
| 468 | DEBUGOUT("EEPROM Read Error\n"); |
| 469 | return -E1000_ERR_EEPROM; |
| 470 | } |
| 471 | checksum += eeprom_data; |
| 472 | } |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame^] | 473 | |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 474 | if (checksum == (uint16_t) EEPROM_SUM) { |
| 475 | return 0; |
| 476 | } else { |
| 477 | DEBUGOUT("EEPROM Checksum Invalid\n"); |
| 478 | return -E1000_ERR_EEPROM; |
| 479 | } |
| 480 | } |
| 481 | |
| 482 | /****************************************************************************** |
| 483 | * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the |
| 484 | * second function of dual function devices |
| 485 | * |
| 486 | * nic - Struct containing variables accessed by shared code |
| 487 | *****************************************************************************/ |
| 488 | static int |
| 489 | e1000_read_mac_addr(struct eth_device *nic) |
| 490 | { |
| 491 | struct e1000_hw *hw = nic->priv; |
| 492 | uint16_t offset; |
| 493 | uint16_t eeprom_data; |
| 494 | int i; |
| 495 | |
| 496 | DEBUGFUNC(); |
| 497 | |
| 498 | for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) { |
| 499 | offset = i >> 1; |
| 500 | if (e1000_read_eeprom(hw, offset, &eeprom_data) < 0) { |
| 501 | DEBUGOUT("EEPROM Read Error\n"); |
| 502 | return -E1000_ERR_EEPROM; |
| 503 | } |
| 504 | nic->enetaddr[i] = eeprom_data & 0xff; |
| 505 | nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff; |
| 506 | } |
| 507 | if ((hw->mac_type == e1000_82546) && |
| 508 | (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) { |
| 509 | /* Invert the last bit if this is the second device */ |
| 510 | nic->enetaddr[5] += 1; |
| 511 | } |
| 512 | return 0; |
| 513 | } |
| 514 | |
| 515 | /****************************************************************************** |
| 516 | * Initializes receive address filters. |
| 517 | * |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame^] | 518 | * hw - Struct containing variables accessed by shared code |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 519 | * |
| 520 | * Places the MAC address in receive address register 0 and clears the rest |
| 521 | * of the receive addresss registers. Clears the multicast table. Assumes |
| 522 | * the receiver is in reset when the routine is called. |
| 523 | *****************************************************************************/ |
| 524 | static void |
| 525 | e1000_init_rx_addrs(struct eth_device *nic) |
| 526 | { |
| 527 | struct e1000_hw *hw = nic->priv; |
| 528 | uint32_t i; |
| 529 | uint32_t addr_low; |
| 530 | uint32_t addr_high; |
| 531 | |
| 532 | DEBUGFUNC(); |
| 533 | |
| 534 | /* Setup the receive address. */ |
| 535 | DEBUGOUT("Programming MAC Address into RAR[0]\n"); |
| 536 | addr_low = (nic->enetaddr[0] | |
| 537 | (nic->enetaddr[1] << 8) | |
| 538 | (nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24)); |
| 539 | |
| 540 | addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV); |
| 541 | |
| 542 | E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low); |
| 543 | E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high); |
| 544 | |
| 545 | /* Zero out the other 15 receive addresses. */ |
| 546 | DEBUGOUT("Clearing RAR[1-15]\n"); |
| 547 | for (i = 1; i < E1000_RAR_ENTRIES; i++) { |
| 548 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); |
| 549 | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); |
| 550 | } |
| 551 | } |
| 552 | |
| 553 | /****************************************************************************** |
| 554 | * Clears the VLAN filer table |
| 555 | * |
| 556 | * hw - Struct containing variables accessed by shared code |
| 557 | *****************************************************************************/ |
| 558 | static void |
| 559 | e1000_clear_vfta(struct e1000_hw *hw) |
| 560 | { |
| 561 | uint32_t offset; |
| 562 | |
| 563 | for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) |
| 564 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0); |
| 565 | } |
| 566 | |
| 567 | /****************************************************************************** |
| 568 | * Set the mac type member in the hw struct. |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame^] | 569 | * |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 570 | * hw - Struct containing variables accessed by shared code |
| 571 | *****************************************************************************/ |
| 572 | static int |
| 573 | e1000_set_mac_type(struct e1000_hw *hw) |
| 574 | { |
| 575 | DEBUGFUNC(); |
| 576 | |
| 577 | switch (hw->device_id) { |
| 578 | case E1000_DEV_ID_82542: |
| 579 | switch (hw->revision_id) { |
| 580 | case E1000_82542_2_0_REV_ID: |
| 581 | hw->mac_type = e1000_82542_rev2_0; |
| 582 | break; |
| 583 | case E1000_82542_2_1_REV_ID: |
| 584 | hw->mac_type = e1000_82542_rev2_1; |
| 585 | break; |
| 586 | default: |
| 587 | /* Invalid 82542 revision ID */ |
| 588 | return -E1000_ERR_MAC_TYPE; |
| 589 | } |
| 590 | break; |
| 591 | case E1000_DEV_ID_82543GC_FIBER: |
| 592 | case E1000_DEV_ID_82543GC_COPPER: |
| 593 | hw->mac_type = e1000_82543; |
| 594 | break; |
| 595 | case E1000_DEV_ID_82544EI_COPPER: |
| 596 | case E1000_DEV_ID_82544EI_FIBER: |
| 597 | case E1000_DEV_ID_82544GC_COPPER: |
| 598 | case E1000_DEV_ID_82544GC_LOM: |
| 599 | hw->mac_type = e1000_82544; |
| 600 | break; |
| 601 | case E1000_DEV_ID_82540EM: |
| 602 | case E1000_DEV_ID_82540EM_LOM: |
| 603 | hw->mac_type = e1000_82540; |
| 604 | break; |
| 605 | case E1000_DEV_ID_82545EM_COPPER: |
| 606 | case E1000_DEV_ID_82545EM_FIBER: |
| 607 | hw->mac_type = e1000_82545; |
| 608 | break; |
| 609 | case E1000_DEV_ID_82546EB_COPPER: |
| 610 | case E1000_DEV_ID_82546EB_FIBER: |
| 611 | hw->mac_type = e1000_82546; |
| 612 | break; |
| 613 | default: |
| 614 | /* Should never have loaded on this device */ |
| 615 | return -E1000_ERR_MAC_TYPE; |
| 616 | } |
| 617 | return E1000_SUCCESS; |
| 618 | } |
| 619 | |
| 620 | /****************************************************************************** |
| 621 | * Reset the transmit and receive units; mask and clear all interrupts. |
| 622 | * |
| 623 | * hw - Struct containing variables accessed by shared code |
| 624 | *****************************************************************************/ |
| 625 | void |
| 626 | e1000_reset_hw(struct e1000_hw *hw) |
| 627 | { |
| 628 | uint32_t ctrl; |
| 629 | uint32_t ctrl_ext; |
| 630 | uint32_t icr; |
| 631 | uint32_t manc; |
| 632 | |
| 633 | DEBUGFUNC(); |
| 634 | |
| 635 | /* For 82542 (rev 2.0), disable MWI before issuing a device reset */ |
| 636 | if (hw->mac_type == e1000_82542_rev2_0) { |
| 637 | DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); |
| 638 | pci_write_config_word(hw->pdev, PCI_COMMAND, |
| 639 | hw-> |
| 640 | pci_cmd_word & ~PCI_COMMAND_INVALIDATE); |
| 641 | } |
| 642 | |
| 643 | /* Clear interrupt mask to stop board from generating interrupts */ |
| 644 | DEBUGOUT("Masking off all interrupts\n"); |
| 645 | E1000_WRITE_REG(hw, IMC, 0xffffffff); |
| 646 | |
| 647 | /* Disable the Transmit and Receive units. Then delay to allow |
| 648 | * any pending transactions to complete before we hit the MAC with |
| 649 | * the global reset. |
| 650 | */ |
| 651 | E1000_WRITE_REG(hw, RCTL, 0); |
| 652 | E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP); |
| 653 | E1000_WRITE_FLUSH(hw); |
| 654 | |
| 655 | /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */ |
| 656 | hw->tbi_compatibility_on = FALSE; |
| 657 | |
| 658 | /* Delay to allow any outstanding PCI transactions to complete before |
| 659 | * resetting the device |
| 660 | */ |
| 661 | mdelay(10); |
| 662 | |
| 663 | /* Issue a global reset to the MAC. This will reset the chip's |
| 664 | * transmit, receive, DMA, and link units. It will not effect |
| 665 | * the current PCI configuration. The global reset bit is self- |
| 666 | * clearing, and should clear within a microsecond. |
| 667 | */ |
| 668 | DEBUGOUT("Issuing a global reset to MAC\n"); |
| 669 | ctrl = E1000_READ_REG(hw, CTRL); |
| 670 | |
| 671 | #if 0 |
| 672 | if (hw->mac_type > e1000_82543) |
| 673 | E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST)); |
| 674 | else |
| 675 | #endif |
| 676 | E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); |
| 677 | |
| 678 | /* Force a reload from the EEPROM if necessary */ |
| 679 | if (hw->mac_type < e1000_82540) { |
| 680 | /* Wait for reset to complete */ |
| 681 | udelay(10); |
| 682 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); |
| 683 | ctrl_ext |= E1000_CTRL_EXT_EE_RST; |
| 684 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); |
| 685 | E1000_WRITE_FLUSH(hw); |
| 686 | /* Wait for EEPROM reload */ |
| 687 | mdelay(2); |
| 688 | } else { |
| 689 | /* Wait for EEPROM reload (it happens automatically) */ |
| 690 | mdelay(4); |
| 691 | /* Dissable HW ARPs on ASF enabled adapters */ |
| 692 | manc = E1000_READ_REG(hw, MANC); |
| 693 | manc &= ~(E1000_MANC_ARP_EN); |
| 694 | E1000_WRITE_REG(hw, MANC, manc); |
| 695 | } |
| 696 | |
| 697 | /* Clear interrupt mask to stop board from generating interrupts */ |
| 698 | DEBUGOUT("Masking off all interrupts\n"); |
| 699 | E1000_WRITE_REG(hw, IMC, 0xffffffff); |
| 700 | |
| 701 | /* Clear any pending interrupt events. */ |
| 702 | icr = E1000_READ_REG(hw, ICR); |
| 703 | |
| 704 | /* If MWI was previously enabled, reenable it. */ |
| 705 | if (hw->mac_type == e1000_82542_rev2_0) { |
| 706 | pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word); |
| 707 | } |
| 708 | } |
| 709 | |
| 710 | /****************************************************************************** |
| 711 | * Performs basic configuration of the adapter. |
| 712 | * |
| 713 | * hw - Struct containing variables accessed by shared code |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame^] | 714 | * |
| 715 | * Assumes that the controller has previously been reset and is in a |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 716 | * post-reset uninitialized state. Initializes the receive address registers, |
| 717 | * multicast table, and VLAN filter table. Calls routines to setup link |
| 718 | * configuration and flow control settings. Clears all on-chip counters. Leaves |
| 719 | * the transmit and receive units disabled and uninitialized. |
| 720 | *****************************************************************************/ |
| 721 | static int |
| 722 | e1000_init_hw(struct eth_device *nic) |
| 723 | { |
| 724 | struct e1000_hw *hw = nic->priv; |
| 725 | uint32_t ctrl, status; |
| 726 | uint32_t i; |
| 727 | int32_t ret_val; |
| 728 | uint16_t pcix_cmd_word; |
| 729 | uint16_t pcix_stat_hi_word; |
| 730 | uint16_t cmd_mmrbc; |
| 731 | uint16_t stat_mmrbc; |
| 732 | e1000_bus_type bus_type = e1000_bus_type_unknown; |
| 733 | |
| 734 | DEBUGFUNC(); |
| 735 | #if 0 |
| 736 | /* Initialize Identification LED */ |
| 737 | ret_val = e1000_id_led_init(hw); |
| 738 | if (ret_val < 0) { |
| 739 | DEBUGOUT("Error Initializing Identification LED\n"); |
| 740 | return ret_val; |
| 741 | } |
| 742 | #endif |
| 743 | /* Set the Media Type and exit with error if it is not valid. */ |
| 744 | if (hw->mac_type != e1000_82543) { |
| 745 | /* tbi_compatibility is only valid on 82543 */ |
| 746 | hw->tbi_compatibility_en = FALSE; |
| 747 | } |
| 748 | |
| 749 | if (hw->mac_type >= e1000_82543) { |
| 750 | status = E1000_READ_REG(hw, STATUS); |
| 751 | if (status & E1000_STATUS_TBIMODE) { |
| 752 | hw->media_type = e1000_media_type_fiber; |
| 753 | /* tbi_compatibility not valid on fiber */ |
| 754 | hw->tbi_compatibility_en = FALSE; |
| 755 | } else { |
| 756 | hw->media_type = e1000_media_type_copper; |
| 757 | } |
| 758 | } else { |
| 759 | /* This is an 82542 (fiber only) */ |
| 760 | hw->media_type = e1000_media_type_fiber; |
| 761 | } |
| 762 | |
| 763 | /* Disabling VLAN filtering. */ |
| 764 | DEBUGOUT("Initializing the IEEE VLAN\n"); |
| 765 | E1000_WRITE_REG(hw, VET, 0); |
| 766 | |
| 767 | e1000_clear_vfta(hw); |
| 768 | |
| 769 | /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ |
| 770 | if (hw->mac_type == e1000_82542_rev2_0) { |
| 771 | DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); |
| 772 | pci_write_config_word(hw->pdev, PCI_COMMAND, |
| 773 | hw-> |
| 774 | pci_cmd_word & ~PCI_COMMAND_INVALIDATE); |
| 775 | E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST); |
| 776 | E1000_WRITE_FLUSH(hw); |
| 777 | mdelay(5); |
| 778 | } |
| 779 | |
| 780 | /* Setup the receive address. This involves initializing all of the Receive |
| 781 | * Address Registers (RARs 0 - 15). |
| 782 | */ |
| 783 | e1000_init_rx_addrs(nic); |
| 784 | |
| 785 | /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ |
| 786 | if (hw->mac_type == e1000_82542_rev2_0) { |
| 787 | E1000_WRITE_REG(hw, RCTL, 0); |
| 788 | E1000_WRITE_FLUSH(hw); |
| 789 | mdelay(1); |
| 790 | pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word); |
| 791 | } |
| 792 | |
| 793 | /* Zero out the Multicast HASH table */ |
| 794 | DEBUGOUT("Zeroing the MTA\n"); |
| 795 | for (i = 0; i < E1000_MC_TBL_SIZE; i++) |
| 796 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); |
| 797 | |
| 798 | #if 0 |
| 799 | /* Set the PCI priority bit correctly in the CTRL register. This |
| 800 | * determines if the adapter gives priority to receives, or if it |
| 801 | * gives equal priority to transmits and receives. |
| 802 | */ |
| 803 | if (hw->dma_fairness) { |
| 804 | ctrl = E1000_READ_REG(hw, CTRL); |
| 805 | E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR); |
| 806 | } |
| 807 | #endif |
| 808 | if (hw->mac_type >= e1000_82543) { |
| 809 | status = E1000_READ_REG(hw, STATUS); |
| 810 | bus_type = (status & E1000_STATUS_PCIX_MODE) ? |
| 811 | e1000_bus_type_pcix : e1000_bus_type_pci; |
| 812 | } |
| 813 | /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */ |
| 814 | if (bus_type == e1000_bus_type_pcix) { |
| 815 | pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER, |
| 816 | &pcix_cmd_word); |
| 817 | pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI, |
| 818 | &pcix_stat_hi_word); |
| 819 | cmd_mmrbc = |
| 820 | (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >> |
| 821 | PCIX_COMMAND_MMRBC_SHIFT; |
| 822 | stat_mmrbc = |
| 823 | (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >> |
| 824 | PCIX_STATUS_HI_MMRBC_SHIFT; |
| 825 | if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K) |
| 826 | stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K; |
| 827 | if (cmd_mmrbc > stat_mmrbc) { |
| 828 | pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK; |
| 829 | pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT; |
| 830 | pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER, |
| 831 | pcix_cmd_word); |
| 832 | } |
| 833 | } |
| 834 | |
| 835 | /* Call a subroutine to configure the link and setup flow control. */ |
| 836 | ret_val = e1000_setup_link(nic); |
| 837 | |
| 838 | /* Set the transmit descriptor write-back policy */ |
| 839 | if (hw->mac_type > e1000_82544) { |
| 840 | ctrl = E1000_READ_REG(hw, TXDCTL); |
| 841 | ctrl = |
| 842 | (ctrl & ~E1000_TXDCTL_WTHRESH) | |
| 843 | E1000_TXDCTL_FULL_TX_DESC_WB; |
| 844 | E1000_WRITE_REG(hw, TXDCTL, ctrl); |
| 845 | } |
| 846 | #if 0 |
| 847 | /* Clear all of the statistics registers (clear on read). It is |
| 848 | * important that we do this after we have tried to establish link |
| 849 | * because the symbol error count will increment wildly if there |
| 850 | * is no link. |
| 851 | */ |
| 852 | e1000_clear_hw_cntrs(hw); |
| 853 | #endif |
| 854 | |
| 855 | return ret_val; |
| 856 | } |
| 857 | |
| 858 | /****************************************************************************** |
| 859 | * Configures flow control and link settings. |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame^] | 860 | * |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 861 | * hw - Struct containing variables accessed by shared code |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame^] | 862 | * |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 863 | * Determines which flow control settings to use. Calls the apropriate media- |
| 864 | * specific link configuration function. Configures the flow control settings. |
| 865 | * Assuming the adapter has a valid link partner, a valid link should be |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame^] | 866 | * established. Assumes the hardware has previously been reset and the |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 867 | * transmitter and receiver are not enabled. |
| 868 | *****************************************************************************/ |
| 869 | static int |
| 870 | e1000_setup_link(struct eth_device *nic) |
| 871 | { |
| 872 | struct e1000_hw *hw = nic->priv; |
| 873 | uint32_t ctrl_ext; |
| 874 | int32_t ret_val; |
| 875 | uint16_t eeprom_data; |
| 876 | |
| 877 | DEBUGFUNC(); |
| 878 | |
| 879 | /* Read and store word 0x0F of the EEPROM. This word contains bits |
| 880 | * that determine the hardware's default PAUSE (flow control) mode, |
| 881 | * a bit that determines whether the HW defaults to enabling or |
| 882 | * disabling auto-negotiation, and the direction of the |
| 883 | * SW defined pins. If there is no SW over-ride of the flow |
| 884 | * control setting, then the variable hw->fc will |
| 885 | * be initialized based on a value in the EEPROM. |
| 886 | */ |
| 887 | if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, &eeprom_data) < 0) { |
| 888 | DEBUGOUT("EEPROM Read Error\n"); |
| 889 | return -E1000_ERR_EEPROM; |
| 890 | } |
| 891 | |
| 892 | if (hw->fc == e1000_fc_default) { |
| 893 | if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0) |
| 894 | hw->fc = e1000_fc_none; |
| 895 | else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == |
| 896 | EEPROM_WORD0F_ASM_DIR) |
| 897 | hw->fc = e1000_fc_tx_pause; |
| 898 | else |
| 899 | hw->fc = e1000_fc_full; |
| 900 | } |
| 901 | |
| 902 | /* We want to save off the original Flow Control configuration just |
| 903 | * in case we get disconnected and then reconnected into a different |
| 904 | * hub or switch with different Flow Control capabilities. |
| 905 | */ |
| 906 | if (hw->mac_type == e1000_82542_rev2_0) |
| 907 | hw->fc &= (~e1000_fc_tx_pause); |
| 908 | |
| 909 | if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1)) |
| 910 | hw->fc &= (~e1000_fc_rx_pause); |
| 911 | |
| 912 | hw->original_fc = hw->fc; |
| 913 | |
| 914 | DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc); |
| 915 | |
| 916 | /* Take the 4 bits from EEPROM word 0x0F that determine the initial |
| 917 | * polarity value for the SW controlled pins, and setup the |
| 918 | * Extended Device Control reg with that info. |
| 919 | * This is needed because one of the SW controlled pins is used for |
| 920 | * signal detection. So this should be done before e1000_setup_pcs_link() |
| 921 | * or e1000_phy_setup() is called. |
| 922 | */ |
| 923 | if (hw->mac_type == e1000_82543) { |
| 924 | ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << |
| 925 | SWDPIO__EXT_SHIFT); |
| 926 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); |
| 927 | } |
| 928 | |
| 929 | /* Call the necessary subroutine to configure the link. */ |
| 930 | ret_val = (hw->media_type == e1000_media_type_fiber) ? |
| 931 | e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic); |
| 932 | if (ret_val < 0) { |
| 933 | return ret_val; |
| 934 | } |
| 935 | |
| 936 | /* Initialize the flow control address, type, and PAUSE timer |
| 937 | * registers to their default values. This is done even if flow |
| 938 | * control is disabled, because it does not hurt anything to |
| 939 | * initialize these registers. |
| 940 | */ |
| 941 | DEBUGOUT |
| 942 | ("Initializing the Flow Control address, type and timer regs\n"); |
| 943 | |
| 944 | E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW); |
| 945 | E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH); |
| 946 | E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE); |
| 947 | E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time); |
| 948 | |
| 949 | /* Set the flow control receive threshold registers. Normally, |
| 950 | * these registers will be set to a default threshold that may be |
| 951 | * adjusted later by the driver's runtime code. However, if the |
| 952 | * ability to transmit pause frames in not enabled, then these |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame^] | 953 | * registers will be set to 0. |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 954 | */ |
| 955 | if (!(hw->fc & e1000_fc_tx_pause)) { |
| 956 | E1000_WRITE_REG(hw, FCRTL, 0); |
| 957 | E1000_WRITE_REG(hw, FCRTH, 0); |
| 958 | } else { |
| 959 | /* We need to set up the Receive Threshold high and low water marks |
| 960 | * as well as (optionally) enabling the transmission of XON frames. |
| 961 | */ |
| 962 | if (hw->fc_send_xon) { |
| 963 | E1000_WRITE_REG(hw, FCRTL, |
| 964 | (hw->fc_low_water | E1000_FCRTL_XONE)); |
| 965 | E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); |
| 966 | } else { |
| 967 | E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water); |
| 968 | E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); |
| 969 | } |
| 970 | } |
| 971 | return ret_val; |
| 972 | } |
| 973 | |
| 974 | /****************************************************************************** |
| 975 | * Sets up link for a fiber based adapter |
| 976 | * |
| 977 | * hw - Struct containing variables accessed by shared code |
| 978 | * |
| 979 | * Manipulates Physical Coding Sublayer functions in order to configure |
| 980 | * link. Assumes the hardware has been previously reset and the transmitter |
| 981 | * and receiver are not enabled. |
| 982 | *****************************************************************************/ |
| 983 | static int |
| 984 | e1000_setup_fiber_link(struct eth_device *nic) |
| 985 | { |
| 986 | struct e1000_hw *hw = nic->priv; |
| 987 | uint32_t ctrl; |
| 988 | uint32_t status; |
| 989 | uint32_t txcw = 0; |
| 990 | uint32_t i; |
| 991 | uint32_t signal; |
| 992 | int32_t ret_val; |
| 993 | |
| 994 | DEBUGFUNC(); |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame^] | 995 | /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be |
| 996 | * set when the optics detect a signal. On older adapters, it will be |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 997 | * cleared when there is a signal |
| 998 | */ |
| 999 | ctrl = E1000_READ_REG(hw, CTRL); |
| 1000 | if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS)) |
| 1001 | signal = E1000_CTRL_SWDPIN1; |
| 1002 | else |
| 1003 | signal = 0; |
| 1004 | |
| 1005 | printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal, |
| 1006 | ctrl); |
| 1007 | /* Take the link out of reset */ |
| 1008 | ctrl &= ~(E1000_CTRL_LRST); |
| 1009 | |
| 1010 | e1000_config_collision_dist(hw); |
| 1011 | |
| 1012 | /* Check for a software override of the flow control settings, and setup |
| 1013 | * the device accordingly. If auto-negotiation is enabled, then software |
| 1014 | * will have to set the "PAUSE" bits to the correct value in the Tranmsit |
| 1015 | * Config Word Register (TXCW) and re-start auto-negotiation. However, if |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame^] | 1016 | * auto-negotiation is disabled, then software will have to manually |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1017 | * configure the two flow control enable bits in the CTRL register. |
| 1018 | * |
| 1019 | * The possible values of the "fc" parameter are: |
| 1020 | * 0: Flow control is completely disabled |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame^] | 1021 | * 1: Rx flow control is enabled (we can receive pause frames, but |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1022 | * not send pause frames). |
| 1023 | * 2: Tx flow control is enabled (we can send pause frames but we do |
| 1024 | * not support receiving pause frames). |
| 1025 | * 3: Both Rx and TX flow control (symmetric) are enabled. |
| 1026 | */ |
| 1027 | switch (hw->fc) { |
| 1028 | case e1000_fc_none: |
| 1029 | /* Flow control is completely disabled by a software over-ride. */ |
| 1030 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); |
| 1031 | break; |
| 1032 | case e1000_fc_rx_pause: |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame^] | 1033 | /* RX Flow control is enabled and TX Flow control is disabled by a |
| 1034 | * software over-ride. Since there really isn't a way to advertise |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1035 | * that we are capable of RX Pause ONLY, we will advertise that we |
| 1036 | * support both symmetric and asymmetric RX PAUSE. Later, we will |
| 1037 | * disable the adapter's ability to send PAUSE frames. |
| 1038 | */ |
| 1039 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); |
| 1040 | break; |
| 1041 | case e1000_fc_tx_pause: |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame^] | 1042 | /* TX Flow control is enabled, and RX Flow control is disabled, by a |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1043 | * software over-ride. |
| 1044 | */ |
| 1045 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); |
| 1046 | break; |
| 1047 | case e1000_fc_full: |
| 1048 | /* Flow control (both RX and TX) is enabled by a software over-ride. */ |
| 1049 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); |
| 1050 | break; |
| 1051 | default: |
| 1052 | DEBUGOUT("Flow control param set incorrectly\n"); |
| 1053 | return -E1000_ERR_CONFIG; |
| 1054 | break; |
| 1055 | } |
| 1056 | |
| 1057 | /* Since auto-negotiation is enabled, take the link out of reset (the link |
| 1058 | * will be in reset, because we previously reset the chip). This will |
| 1059 | * restart auto-negotiation. If auto-neogtiation is successful then the |
| 1060 | * link-up status bit will be set and the flow control enable bits (RFCE |
| 1061 | * and TFCE) will be set according to their negotiated value. |
| 1062 | */ |
| 1063 | DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw); |
| 1064 | |
| 1065 | E1000_WRITE_REG(hw, TXCW, txcw); |
| 1066 | E1000_WRITE_REG(hw, CTRL, ctrl); |
| 1067 | E1000_WRITE_FLUSH(hw); |
| 1068 | |
| 1069 | hw->txcw = txcw; |
| 1070 | mdelay(1); |
| 1071 | |
| 1072 | /* If we have a signal (the cable is plugged in) then poll for a "Link-Up" |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame^] | 1073 | * indication in the Device Status Register. Time-out if a link isn't |
| 1074 | * seen in 500 milliseconds seconds (Auto-negotiation should complete in |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1075 | * less than 500 milliseconds even if the other end is doing it in SW). |
| 1076 | */ |
| 1077 | if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) { |
| 1078 | DEBUGOUT("Looking for Link\n"); |
| 1079 | for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { |
| 1080 | mdelay(10); |
| 1081 | status = E1000_READ_REG(hw, STATUS); |
| 1082 | if (status & E1000_STATUS_LU) |
| 1083 | break; |
| 1084 | } |
| 1085 | if (i == (LINK_UP_TIMEOUT / 10)) { |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame^] | 1086 | /* AutoNeg failed to achieve a link, so we'll call |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1087 | * e1000_check_for_link. This routine will force the link up if we |
| 1088 | * detect a signal. This will allow us to communicate with |
| 1089 | * non-autonegotiating link partners. |
| 1090 | */ |
| 1091 | DEBUGOUT("Never got a valid link from auto-neg!!!\n"); |
| 1092 | hw->autoneg_failed = 1; |
| 1093 | ret_val = e1000_check_for_link(nic); |
| 1094 | if (ret_val < 0) { |
| 1095 | DEBUGOUT("Error while checking for link\n"); |
| 1096 | return ret_val; |
| 1097 | } |
| 1098 | hw->autoneg_failed = 0; |
| 1099 | } else { |
| 1100 | hw->autoneg_failed = 0; |
| 1101 | DEBUGOUT("Valid Link Found\n"); |
| 1102 | } |
| 1103 | } else { |
| 1104 | DEBUGOUT("No Signal Detected\n"); |
| 1105 | return -E1000_ERR_NOLINK; |
| 1106 | } |
| 1107 | return 0; |
| 1108 | } |
| 1109 | |
| 1110 | /****************************************************************************** |
| 1111 | * Detects which PHY is present and the speed and duplex |
| 1112 | * |
| 1113 | * hw - Struct containing variables accessed by shared code |
| 1114 | ******************************************************************************/ |
| 1115 | static int |
| 1116 | e1000_setup_copper_link(struct eth_device *nic) |
| 1117 | { |
| 1118 | struct e1000_hw *hw = nic->priv; |
| 1119 | uint32_t ctrl; |
| 1120 | int32_t ret_val; |
| 1121 | uint16_t i; |
| 1122 | uint16_t phy_data; |
| 1123 | |
| 1124 | DEBUGFUNC(); |
| 1125 | |
| 1126 | ctrl = E1000_READ_REG(hw, CTRL); |
| 1127 | /* With 82543, we need to force speed and duplex on the MAC equal to what |
| 1128 | * the PHY speed and duplex configuration is. In addition, we need to |
| 1129 | * perform a hardware reset on the PHY to take it out of reset. |
| 1130 | */ |
| 1131 | if (hw->mac_type > e1000_82543) { |
| 1132 | ctrl |= E1000_CTRL_SLU; |
| 1133 | ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
| 1134 | E1000_WRITE_REG(hw, CTRL, ctrl); |
| 1135 | } else { |
| 1136 | ctrl |= |
| 1137 | (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU); |
| 1138 | E1000_WRITE_REG(hw, CTRL, ctrl); |
| 1139 | e1000_phy_hw_reset(hw); |
| 1140 | } |
| 1141 | |
| 1142 | /* Make sure we have a valid PHY */ |
| 1143 | ret_val = e1000_detect_gig_phy(hw); |
| 1144 | if (ret_val < 0) { |
| 1145 | DEBUGOUT("Error, did not detect valid phy.\n"); |
| 1146 | return ret_val; |
| 1147 | } |
| 1148 | DEBUGOUT("Phy ID = %x \n", hw->phy_id); |
| 1149 | |
| 1150 | /* Enable CRS on TX. This must be set for half-duplex operation. */ |
| 1151 | if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data) < 0) { |
| 1152 | DEBUGOUT("PHY Read Error\n"); |
| 1153 | return -E1000_ERR_PHY; |
| 1154 | } |
| 1155 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; |
| 1156 | |
| 1157 | #if 0 |
| 1158 | /* Options: |
| 1159 | * MDI/MDI-X = 0 (default) |
| 1160 | * 0 - Auto for all speeds |
| 1161 | * 1 - MDI mode |
| 1162 | * 2 - MDI-X mode |
| 1163 | * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) |
| 1164 | */ |
| 1165 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; |
| 1166 | switch (hw->mdix) { |
| 1167 | case 1: |
| 1168 | phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; |
| 1169 | break; |
| 1170 | case 2: |
| 1171 | phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; |
| 1172 | break; |
| 1173 | case 3: |
| 1174 | phy_data |= M88E1000_PSCR_AUTO_X_1000T; |
| 1175 | break; |
| 1176 | case 0: |
| 1177 | default: |
| 1178 | phy_data |= M88E1000_PSCR_AUTO_X_MODE; |
| 1179 | break; |
| 1180 | } |
| 1181 | #else |
| 1182 | phy_data |= M88E1000_PSCR_AUTO_X_MODE; |
| 1183 | #endif |
| 1184 | |
| 1185 | #if 0 |
| 1186 | /* Options: |
| 1187 | * disable_polarity_correction = 0 (default) |
| 1188 | * Automatic Correction for Reversed Cable Polarity |
| 1189 | * 0 - Disabled |
| 1190 | * 1 - Enabled |
| 1191 | */ |
| 1192 | phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; |
| 1193 | if (hw->disable_polarity_correction == 1) |
| 1194 | phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; |
| 1195 | #else |
| 1196 | phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; |
| 1197 | #endif |
| 1198 | if (e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data) < 0) { |
| 1199 | DEBUGOUT("PHY Write Error\n"); |
| 1200 | return -E1000_ERR_PHY; |
| 1201 | } |
| 1202 | |
| 1203 | /* Force TX_CLK in the Extended PHY Specific Control Register |
| 1204 | * to 25MHz clock. |
| 1205 | */ |
| 1206 | if (e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data) < 0) { |
| 1207 | DEBUGOUT("PHY Read Error\n"); |
| 1208 | return -E1000_ERR_PHY; |
| 1209 | } |
| 1210 | phy_data |= M88E1000_EPSCR_TX_CLK_25; |
| 1211 | /* Configure Master and Slave downshift values */ |
| 1212 | phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | |
| 1213 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); |
| 1214 | phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | |
| 1215 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); |
| 1216 | if (e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data) < 0) { |
| 1217 | DEBUGOUT("PHY Write Error\n"); |
| 1218 | return -E1000_ERR_PHY; |
| 1219 | } |
| 1220 | |
| 1221 | /* SW Reset the PHY so all changes take effect */ |
| 1222 | ret_val = e1000_phy_reset(hw); |
| 1223 | if (ret_val < 0) { |
| 1224 | DEBUGOUT("Error Resetting the PHY\n"); |
| 1225 | return ret_val; |
| 1226 | } |
| 1227 | |
| 1228 | /* Options: |
| 1229 | * autoneg = 1 (default) |
| 1230 | * PHY will advertise value(s) parsed from |
| 1231 | * autoneg_advertised and fc |
| 1232 | * autoneg = 0 |
| 1233 | * PHY will be set to 10H, 10F, 100H, or 100F |
| 1234 | * depending on value parsed from forced_speed_duplex. |
| 1235 | */ |
| 1236 | |
| 1237 | /* Is autoneg enabled? This is enabled by default or by software override. |
| 1238 | * If so, call e1000_phy_setup_autoneg routine to parse the |
| 1239 | * autoneg_advertised and fc options. If autoneg is NOT enabled, then the |
| 1240 | * user should have provided a speed/duplex override. If so, then call |
| 1241 | * e1000_phy_force_speed_duplex to parse and set this up. |
| 1242 | */ |
| 1243 | /* Perform some bounds checking on the hw->autoneg_advertised |
| 1244 | * parameter. If this variable is zero, then set it to the default. |
| 1245 | */ |
| 1246 | hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT; |
| 1247 | |
| 1248 | /* If autoneg_advertised is zero, we assume it was not defaulted |
| 1249 | * by the calling code so we set to advertise full capability. |
| 1250 | */ |
| 1251 | if (hw->autoneg_advertised == 0) |
| 1252 | hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; |
| 1253 | |
| 1254 | DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); |
| 1255 | ret_val = e1000_phy_setup_autoneg(hw); |
| 1256 | if (ret_val < 0) { |
| 1257 | DEBUGOUT("Error Setting up Auto-Negotiation\n"); |
| 1258 | return ret_val; |
| 1259 | } |
| 1260 | DEBUGOUT("Restarting Auto-Neg\n"); |
| 1261 | |
| 1262 | /* Restart auto-negotiation by setting the Auto Neg Enable bit and |
| 1263 | * the Auto Neg Restart bit in the PHY control register. |
| 1264 | */ |
| 1265 | if (e1000_read_phy_reg(hw, PHY_CTRL, &phy_data) < 0) { |
| 1266 | DEBUGOUT("PHY Read Error\n"); |
| 1267 | return -E1000_ERR_PHY; |
| 1268 | } |
| 1269 | phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); |
| 1270 | if (e1000_write_phy_reg(hw, PHY_CTRL, phy_data) < 0) { |
| 1271 | DEBUGOUT("PHY Write Error\n"); |
| 1272 | return -E1000_ERR_PHY; |
| 1273 | } |
| 1274 | #if 0 |
| 1275 | /* Does the user want to wait for Auto-Neg to complete here, or |
| 1276 | * check at a later time (for example, callback routine). |
| 1277 | */ |
| 1278 | if (hw->wait_autoneg_complete) { |
| 1279 | ret_val = e1000_wait_autoneg(hw); |
| 1280 | if (ret_val < 0) { |
| 1281 | DEBUGOUT |
| 1282 | ("Error while waiting for autoneg to complete\n"); |
| 1283 | return ret_val; |
| 1284 | } |
| 1285 | } |
| 1286 | #else |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame^] | 1287 | /* If we do not wait for autonegtation to complete I |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1288 | * do not see a valid link status. |
| 1289 | */ |
| 1290 | ret_val = e1000_wait_autoneg(hw); |
| 1291 | if (ret_val < 0) { |
| 1292 | DEBUGOUT("Error while waiting for autoneg to complete\n"); |
| 1293 | return ret_val; |
| 1294 | } |
| 1295 | #endif |
| 1296 | |
| 1297 | /* Check link status. Wait up to 100 microseconds for link to become |
| 1298 | * valid. |
| 1299 | */ |
| 1300 | for (i = 0; i < 10; i++) { |
| 1301 | if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { |
| 1302 | DEBUGOUT("PHY Read Error\n"); |
| 1303 | return -E1000_ERR_PHY; |
| 1304 | } |
| 1305 | if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { |
| 1306 | DEBUGOUT("PHY Read Error\n"); |
| 1307 | return -E1000_ERR_PHY; |
| 1308 | } |
| 1309 | if (phy_data & MII_SR_LINK_STATUS) { |
| 1310 | /* We have link, so we need to finish the config process: |
| 1311 | * 1) Set up the MAC to the current PHY speed/duplex |
| 1312 | * if we are on 82543. If we |
| 1313 | * are on newer silicon, we only need to configure |
| 1314 | * collision distance in the Transmit Control Register. |
| 1315 | * 2) Set up flow control on the MAC to that established with |
| 1316 | * the link partner. |
| 1317 | */ |
| 1318 | if (hw->mac_type >= e1000_82544) { |
| 1319 | e1000_config_collision_dist(hw); |
| 1320 | } else { |
| 1321 | ret_val = e1000_config_mac_to_phy(hw); |
| 1322 | if (ret_val < 0) { |
| 1323 | DEBUGOUT |
| 1324 | ("Error configuring MAC to PHY settings\n"); |
| 1325 | return ret_val; |
| 1326 | } |
| 1327 | } |
| 1328 | ret_val = e1000_config_fc_after_link_up(hw); |
| 1329 | if (ret_val < 0) { |
| 1330 | DEBUGOUT("Error Configuring Flow Control\n"); |
| 1331 | return ret_val; |
| 1332 | } |
| 1333 | DEBUGOUT("Valid link established!!!\n"); |
| 1334 | return 0; |
| 1335 | } |
| 1336 | udelay(10); |
| 1337 | } |
| 1338 | |
| 1339 | DEBUGOUT("Unable to establish link!!!\n"); |
| 1340 | return -E1000_ERR_NOLINK; |
| 1341 | } |
| 1342 | |
| 1343 | /****************************************************************************** |
| 1344 | * Configures PHY autoneg and flow control advertisement settings |
| 1345 | * |
| 1346 | * hw - Struct containing variables accessed by shared code |
| 1347 | ******************************************************************************/ |
| 1348 | static int |
| 1349 | e1000_phy_setup_autoneg(struct e1000_hw *hw) |
| 1350 | { |
| 1351 | uint16_t mii_autoneg_adv_reg; |
| 1352 | uint16_t mii_1000t_ctrl_reg; |
| 1353 | |
| 1354 | DEBUGFUNC(); |
| 1355 | |
| 1356 | /* Read the MII Auto-Neg Advertisement Register (Address 4). */ |
| 1357 | if (e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg) < 0) { |
| 1358 | DEBUGOUT("PHY Read Error\n"); |
| 1359 | return -E1000_ERR_PHY; |
| 1360 | } |
| 1361 | |
| 1362 | /* Read the MII 1000Base-T Control Register (Address 9). */ |
| 1363 | if (e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg) < 0) { |
| 1364 | DEBUGOUT("PHY Read Error\n"); |
| 1365 | return -E1000_ERR_PHY; |
| 1366 | } |
| 1367 | |
| 1368 | /* Need to parse both autoneg_advertised and fc and set up |
| 1369 | * the appropriate PHY registers. First we will parse for |
| 1370 | * autoneg_advertised software override. Since we can advertise |
| 1371 | * a plethora of combinations, we need to check each bit |
| 1372 | * individually. |
| 1373 | */ |
| 1374 | |
| 1375 | /* First we clear all the 10/100 mb speed bits in the Auto-Neg |
| 1376 | * Advertisement Register (Address 4) and the 1000 mb speed bits in |
| 1377 | * the 1000Base-T Control Register (Address 9). |
| 1378 | */ |
| 1379 | mii_autoneg_adv_reg &= ~REG4_SPEED_MASK; |
| 1380 | mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; |
| 1381 | |
| 1382 | DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised); |
| 1383 | |
| 1384 | /* Do we want to advertise 10 Mb Half Duplex? */ |
| 1385 | if (hw->autoneg_advertised & ADVERTISE_10_HALF) { |
| 1386 | DEBUGOUT("Advertise 10mb Half duplex\n"); |
| 1387 | mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; |
| 1388 | } |
| 1389 | |
| 1390 | /* Do we want to advertise 10 Mb Full Duplex? */ |
| 1391 | if (hw->autoneg_advertised & ADVERTISE_10_FULL) { |
| 1392 | DEBUGOUT("Advertise 10mb Full duplex\n"); |
| 1393 | mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; |
| 1394 | } |
| 1395 | |
| 1396 | /* Do we want to advertise 100 Mb Half Duplex? */ |
| 1397 | if (hw->autoneg_advertised & ADVERTISE_100_HALF) { |
| 1398 | DEBUGOUT("Advertise 100mb Half duplex\n"); |
| 1399 | mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; |
| 1400 | } |
| 1401 | |
| 1402 | /* Do we want to advertise 100 Mb Full Duplex? */ |
| 1403 | if (hw->autoneg_advertised & ADVERTISE_100_FULL) { |
| 1404 | DEBUGOUT("Advertise 100mb Full duplex\n"); |
| 1405 | mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; |
| 1406 | } |
| 1407 | |
| 1408 | /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ |
| 1409 | if (hw->autoneg_advertised & ADVERTISE_1000_HALF) { |
| 1410 | DEBUGOUT |
| 1411 | ("Advertise 1000mb Half duplex requested, request denied!\n"); |
| 1412 | } |
| 1413 | |
| 1414 | /* Do we want to advertise 1000 Mb Full Duplex? */ |
| 1415 | if (hw->autoneg_advertised & ADVERTISE_1000_FULL) { |
| 1416 | DEBUGOUT("Advertise 1000mb Full duplex\n"); |
| 1417 | mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; |
| 1418 | } |
| 1419 | |
| 1420 | /* Check for a software override of the flow control settings, and |
| 1421 | * setup the PHY advertisement registers accordingly. If |
| 1422 | * auto-negotiation is enabled, then software will have to set the |
| 1423 | * "PAUSE" bits to the correct value in the Auto-Negotiation |
| 1424 | * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation. |
| 1425 | * |
| 1426 | * The possible values of the "fc" parameter are: |
| 1427 | * 0: Flow control is completely disabled |
| 1428 | * 1: Rx flow control is enabled (we can receive pause frames |
| 1429 | * but not send pause frames). |
| 1430 | * 2: Tx flow control is enabled (we can send pause frames |
| 1431 | * but we do not support receiving pause frames). |
| 1432 | * 3: Both Rx and TX flow control (symmetric) are enabled. |
| 1433 | * other: No software override. The flow control configuration |
| 1434 | * in the EEPROM is used. |
| 1435 | */ |
| 1436 | switch (hw->fc) { |
| 1437 | case e1000_fc_none: /* 0 */ |
| 1438 | /* Flow control (RX & TX) is completely disabled by a |
| 1439 | * software over-ride. |
| 1440 | */ |
| 1441 | mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); |
| 1442 | break; |
| 1443 | case e1000_fc_rx_pause: /* 1 */ |
| 1444 | /* RX Flow control is enabled, and TX Flow control is |
| 1445 | * disabled, by a software over-ride. |
| 1446 | */ |
| 1447 | /* Since there really isn't a way to advertise that we are |
| 1448 | * capable of RX Pause ONLY, we will advertise that we |
| 1449 | * support both symmetric and asymmetric RX PAUSE. Later |
| 1450 | * (in e1000_config_fc_after_link_up) we will disable the |
| 1451 | *hw's ability to send PAUSE frames. |
| 1452 | */ |
| 1453 | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); |
| 1454 | break; |
| 1455 | case e1000_fc_tx_pause: /* 2 */ |
| 1456 | /* TX Flow control is enabled, and RX Flow control is |
| 1457 | * disabled, by a software over-ride. |
| 1458 | */ |
| 1459 | mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; |
| 1460 | mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; |
| 1461 | break; |
| 1462 | case e1000_fc_full: /* 3 */ |
| 1463 | /* Flow control (both RX and TX) is enabled by a software |
| 1464 | * over-ride. |
| 1465 | */ |
| 1466 | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); |
| 1467 | break; |
| 1468 | default: |
| 1469 | DEBUGOUT("Flow control param set incorrectly\n"); |
| 1470 | return -E1000_ERR_CONFIG; |
| 1471 | } |
| 1472 | |
| 1473 | if (e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg) < 0) { |
| 1474 | DEBUGOUT("PHY Write Error\n"); |
| 1475 | return -E1000_ERR_PHY; |
| 1476 | } |
| 1477 | |
| 1478 | DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); |
| 1479 | |
| 1480 | if (e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg) < 0) { |
| 1481 | DEBUGOUT("PHY Write Error\n"); |
| 1482 | return -E1000_ERR_PHY; |
| 1483 | } |
| 1484 | return 0; |
| 1485 | } |
| 1486 | |
| 1487 | /****************************************************************************** |
| 1488 | * Sets the collision distance in the Transmit Control register |
| 1489 | * |
| 1490 | * hw - Struct containing variables accessed by shared code |
| 1491 | * |
| 1492 | * Link should have been established previously. Reads the speed and duplex |
| 1493 | * information from the Device Status register. |
| 1494 | ******************************************************************************/ |
| 1495 | static void |
| 1496 | e1000_config_collision_dist(struct e1000_hw *hw) |
| 1497 | { |
| 1498 | uint32_t tctl; |
| 1499 | |
| 1500 | tctl = E1000_READ_REG(hw, TCTL); |
| 1501 | |
| 1502 | tctl &= ~E1000_TCTL_COLD; |
| 1503 | tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; |
| 1504 | |
| 1505 | E1000_WRITE_REG(hw, TCTL, tctl); |
| 1506 | E1000_WRITE_FLUSH(hw); |
| 1507 | } |
| 1508 | |
| 1509 | /****************************************************************************** |
| 1510 | * Sets MAC speed and duplex settings to reflect the those in the PHY |
| 1511 | * |
| 1512 | * hw - Struct containing variables accessed by shared code |
| 1513 | * mii_reg - data to write to the MII control register |
| 1514 | * |
| 1515 | * The contents of the PHY register containing the needed information need to |
| 1516 | * be passed in. |
| 1517 | ******************************************************************************/ |
| 1518 | static int |
| 1519 | e1000_config_mac_to_phy(struct e1000_hw *hw) |
| 1520 | { |
| 1521 | uint32_t ctrl; |
| 1522 | uint16_t phy_data; |
| 1523 | |
| 1524 | DEBUGFUNC(); |
| 1525 | |
| 1526 | /* Read the Device Control Register and set the bits to Force Speed |
| 1527 | * and Duplex. |
| 1528 | */ |
| 1529 | ctrl = E1000_READ_REG(hw, CTRL); |
| 1530 | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
| 1531 | ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS); |
| 1532 | |
| 1533 | /* Set up duplex in the Device Control and Transmit Control |
| 1534 | * registers depending on negotiated values. |
| 1535 | */ |
| 1536 | if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) { |
| 1537 | DEBUGOUT("PHY Read Error\n"); |
| 1538 | return -E1000_ERR_PHY; |
| 1539 | } |
| 1540 | if (phy_data & M88E1000_PSSR_DPLX) |
| 1541 | ctrl |= E1000_CTRL_FD; |
| 1542 | else |
| 1543 | ctrl &= ~E1000_CTRL_FD; |
| 1544 | |
| 1545 | e1000_config_collision_dist(hw); |
| 1546 | |
| 1547 | /* Set up speed in the Device Control register depending on |
| 1548 | * negotiated values. |
| 1549 | */ |
| 1550 | if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) |
| 1551 | ctrl |= E1000_CTRL_SPD_1000; |
| 1552 | else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) |
| 1553 | ctrl |= E1000_CTRL_SPD_100; |
| 1554 | /* Write the configured values back to the Device Control Reg. */ |
| 1555 | E1000_WRITE_REG(hw, CTRL, ctrl); |
| 1556 | return 0; |
| 1557 | } |
| 1558 | |
| 1559 | /****************************************************************************** |
| 1560 | * Forces the MAC's flow control settings. |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame^] | 1561 | * |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1562 | * hw - Struct containing variables accessed by shared code |
| 1563 | * |
| 1564 | * Sets the TFCE and RFCE bits in the device control register to reflect |
| 1565 | * the adapter settings. TFCE and RFCE need to be explicitly set by |
| 1566 | * software when a Copper PHY is used because autonegotiation is managed |
| 1567 | * by the PHY rather than the MAC. Software must also configure these |
| 1568 | * bits when link is forced on a fiber connection. |
| 1569 | *****************************************************************************/ |
| 1570 | static int |
| 1571 | e1000_force_mac_fc(struct e1000_hw *hw) |
| 1572 | { |
| 1573 | uint32_t ctrl; |
| 1574 | |
| 1575 | DEBUGFUNC(); |
| 1576 | |
| 1577 | /* Get the current configuration of the Device Control Register */ |
| 1578 | ctrl = E1000_READ_REG(hw, CTRL); |
| 1579 | |
| 1580 | /* Because we didn't get link via the internal auto-negotiation |
| 1581 | * mechanism (we either forced link or we got link via PHY |
| 1582 | * auto-neg), we have to manually enable/disable transmit an |
| 1583 | * receive flow control. |
| 1584 | * |
| 1585 | * The "Case" statement below enables/disable flow control |
| 1586 | * according to the "hw->fc" parameter. |
| 1587 | * |
| 1588 | * The possible values of the "fc" parameter are: |
| 1589 | * 0: Flow control is completely disabled |
| 1590 | * 1: Rx flow control is enabled (we can receive pause |
| 1591 | * frames but not send pause frames). |
| 1592 | * 2: Tx flow control is enabled (we can send pause frames |
| 1593 | * frames but we do not receive pause frames). |
| 1594 | * 3: Both Rx and TX flow control (symmetric) is enabled. |
| 1595 | * other: No other values should be possible at this point. |
| 1596 | */ |
| 1597 | |
| 1598 | switch (hw->fc) { |
| 1599 | case e1000_fc_none: |
| 1600 | ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); |
| 1601 | break; |
| 1602 | case e1000_fc_rx_pause: |
| 1603 | ctrl &= (~E1000_CTRL_TFCE); |
| 1604 | ctrl |= E1000_CTRL_RFCE; |
| 1605 | break; |
| 1606 | case e1000_fc_tx_pause: |
| 1607 | ctrl &= (~E1000_CTRL_RFCE); |
| 1608 | ctrl |= E1000_CTRL_TFCE; |
| 1609 | break; |
| 1610 | case e1000_fc_full: |
| 1611 | ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); |
| 1612 | break; |
| 1613 | default: |
| 1614 | DEBUGOUT("Flow control param set incorrectly\n"); |
| 1615 | return -E1000_ERR_CONFIG; |
| 1616 | } |
| 1617 | |
| 1618 | /* Disable TX Flow Control for 82542 (rev 2.0) */ |
| 1619 | if (hw->mac_type == e1000_82542_rev2_0) |
| 1620 | ctrl &= (~E1000_CTRL_TFCE); |
| 1621 | |
| 1622 | E1000_WRITE_REG(hw, CTRL, ctrl); |
| 1623 | return 0; |
| 1624 | } |
| 1625 | |
| 1626 | /****************************************************************************** |
| 1627 | * Configures flow control settings after link is established |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame^] | 1628 | * |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1629 | * hw - Struct containing variables accessed by shared code |
| 1630 | * |
| 1631 | * Should be called immediately after a valid link has been established. |
| 1632 | * Forces MAC flow control settings if link was forced. When in MII/GMII mode |
| 1633 | * and autonegotiation is enabled, the MAC flow control settings will be set |
| 1634 | * based on the flow control negotiated by the PHY. In TBI mode, the TFCE |
| 1635 | * and RFCE bits will be automaticaly set to the negotiated flow control mode. |
| 1636 | *****************************************************************************/ |
| 1637 | static int |
| 1638 | e1000_config_fc_after_link_up(struct e1000_hw *hw) |
| 1639 | { |
| 1640 | int32_t ret_val; |
| 1641 | uint16_t mii_status_reg; |
| 1642 | uint16_t mii_nway_adv_reg; |
| 1643 | uint16_t mii_nway_lp_ability_reg; |
| 1644 | uint16_t speed; |
| 1645 | uint16_t duplex; |
| 1646 | |
| 1647 | DEBUGFUNC(); |
| 1648 | |
| 1649 | /* Check for the case where we have fiber media and auto-neg failed |
| 1650 | * so we had to force link. In this case, we need to force the |
| 1651 | * configuration of the MAC to match the "fc" parameter. |
| 1652 | */ |
| 1653 | if ((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) { |
| 1654 | ret_val = e1000_force_mac_fc(hw); |
| 1655 | if (ret_val < 0) { |
| 1656 | DEBUGOUT("Error forcing flow control settings\n"); |
| 1657 | return ret_val; |
| 1658 | } |
| 1659 | } |
| 1660 | |
| 1661 | /* Check for the case where we have copper media and auto-neg is |
| 1662 | * enabled. In this case, we need to check and see if Auto-Neg |
| 1663 | * has completed, and if so, how the PHY and link partner has |
| 1664 | * flow control configured. |
| 1665 | */ |
| 1666 | if (hw->media_type == e1000_media_type_copper) { |
| 1667 | /* Read the MII Status Register and check to see if AutoNeg |
| 1668 | * has completed. We read this twice because this reg has |
| 1669 | * some "sticky" (latched) bits. |
| 1670 | */ |
| 1671 | if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) { |
| 1672 | DEBUGOUT("PHY Read Error \n"); |
| 1673 | return -E1000_ERR_PHY; |
| 1674 | } |
| 1675 | if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) { |
| 1676 | DEBUGOUT("PHY Read Error \n"); |
| 1677 | return -E1000_ERR_PHY; |
| 1678 | } |
| 1679 | |
| 1680 | if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) { |
| 1681 | /* The AutoNeg process has completed, so we now need to |
| 1682 | * read both the Auto Negotiation Advertisement Register |
| 1683 | * (Address 4) and the Auto_Negotiation Base Page Ability |
| 1684 | * Register (Address 5) to determine how flow control was |
| 1685 | * negotiated. |
| 1686 | */ |
| 1687 | if (e1000_read_phy_reg |
| 1688 | (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) { |
| 1689 | DEBUGOUT("PHY Read Error\n"); |
| 1690 | return -E1000_ERR_PHY; |
| 1691 | } |
| 1692 | if (e1000_read_phy_reg |
| 1693 | (hw, PHY_LP_ABILITY, |
| 1694 | &mii_nway_lp_ability_reg) < 0) { |
| 1695 | DEBUGOUT("PHY Read Error\n"); |
| 1696 | return -E1000_ERR_PHY; |
| 1697 | } |
| 1698 | |
| 1699 | /* Two bits in the Auto Negotiation Advertisement Register |
| 1700 | * (Address 4) and two bits in the Auto Negotiation Base |
| 1701 | * Page Ability Register (Address 5) determine flow control |
| 1702 | * for both the PHY and the link partner. The following |
| 1703 | * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, |
| 1704 | * 1999, describes these PAUSE resolution bits and how flow |
| 1705 | * control is determined based upon these settings. |
| 1706 | * NOTE: DC = Don't Care |
| 1707 | * |
| 1708 | * LOCAL DEVICE | LINK PARTNER |
| 1709 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution |
| 1710 | *-------|---------|-------|---------|-------------------- |
| 1711 | * 0 | 0 | DC | DC | e1000_fc_none |
| 1712 | * 0 | 1 | 0 | DC | e1000_fc_none |
| 1713 | * 0 | 1 | 1 | 0 | e1000_fc_none |
| 1714 | * 0 | 1 | 1 | 1 | e1000_fc_tx_pause |
| 1715 | * 1 | 0 | 0 | DC | e1000_fc_none |
| 1716 | * 1 | DC | 1 | DC | e1000_fc_full |
| 1717 | * 1 | 1 | 0 | 0 | e1000_fc_none |
| 1718 | * 1 | 1 | 0 | 1 | e1000_fc_rx_pause |
| 1719 | * |
| 1720 | */ |
| 1721 | /* Are both PAUSE bits set to 1? If so, this implies |
| 1722 | * Symmetric Flow Control is enabled at both ends. The |
| 1723 | * ASM_DIR bits are irrelevant per the spec. |
| 1724 | * |
| 1725 | * For Symmetric Flow Control: |
| 1726 | * |
| 1727 | * LOCAL DEVICE | LINK PARTNER |
| 1728 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
| 1729 | *-------|---------|-------|---------|-------------------- |
| 1730 | * 1 | DC | 1 | DC | e1000_fc_full |
| 1731 | * |
| 1732 | */ |
| 1733 | if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && |
| 1734 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { |
| 1735 | /* Now we need to check if the user selected RX ONLY |
| 1736 | * of pause frames. In this case, we had to advertise |
| 1737 | * FULL flow control because we could not advertise RX |
| 1738 | * ONLY. Hence, we must now check to see if we need to |
| 1739 | * turn OFF the TRANSMISSION of PAUSE frames. |
| 1740 | */ |
| 1741 | if (hw->original_fc == e1000_fc_full) { |
| 1742 | hw->fc = e1000_fc_full; |
| 1743 | DEBUGOUT("Flow Control = FULL.\r\n"); |
| 1744 | } else { |
| 1745 | hw->fc = e1000_fc_rx_pause; |
| 1746 | DEBUGOUT |
| 1747 | ("Flow Control = RX PAUSE frames only.\r\n"); |
| 1748 | } |
| 1749 | } |
| 1750 | /* For receiving PAUSE frames ONLY. |
| 1751 | * |
| 1752 | * LOCAL DEVICE | LINK PARTNER |
| 1753 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
| 1754 | *-------|---------|-------|---------|-------------------- |
| 1755 | * 0 | 1 | 1 | 1 | e1000_fc_tx_pause |
| 1756 | * |
| 1757 | */ |
| 1758 | else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && |
| 1759 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && |
| 1760 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && |
| 1761 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) |
| 1762 | { |
| 1763 | hw->fc = e1000_fc_tx_pause; |
| 1764 | DEBUGOUT |
| 1765 | ("Flow Control = TX PAUSE frames only.\r\n"); |
| 1766 | } |
| 1767 | /* For transmitting PAUSE frames ONLY. |
| 1768 | * |
| 1769 | * LOCAL DEVICE | LINK PARTNER |
| 1770 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
| 1771 | *-------|---------|-------|---------|-------------------- |
| 1772 | * 1 | 1 | 0 | 1 | e1000_fc_rx_pause |
| 1773 | * |
| 1774 | */ |
| 1775 | else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && |
| 1776 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && |
| 1777 | !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && |
| 1778 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) |
| 1779 | { |
| 1780 | hw->fc = e1000_fc_rx_pause; |
| 1781 | DEBUGOUT |
| 1782 | ("Flow Control = RX PAUSE frames only.\r\n"); |
| 1783 | } |
| 1784 | /* Per the IEEE spec, at this point flow control should be |
| 1785 | * disabled. However, we want to consider that we could |
| 1786 | * be connected to a legacy switch that doesn't advertise |
| 1787 | * desired flow control, but can be forced on the link |
| 1788 | * partner. So if we advertised no flow control, that is |
| 1789 | * what we will resolve to. If we advertised some kind of |
| 1790 | * receive capability (Rx Pause Only or Full Flow Control) |
| 1791 | * and the link partner advertised none, we will configure |
| 1792 | * ourselves to enable Rx Flow Control only. We can do |
| 1793 | * this safely for two reasons: If the link partner really |
| 1794 | * didn't want flow control enabled, and we enable Rx, no |
| 1795 | * harm done since we won't be receiving any PAUSE frames |
| 1796 | * anyway. If the intent on the link partner was to have |
| 1797 | * flow control enabled, then by us enabling RX only, we |
| 1798 | * can at least receive pause frames and process them. |
| 1799 | * This is a good idea because in most cases, since we are |
| 1800 | * predominantly a server NIC, more times than not we will |
| 1801 | * be asked to delay transmission of packets than asking |
| 1802 | * our link partner to pause transmission of frames. |
| 1803 | */ |
| 1804 | else if (hw->original_fc == e1000_fc_none || |
| 1805 | hw->original_fc == e1000_fc_tx_pause) { |
| 1806 | hw->fc = e1000_fc_none; |
| 1807 | DEBUGOUT("Flow Control = NONE.\r\n"); |
| 1808 | } else { |
| 1809 | hw->fc = e1000_fc_rx_pause; |
| 1810 | DEBUGOUT |
| 1811 | ("Flow Control = RX PAUSE frames only.\r\n"); |
| 1812 | } |
| 1813 | |
| 1814 | /* Now we need to do one last check... If we auto- |
| 1815 | * negotiated to HALF DUPLEX, flow control should not be |
| 1816 | * enabled per IEEE 802.3 spec. |
| 1817 | */ |
| 1818 | e1000_get_speed_and_duplex(hw, &speed, &duplex); |
| 1819 | |
| 1820 | if (duplex == HALF_DUPLEX) |
| 1821 | hw->fc = e1000_fc_none; |
| 1822 | |
| 1823 | /* Now we call a subroutine to actually force the MAC |
| 1824 | * controller to use the correct flow control settings. |
| 1825 | */ |
| 1826 | ret_val = e1000_force_mac_fc(hw); |
| 1827 | if (ret_val < 0) { |
| 1828 | DEBUGOUT |
| 1829 | ("Error forcing flow control settings\n"); |
| 1830 | return ret_val; |
| 1831 | } |
| 1832 | } else { |
| 1833 | DEBUGOUT |
| 1834 | ("Copper PHY and Auto Neg has not completed.\r\n"); |
| 1835 | } |
| 1836 | } |
| 1837 | return 0; |
| 1838 | } |
| 1839 | |
| 1840 | /****************************************************************************** |
| 1841 | * Checks to see if the link status of the hardware has changed. |
| 1842 | * |
| 1843 | * hw - Struct containing variables accessed by shared code |
| 1844 | * |
| 1845 | * Called by any function that needs to check the link status of the adapter. |
| 1846 | *****************************************************************************/ |
| 1847 | static int |
| 1848 | e1000_check_for_link(struct eth_device *nic) |
| 1849 | { |
| 1850 | struct e1000_hw *hw = nic->priv; |
| 1851 | uint32_t rxcw; |
| 1852 | uint32_t ctrl; |
| 1853 | uint32_t status; |
| 1854 | uint32_t rctl; |
| 1855 | uint32_t signal; |
| 1856 | int32_t ret_val; |
| 1857 | uint16_t phy_data; |
| 1858 | uint16_t lp_capability; |
| 1859 | |
| 1860 | DEBUGFUNC(); |
| 1861 | |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame^] | 1862 | /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be |
| 1863 | * set when the optics detect a signal. On older adapters, it will be |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1864 | * cleared when there is a signal |
| 1865 | */ |
| 1866 | ctrl = E1000_READ_REG(hw, CTRL); |
| 1867 | if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS)) |
| 1868 | signal = E1000_CTRL_SWDPIN1; |
| 1869 | else |
| 1870 | signal = 0; |
| 1871 | |
| 1872 | status = E1000_READ_REG(hw, STATUS); |
| 1873 | rxcw = E1000_READ_REG(hw, RXCW); |
| 1874 | DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw); |
| 1875 | |
| 1876 | /* If we have a copper PHY then we only want to go out to the PHY |
| 1877 | * registers to see if Auto-Neg has completed and/or if our link |
| 1878 | * status has changed. The get_link_status flag will be set if we |
| 1879 | * receive a Link Status Change interrupt or we have Rx Sequence |
| 1880 | * Errors. |
| 1881 | */ |
| 1882 | if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) { |
| 1883 | /* First we want to see if the MII Status Register reports |
| 1884 | * link. If so, then we want to get the current speed/duplex |
| 1885 | * of the PHY. |
| 1886 | * Read the register twice since the link bit is sticky. |
| 1887 | */ |
| 1888 | if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { |
| 1889 | DEBUGOUT("PHY Read Error\n"); |
| 1890 | return -E1000_ERR_PHY; |
| 1891 | } |
| 1892 | if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { |
| 1893 | DEBUGOUT("PHY Read Error\n"); |
| 1894 | return -E1000_ERR_PHY; |
| 1895 | } |
| 1896 | |
| 1897 | if (phy_data & MII_SR_LINK_STATUS) { |
| 1898 | hw->get_link_status = FALSE; |
| 1899 | } else { |
| 1900 | /* No link detected */ |
| 1901 | return -E1000_ERR_NOLINK; |
| 1902 | } |
| 1903 | |
| 1904 | /* We have a M88E1000 PHY and Auto-Neg is enabled. If we |
| 1905 | * have Si on board that is 82544 or newer, Auto |
| 1906 | * Speed Detection takes care of MAC speed/duplex |
| 1907 | * configuration. So we only need to configure Collision |
| 1908 | * Distance in the MAC. Otherwise, we need to force |
| 1909 | * speed/duplex on the MAC to the current PHY speed/duplex |
| 1910 | * settings. |
| 1911 | */ |
| 1912 | if (hw->mac_type >= e1000_82544) |
| 1913 | e1000_config_collision_dist(hw); |
| 1914 | else { |
| 1915 | ret_val = e1000_config_mac_to_phy(hw); |
| 1916 | if (ret_val < 0) { |
| 1917 | DEBUGOUT |
| 1918 | ("Error configuring MAC to PHY settings\n"); |
| 1919 | return ret_val; |
| 1920 | } |
| 1921 | } |
| 1922 | |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame^] | 1923 | /* Configure Flow Control now that Auto-Neg has completed. First, we |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1924 | * need to restore the desired flow control settings because we may |
| 1925 | * have had to re-autoneg with a different link partner. |
| 1926 | */ |
| 1927 | ret_val = e1000_config_fc_after_link_up(hw); |
| 1928 | if (ret_val < 0) { |
| 1929 | DEBUGOUT("Error configuring flow control\n"); |
| 1930 | return ret_val; |
| 1931 | } |
| 1932 | |
| 1933 | /* At this point we know that we are on copper and we have |
| 1934 | * auto-negotiated link. These are conditions for checking the link |
| 1935 | * parter capability register. We use the link partner capability to |
| 1936 | * determine if TBI Compatibility needs to be turned on or off. If |
| 1937 | * the link partner advertises any speed in addition to Gigabit, then |
| 1938 | * we assume that they are GMII-based, and TBI compatibility is not |
| 1939 | * needed. If no other speeds are advertised, we assume the link |
| 1940 | * partner is TBI-based, and we turn on TBI Compatibility. |
| 1941 | */ |
| 1942 | if (hw->tbi_compatibility_en) { |
| 1943 | if (e1000_read_phy_reg |
| 1944 | (hw, PHY_LP_ABILITY, &lp_capability) < 0) { |
| 1945 | DEBUGOUT("PHY Read Error\n"); |
| 1946 | return -E1000_ERR_PHY; |
| 1947 | } |
| 1948 | if (lp_capability & (NWAY_LPAR_10T_HD_CAPS | |
| 1949 | NWAY_LPAR_10T_FD_CAPS | |
| 1950 | NWAY_LPAR_100TX_HD_CAPS | |
| 1951 | NWAY_LPAR_100TX_FD_CAPS | |
| 1952 | NWAY_LPAR_100T4_CAPS)) { |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame^] | 1953 | /* If our link partner advertises anything in addition to |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1954 | * gigabit, we do not need to enable TBI compatibility. |
| 1955 | */ |
| 1956 | if (hw->tbi_compatibility_on) { |
| 1957 | /* If we previously were in the mode, turn it off. */ |
| 1958 | rctl = E1000_READ_REG(hw, RCTL); |
| 1959 | rctl &= ~E1000_RCTL_SBP; |
| 1960 | E1000_WRITE_REG(hw, RCTL, rctl); |
| 1961 | hw->tbi_compatibility_on = FALSE; |
| 1962 | } |
| 1963 | } else { |
| 1964 | /* If TBI compatibility is was previously off, turn it on. For |
| 1965 | * compatibility with a TBI link partner, we will store bad |
| 1966 | * packets. Some frames have an additional byte on the end and |
| 1967 | * will look like CRC errors to to the hardware. |
| 1968 | */ |
| 1969 | if (!hw->tbi_compatibility_on) { |
| 1970 | hw->tbi_compatibility_on = TRUE; |
| 1971 | rctl = E1000_READ_REG(hw, RCTL); |
| 1972 | rctl |= E1000_RCTL_SBP; |
| 1973 | E1000_WRITE_REG(hw, RCTL, rctl); |
| 1974 | } |
| 1975 | } |
| 1976 | } |
| 1977 | } |
| 1978 | /* If we don't have link (auto-negotiation failed or link partner cannot |
| 1979 | * auto-negotiate), the cable is plugged in (we have signal), and our |
| 1980 | * link partner is not trying to auto-negotiate with us (we are receiving |
| 1981 | * idles or data), we need to force link up. We also need to give |
| 1982 | * auto-negotiation time to complete, in case the cable was just plugged |
| 1983 | * in. The autoneg_failed flag does this. |
| 1984 | */ |
| 1985 | else if ((hw->media_type == e1000_media_type_fiber) && |
| 1986 | (!(status & E1000_STATUS_LU)) && |
| 1987 | ((ctrl & E1000_CTRL_SWDPIN1) == signal) && |
| 1988 | (!(rxcw & E1000_RXCW_C))) { |
| 1989 | if (hw->autoneg_failed == 0) { |
| 1990 | hw->autoneg_failed = 1; |
| 1991 | return 0; |
| 1992 | } |
| 1993 | DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n"); |
| 1994 | |
| 1995 | /* Disable auto-negotiation in the TXCW register */ |
| 1996 | E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE)); |
| 1997 | |
| 1998 | /* Force link-up and also force full-duplex. */ |
| 1999 | ctrl = E1000_READ_REG(hw, CTRL); |
| 2000 | ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); |
| 2001 | E1000_WRITE_REG(hw, CTRL, ctrl); |
| 2002 | |
| 2003 | /* Configure Flow Control after forcing link up. */ |
| 2004 | ret_val = e1000_config_fc_after_link_up(hw); |
| 2005 | if (ret_val < 0) { |
| 2006 | DEBUGOUT("Error configuring flow control\n"); |
| 2007 | return ret_val; |
| 2008 | } |
| 2009 | } |
| 2010 | /* If we are forcing link and we are receiving /C/ ordered sets, re-enable |
| 2011 | * auto-negotiation in the TXCW register and disable forced link in the |
| 2012 | * Device Control register in an attempt to auto-negotiate with our link |
| 2013 | * partner. |
| 2014 | */ |
| 2015 | else if ((hw->media_type == e1000_media_type_fiber) && |
| 2016 | (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { |
| 2017 | DEBUGOUT |
| 2018 | ("RXing /C/, enable AutoNeg and stop forcing link.\r\n"); |
| 2019 | E1000_WRITE_REG(hw, TXCW, hw->txcw); |
| 2020 | E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU)); |
| 2021 | } |
| 2022 | return 0; |
| 2023 | } |
| 2024 | |
| 2025 | /****************************************************************************** |
| 2026 | * Detects the current speed and duplex settings of the hardware. |
| 2027 | * |
| 2028 | * hw - Struct containing variables accessed by shared code |
| 2029 | * speed - Speed of the connection |
| 2030 | * duplex - Duplex setting of the connection |
| 2031 | *****************************************************************************/ |
| 2032 | static void |
| 2033 | e1000_get_speed_and_duplex(struct e1000_hw *hw, |
| 2034 | uint16_t * speed, uint16_t * duplex) |
| 2035 | { |
| 2036 | uint32_t status; |
| 2037 | |
| 2038 | DEBUGFUNC(); |
| 2039 | |
| 2040 | if (hw->mac_type >= e1000_82543) { |
| 2041 | status = E1000_READ_REG(hw, STATUS); |
| 2042 | if (status & E1000_STATUS_SPEED_1000) { |
| 2043 | *speed = SPEED_1000; |
| 2044 | DEBUGOUT("1000 Mbs, "); |
| 2045 | } else if (status & E1000_STATUS_SPEED_100) { |
| 2046 | *speed = SPEED_100; |
| 2047 | DEBUGOUT("100 Mbs, "); |
| 2048 | } else { |
| 2049 | *speed = SPEED_10; |
| 2050 | DEBUGOUT("10 Mbs, "); |
| 2051 | } |
| 2052 | |
| 2053 | if (status & E1000_STATUS_FD) { |
| 2054 | *duplex = FULL_DUPLEX; |
| 2055 | DEBUGOUT("Full Duplex\r\n"); |
| 2056 | } else { |
| 2057 | *duplex = HALF_DUPLEX; |
| 2058 | DEBUGOUT(" Half Duplex\r\n"); |
| 2059 | } |
| 2060 | } else { |
| 2061 | DEBUGOUT("1000 Mbs, Full Duplex\r\n"); |
| 2062 | *speed = SPEED_1000; |
| 2063 | *duplex = FULL_DUPLEX; |
| 2064 | } |
| 2065 | } |
| 2066 | |
| 2067 | /****************************************************************************** |
| 2068 | * Blocks until autoneg completes or times out (~4.5 seconds) |
| 2069 | * |
| 2070 | * hw - Struct containing variables accessed by shared code |
| 2071 | ******************************************************************************/ |
| 2072 | static int |
| 2073 | e1000_wait_autoneg(struct e1000_hw *hw) |
| 2074 | { |
| 2075 | uint16_t i; |
| 2076 | uint16_t phy_data; |
| 2077 | |
| 2078 | DEBUGFUNC(); |
| 2079 | DEBUGOUT("Waiting for Auto-Neg to complete.\n"); |
| 2080 | |
| 2081 | /* We will wait for autoneg to complete or 4.5 seconds to expire. */ |
| 2082 | for (i = PHY_AUTO_NEG_TIME; i > 0; i--) { |
| 2083 | /* Read the MII Status Register and wait for Auto-Neg |
| 2084 | * Complete bit to be set. |
| 2085 | */ |
| 2086 | if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { |
| 2087 | DEBUGOUT("PHY Read Error\n"); |
| 2088 | return -E1000_ERR_PHY; |
| 2089 | } |
| 2090 | if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { |
| 2091 | DEBUGOUT("PHY Read Error\n"); |
| 2092 | return -E1000_ERR_PHY; |
| 2093 | } |
| 2094 | if (phy_data & MII_SR_AUTONEG_COMPLETE) { |
| 2095 | DEBUGOUT("Auto-Neg complete.\n"); |
| 2096 | return 0; |
| 2097 | } |
| 2098 | mdelay(100); |
| 2099 | } |
| 2100 | DEBUGOUT("Auto-Neg timedout.\n"); |
| 2101 | return -E1000_ERR_TIMEOUT; |
| 2102 | } |
| 2103 | |
| 2104 | /****************************************************************************** |
| 2105 | * Raises the Management Data Clock |
| 2106 | * |
| 2107 | * hw - Struct containing variables accessed by shared code |
| 2108 | * ctrl - Device control register's current value |
| 2109 | ******************************************************************************/ |
| 2110 | static void |
| 2111 | e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl) |
| 2112 | { |
| 2113 | /* Raise the clock input to the Management Data Clock (by setting the MDC |
| 2114 | * bit), and then delay 2 microseconds. |
| 2115 | */ |
| 2116 | E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC)); |
| 2117 | E1000_WRITE_FLUSH(hw); |
| 2118 | udelay(2); |
| 2119 | } |
| 2120 | |
| 2121 | /****************************************************************************** |
| 2122 | * Lowers the Management Data Clock |
| 2123 | * |
| 2124 | * hw - Struct containing variables accessed by shared code |
| 2125 | * ctrl - Device control register's current value |
| 2126 | ******************************************************************************/ |
| 2127 | static void |
| 2128 | e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl) |
| 2129 | { |
| 2130 | /* Lower the clock input to the Management Data Clock (by clearing the MDC |
| 2131 | * bit), and then delay 2 microseconds. |
| 2132 | */ |
| 2133 | E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC)); |
| 2134 | E1000_WRITE_FLUSH(hw); |
| 2135 | udelay(2); |
| 2136 | } |
| 2137 | |
| 2138 | /****************************************************************************** |
| 2139 | * Shifts data bits out to the PHY |
| 2140 | * |
| 2141 | * hw - Struct containing variables accessed by shared code |
| 2142 | * data - Data to send out to the PHY |
| 2143 | * count - Number of bits to shift out |
| 2144 | * |
| 2145 | * Bits are shifted out in MSB to LSB order. |
| 2146 | ******************************************************************************/ |
| 2147 | static void |
| 2148 | e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count) |
| 2149 | { |
| 2150 | uint32_t ctrl; |
| 2151 | uint32_t mask; |
| 2152 | |
| 2153 | /* We need to shift "count" number of bits out to the PHY. So, the value |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame^] | 2154 | * in the "data" parameter will be shifted out to the PHY one bit at a |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 2155 | * time. In order to do this, "data" must be broken down into bits. |
| 2156 | */ |
| 2157 | mask = 0x01; |
| 2158 | mask <<= (count - 1); |
| 2159 | |
| 2160 | ctrl = E1000_READ_REG(hw, CTRL); |
| 2161 | |
| 2162 | /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ |
| 2163 | ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); |
| 2164 | |
| 2165 | while (mask) { |
| 2166 | /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and |
| 2167 | * then raising and lowering the Management Data Clock. A "0" is |
| 2168 | * shifted out to the PHY by setting the MDIO bit to "0" and then |
| 2169 | * raising and lowering the clock. |
| 2170 | */ |
| 2171 | if (data & mask) |
| 2172 | ctrl |= E1000_CTRL_MDIO; |
| 2173 | else |
| 2174 | ctrl &= ~E1000_CTRL_MDIO; |
| 2175 | |
| 2176 | E1000_WRITE_REG(hw, CTRL, ctrl); |
| 2177 | E1000_WRITE_FLUSH(hw); |
| 2178 | |
| 2179 | udelay(2); |
| 2180 | |
| 2181 | e1000_raise_mdi_clk(hw, &ctrl); |
| 2182 | e1000_lower_mdi_clk(hw, &ctrl); |
| 2183 | |
| 2184 | mask = mask >> 1; |
| 2185 | } |
| 2186 | } |
| 2187 | |
| 2188 | /****************************************************************************** |
| 2189 | * Shifts data bits in from the PHY |
| 2190 | * |
| 2191 | * hw - Struct containing variables accessed by shared code |
| 2192 | * |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame^] | 2193 | * Bits are shifted in in MSB to LSB order. |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 2194 | ******************************************************************************/ |
| 2195 | static uint16_t |
| 2196 | e1000_shift_in_mdi_bits(struct e1000_hw *hw) |
| 2197 | { |
| 2198 | uint32_t ctrl; |
| 2199 | uint16_t data = 0; |
| 2200 | uint8_t i; |
| 2201 | |
| 2202 | /* In order to read a register from the PHY, we need to shift in a total |
| 2203 | * of 18 bits from the PHY. The first two bit (turnaround) times are used |
| 2204 | * to avoid contention on the MDIO pin when a read operation is performed. |
| 2205 | * These two bits are ignored by us and thrown away. Bits are "shifted in" |
| 2206 | * by raising the input to the Management Data Clock (setting the MDC bit), |
| 2207 | * and then reading the value of the MDIO bit. |
| 2208 | */ |
| 2209 | ctrl = E1000_READ_REG(hw, CTRL); |
| 2210 | |
| 2211 | /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */ |
| 2212 | ctrl &= ~E1000_CTRL_MDIO_DIR; |
| 2213 | ctrl &= ~E1000_CTRL_MDIO; |
| 2214 | |
| 2215 | E1000_WRITE_REG(hw, CTRL, ctrl); |
| 2216 | E1000_WRITE_FLUSH(hw); |
| 2217 | |
| 2218 | /* Raise and Lower the clock before reading in the data. This accounts for |
| 2219 | * the turnaround bits. The first clock occurred when we clocked out the |
| 2220 | * last bit of the Register Address. |
| 2221 | */ |
| 2222 | e1000_raise_mdi_clk(hw, &ctrl); |
| 2223 | e1000_lower_mdi_clk(hw, &ctrl); |
| 2224 | |
| 2225 | for (data = 0, i = 0; i < 16; i++) { |
| 2226 | data = data << 1; |
| 2227 | e1000_raise_mdi_clk(hw, &ctrl); |
| 2228 | ctrl = E1000_READ_REG(hw, CTRL); |
| 2229 | /* Check to see if we shifted in a "1". */ |
| 2230 | if (ctrl & E1000_CTRL_MDIO) |
| 2231 | data |= 1; |
| 2232 | e1000_lower_mdi_clk(hw, &ctrl); |
| 2233 | } |
| 2234 | |
| 2235 | e1000_raise_mdi_clk(hw, &ctrl); |
| 2236 | e1000_lower_mdi_clk(hw, &ctrl); |
| 2237 | |
| 2238 | return data; |
| 2239 | } |
| 2240 | |
| 2241 | /***************************************************************************** |
| 2242 | * Reads the value from a PHY register |
| 2243 | * |
| 2244 | * hw - Struct containing variables accessed by shared code |
| 2245 | * reg_addr - address of the PHY register to read |
| 2246 | ******************************************************************************/ |
| 2247 | static int |
| 2248 | e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data) |
| 2249 | { |
| 2250 | uint32_t i; |
| 2251 | uint32_t mdic = 0; |
| 2252 | const uint32_t phy_addr = 1; |
| 2253 | |
| 2254 | if (reg_addr > MAX_PHY_REG_ADDRESS) { |
| 2255 | DEBUGOUT("PHY Address %d is out of range\n", reg_addr); |
| 2256 | return -E1000_ERR_PARAM; |
| 2257 | } |
| 2258 | |
| 2259 | if (hw->mac_type > e1000_82543) { |
| 2260 | /* Set up Op-code, Phy Address, and register address in the MDI |
| 2261 | * Control register. The MAC will take care of interfacing with the |
| 2262 | * PHY to retrieve the desired data. |
| 2263 | */ |
| 2264 | mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | |
| 2265 | (phy_addr << E1000_MDIC_PHY_SHIFT) | |
| 2266 | (E1000_MDIC_OP_READ)); |
| 2267 | |
| 2268 | E1000_WRITE_REG(hw, MDIC, mdic); |
| 2269 | |
| 2270 | /* Poll the ready bit to see if the MDI read completed */ |
| 2271 | for (i = 0; i < 64; i++) { |
| 2272 | udelay(10); |
| 2273 | mdic = E1000_READ_REG(hw, MDIC); |
| 2274 | if (mdic & E1000_MDIC_READY) |
| 2275 | break; |
| 2276 | } |
| 2277 | if (!(mdic & E1000_MDIC_READY)) { |
| 2278 | DEBUGOUT("MDI Read did not complete\n"); |
| 2279 | return -E1000_ERR_PHY; |
| 2280 | } |
| 2281 | if (mdic & E1000_MDIC_ERROR) { |
| 2282 | DEBUGOUT("MDI Error\n"); |
| 2283 | return -E1000_ERR_PHY; |
| 2284 | } |
| 2285 | *phy_data = (uint16_t) mdic; |
| 2286 | } else { |
| 2287 | /* We must first send a preamble through the MDIO pin to signal the |
| 2288 | * beginning of an MII instruction. This is done by sending 32 |
| 2289 | * consecutive "1" bits. |
| 2290 | */ |
| 2291 | e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); |
| 2292 | |
| 2293 | /* Now combine the next few fields that are required for a read |
| 2294 | * operation. We use this method instead of calling the |
| 2295 | * e1000_shift_out_mdi_bits routine five different times. The format of |
| 2296 | * a MII read instruction consists of a shift out of 14 bits and is |
| 2297 | * defined as follows: |
| 2298 | * <Preamble><SOF><Op Code><Phy Addr><Reg Addr> |
| 2299 | * followed by a shift in of 18 bits. This first two bits shifted in |
| 2300 | * are TurnAround bits used to avoid contention on the MDIO pin when a |
| 2301 | * READ operation is performed. These two bits are thrown away |
| 2302 | * followed by a shift in of 16 bits which contains the desired data. |
| 2303 | */ |
| 2304 | mdic = ((reg_addr) | (phy_addr << 5) | |
| 2305 | (PHY_OP_READ << 10) | (PHY_SOF << 12)); |
| 2306 | |
| 2307 | e1000_shift_out_mdi_bits(hw, mdic, 14); |
| 2308 | |
| 2309 | /* Now that we've shifted out the read command to the MII, we need to |
| 2310 | * "shift in" the 16-bit value (18 total bits) of the requested PHY |
| 2311 | * register address. |
| 2312 | */ |
| 2313 | *phy_data = e1000_shift_in_mdi_bits(hw); |
| 2314 | } |
| 2315 | return 0; |
| 2316 | } |
| 2317 | |
| 2318 | /****************************************************************************** |
| 2319 | * Writes a value to a PHY register |
| 2320 | * |
| 2321 | * hw - Struct containing variables accessed by shared code |
| 2322 | * reg_addr - address of the PHY register to write |
| 2323 | * data - data to write to the PHY |
| 2324 | ******************************************************************************/ |
| 2325 | static int |
| 2326 | e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data) |
| 2327 | { |
| 2328 | uint32_t i; |
| 2329 | uint32_t mdic = 0; |
| 2330 | const uint32_t phy_addr = 1; |
| 2331 | |
| 2332 | if (reg_addr > MAX_PHY_REG_ADDRESS) { |
| 2333 | DEBUGOUT("PHY Address %d is out of range\n", reg_addr); |
| 2334 | return -E1000_ERR_PARAM; |
| 2335 | } |
| 2336 | |
| 2337 | if (hw->mac_type > e1000_82543) { |
| 2338 | /* Set up Op-code, Phy Address, register address, and data intended |
| 2339 | * for the PHY register in the MDI Control register. The MAC will take |
| 2340 | * care of interfacing with the PHY to send the desired data. |
| 2341 | */ |
| 2342 | mdic = (((uint32_t) phy_data) | |
| 2343 | (reg_addr << E1000_MDIC_REG_SHIFT) | |
| 2344 | (phy_addr << E1000_MDIC_PHY_SHIFT) | |
| 2345 | (E1000_MDIC_OP_WRITE)); |
| 2346 | |
| 2347 | E1000_WRITE_REG(hw, MDIC, mdic); |
| 2348 | |
| 2349 | /* Poll the ready bit to see if the MDI read completed */ |
| 2350 | for (i = 0; i < 64; i++) { |
| 2351 | udelay(10); |
| 2352 | mdic = E1000_READ_REG(hw, MDIC); |
| 2353 | if (mdic & E1000_MDIC_READY) |
| 2354 | break; |
| 2355 | } |
| 2356 | if (!(mdic & E1000_MDIC_READY)) { |
| 2357 | DEBUGOUT("MDI Write did not complete\n"); |
| 2358 | return -E1000_ERR_PHY; |
| 2359 | } |
| 2360 | } else { |
| 2361 | /* We'll need to use the SW defined pins to shift the write command |
| 2362 | * out to the PHY. We first send a preamble to the PHY to signal the |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame^] | 2363 | * beginning of the MII instruction. This is done by sending 32 |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 2364 | * consecutive "1" bits. |
| 2365 | */ |
| 2366 | e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); |
| 2367 | |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame^] | 2368 | /* Now combine the remaining required fields that will indicate a |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 2369 | * write operation. We use this method instead of calling the |
| 2370 | * e1000_shift_out_mdi_bits routine for each field in the command. The |
| 2371 | * format of a MII write instruction is as follows: |
| 2372 | * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>. |
| 2373 | */ |
| 2374 | mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) | |
| 2375 | (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); |
| 2376 | mdic <<= 16; |
| 2377 | mdic |= (uint32_t) phy_data; |
| 2378 | |
| 2379 | e1000_shift_out_mdi_bits(hw, mdic, 32); |
| 2380 | } |
| 2381 | return 0; |
| 2382 | } |
| 2383 | |
| 2384 | /****************************************************************************** |
| 2385 | * Returns the PHY to the power-on reset state |
| 2386 | * |
| 2387 | * hw - Struct containing variables accessed by shared code |
| 2388 | ******************************************************************************/ |
| 2389 | static void |
| 2390 | e1000_phy_hw_reset(struct e1000_hw *hw) |
| 2391 | { |
| 2392 | uint32_t ctrl; |
| 2393 | uint32_t ctrl_ext; |
| 2394 | |
| 2395 | DEBUGFUNC(); |
| 2396 | |
| 2397 | DEBUGOUT("Resetting Phy...\n"); |
| 2398 | |
| 2399 | if (hw->mac_type > e1000_82543) { |
| 2400 | /* Read the device control register and assert the E1000_CTRL_PHY_RST |
| 2401 | * bit. Then, take it out of reset. |
| 2402 | */ |
| 2403 | ctrl = E1000_READ_REG(hw, CTRL); |
| 2404 | E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST); |
| 2405 | E1000_WRITE_FLUSH(hw); |
| 2406 | mdelay(10); |
| 2407 | E1000_WRITE_REG(hw, CTRL, ctrl); |
| 2408 | E1000_WRITE_FLUSH(hw); |
| 2409 | } else { |
| 2410 | /* Read the Extended Device Control Register, assert the PHY_RESET_DIR |
| 2411 | * bit to put the PHY into reset. Then, take it out of reset. |
| 2412 | */ |
| 2413 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); |
| 2414 | ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; |
| 2415 | ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; |
| 2416 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); |
| 2417 | E1000_WRITE_FLUSH(hw); |
| 2418 | mdelay(10); |
| 2419 | ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; |
| 2420 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); |
| 2421 | E1000_WRITE_FLUSH(hw); |
| 2422 | } |
| 2423 | udelay(150); |
| 2424 | } |
| 2425 | |
| 2426 | /****************************************************************************** |
| 2427 | * Resets the PHY |
| 2428 | * |
| 2429 | * hw - Struct containing variables accessed by shared code |
| 2430 | * |
| 2431 | * Sets bit 15 of the MII Control regiser |
| 2432 | ******************************************************************************/ |
| 2433 | static int |
| 2434 | e1000_phy_reset(struct e1000_hw *hw) |
| 2435 | { |
| 2436 | uint16_t phy_data; |
| 2437 | |
| 2438 | DEBUGFUNC(); |
| 2439 | |
| 2440 | if (e1000_read_phy_reg(hw, PHY_CTRL, &phy_data) < 0) { |
| 2441 | DEBUGOUT("PHY Read Error\n"); |
| 2442 | return -E1000_ERR_PHY; |
| 2443 | } |
| 2444 | phy_data |= MII_CR_RESET; |
| 2445 | if (e1000_write_phy_reg(hw, PHY_CTRL, phy_data) < 0) { |
| 2446 | DEBUGOUT("PHY Write Error\n"); |
| 2447 | return -E1000_ERR_PHY; |
| 2448 | } |
| 2449 | udelay(1); |
| 2450 | return 0; |
| 2451 | } |
| 2452 | |
| 2453 | /****************************************************************************** |
| 2454 | * Probes the expected PHY address for known PHY IDs |
| 2455 | * |
| 2456 | * hw - Struct containing variables accessed by shared code |
| 2457 | ******************************************************************************/ |
| 2458 | static int |
| 2459 | e1000_detect_gig_phy(struct e1000_hw *hw) |
| 2460 | { |
| 2461 | uint16_t phy_id_high, phy_id_low; |
| 2462 | int match = FALSE; |
| 2463 | |
| 2464 | DEBUGFUNC(); |
| 2465 | |
| 2466 | /* Read the PHY ID Registers to identify which PHY is onboard. */ |
| 2467 | if (e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high) < 0) { |
| 2468 | DEBUGOUT("PHY Read Error\n"); |
| 2469 | return -E1000_ERR_PHY; |
| 2470 | } |
| 2471 | hw->phy_id = (uint32_t) (phy_id_high << 16); |
| 2472 | udelay(2); |
| 2473 | if (e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low) < 0) { |
| 2474 | DEBUGOUT("PHY Read Error\n"); |
| 2475 | return -E1000_ERR_PHY; |
| 2476 | } |
| 2477 | hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK); |
| 2478 | |
| 2479 | switch (hw->mac_type) { |
| 2480 | case e1000_82543: |
| 2481 | if (hw->phy_id == M88E1000_E_PHY_ID) |
| 2482 | match = TRUE; |
| 2483 | break; |
| 2484 | case e1000_82544: |
| 2485 | if (hw->phy_id == M88E1000_I_PHY_ID) |
| 2486 | match = TRUE; |
| 2487 | break; |
| 2488 | case e1000_82540: |
| 2489 | case e1000_82545: |
| 2490 | case e1000_82546: |
| 2491 | if (hw->phy_id == M88E1011_I_PHY_ID) |
| 2492 | match = TRUE; |
| 2493 | break; |
| 2494 | default: |
| 2495 | DEBUGOUT("Invalid MAC type %d\n", hw->mac_type); |
| 2496 | return -E1000_ERR_CONFIG; |
| 2497 | } |
| 2498 | if (match) { |
| 2499 | DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id); |
| 2500 | return 0; |
| 2501 | } |
| 2502 | DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id); |
| 2503 | return -E1000_ERR_PHY; |
| 2504 | } |
| 2505 | |
| 2506 | /** |
| 2507 | * e1000_sw_init - Initialize general software structures (struct e1000_adapter) |
| 2508 | * |
| 2509 | * e1000_sw_init initializes the Adapter private data structure. |
| 2510 | * Fields are initialized based on PCI device information and |
| 2511 | * OS network device settings (MTU size). |
| 2512 | **/ |
| 2513 | |
| 2514 | static int |
| 2515 | e1000_sw_init(struct eth_device *nic, int cardnum) |
| 2516 | { |
| 2517 | struct e1000_hw *hw = (typeof(hw)) nic->priv; |
| 2518 | int result; |
| 2519 | |
| 2520 | /* PCI config space info */ |
| 2521 | pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id); |
| 2522 | pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id); |
| 2523 | pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID, |
| 2524 | &hw->subsystem_vendor_id); |
| 2525 | pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id); |
| 2526 | |
| 2527 | pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id); |
| 2528 | pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word); |
| 2529 | |
| 2530 | /* identify the MAC */ |
| 2531 | result = e1000_set_mac_type(hw); |
| 2532 | if (result) { |
| 2533 | E1000_ERR("Unknown MAC Type\n"); |
| 2534 | return result; |
| 2535 | } |
| 2536 | |
| 2537 | /* lan a vs. lan b settings */ |
| 2538 | if (hw->mac_type == e1000_82546) |
| 2539 | /*this also works w/ multiple 82546 cards */ |
| 2540 | /*but not if they're intermingled /w other e1000s */ |
| 2541 | hw->lan_loc = (cardnum % 2) ? e1000_lan_b : e1000_lan_a; |
| 2542 | else |
| 2543 | hw->lan_loc = e1000_lan_a; |
| 2544 | |
| 2545 | /* flow control settings */ |
| 2546 | hw->fc_high_water = E1000_FC_HIGH_THRESH; |
| 2547 | hw->fc_low_water = E1000_FC_LOW_THRESH; |
| 2548 | hw->fc_pause_time = E1000_FC_PAUSE_TIME; |
| 2549 | hw->fc_send_xon = 1; |
| 2550 | |
| 2551 | /* Media type - copper or fiber */ |
| 2552 | |
| 2553 | if (hw->mac_type >= e1000_82543) { |
| 2554 | uint32_t status = E1000_READ_REG(hw, STATUS); |
| 2555 | |
| 2556 | if (status & E1000_STATUS_TBIMODE) { |
| 2557 | DEBUGOUT("fiber interface\n"); |
| 2558 | hw->media_type = e1000_media_type_fiber; |
| 2559 | } else { |
| 2560 | DEBUGOUT("copper interface\n"); |
| 2561 | hw->media_type = e1000_media_type_copper; |
| 2562 | } |
| 2563 | } else { |
| 2564 | hw->media_type = e1000_media_type_fiber; |
| 2565 | } |
| 2566 | |
| 2567 | if (hw->mac_type < e1000_82543) |
| 2568 | hw->report_tx_early = 0; |
| 2569 | else |
| 2570 | hw->report_tx_early = 1; |
| 2571 | |
| 2572 | hw->tbi_compatibility_en = TRUE; |
| 2573 | #if 0 |
| 2574 | hw->wait_autoneg_complete = FALSE; |
| 2575 | hw->adaptive_ifs = TRUE; |
| 2576 | |
| 2577 | /* Copper options */ |
| 2578 | if (hw->media_type == e1000_media_type_copper) { |
| 2579 | hw->mdix = AUTO_ALL_MODES; |
| 2580 | hw->disable_polarity_correction = FALSE; |
| 2581 | } |
| 2582 | #endif |
| 2583 | return E1000_SUCCESS; |
| 2584 | } |
| 2585 | |
| 2586 | void |
| 2587 | fill_rx(struct e1000_hw *hw) |
| 2588 | { |
| 2589 | struct e1000_rx_desc *rd; |
| 2590 | |
| 2591 | rx_last = rx_tail; |
| 2592 | rd = rx_base + rx_tail; |
| 2593 | rx_tail = (rx_tail + 1) % 8; |
| 2594 | memset(rd, 0, 16); |
| 2595 | rd->buffer_addr = cpu_to_le64((u32) & packet); |
| 2596 | E1000_WRITE_REG(hw, RDT, rx_tail); |
| 2597 | } |
| 2598 | |
| 2599 | /** |
| 2600 | * e1000_configure_tx - Configure 8254x Transmit Unit after Reset |
| 2601 | * @adapter: board private structure |
| 2602 | * |
| 2603 | * Configure the Tx unit of the MAC after a reset. |
| 2604 | **/ |
| 2605 | |
| 2606 | static void |
| 2607 | e1000_configure_tx(struct e1000_hw *hw) |
| 2608 | { |
| 2609 | unsigned long ptr; |
| 2610 | unsigned long tctl; |
| 2611 | unsigned long tipg; |
| 2612 | |
| 2613 | ptr = (u32) tx_pool; |
| 2614 | if (ptr & 0xf) |
| 2615 | ptr = (ptr + 0x10) & (~0xf); |
| 2616 | |
| 2617 | tx_base = (typeof(tx_base)) ptr; |
| 2618 | |
| 2619 | E1000_WRITE_REG(hw, TDBAL, (u32) tx_base); |
| 2620 | E1000_WRITE_REG(hw, TDBAH, 0); |
| 2621 | |
| 2622 | E1000_WRITE_REG(hw, TDLEN, 128); |
| 2623 | |
| 2624 | /* Setup the HW Tx Head and Tail descriptor pointers */ |
| 2625 | E1000_WRITE_REG(hw, TDH, 0); |
| 2626 | E1000_WRITE_REG(hw, TDT, 0); |
| 2627 | tx_tail = 0; |
| 2628 | |
| 2629 | /* Set the default values for the Tx Inter Packet Gap timer */ |
| 2630 | switch (hw->mac_type) { |
| 2631 | case e1000_82542_rev2_0: |
| 2632 | case e1000_82542_rev2_1: |
| 2633 | tipg = DEFAULT_82542_TIPG_IPGT; |
| 2634 | tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; |
| 2635 | tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; |
| 2636 | break; |
| 2637 | default: |
| 2638 | if (hw->media_type == e1000_media_type_fiber) |
| 2639 | tipg = DEFAULT_82543_TIPG_IPGT_FIBER; |
| 2640 | else |
| 2641 | tipg = DEFAULT_82543_TIPG_IPGT_COPPER; |
| 2642 | tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; |
| 2643 | tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; |
| 2644 | } |
| 2645 | E1000_WRITE_REG(hw, TIPG, tipg); |
| 2646 | #if 0 |
| 2647 | /* Set the Tx Interrupt Delay register */ |
| 2648 | E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay); |
| 2649 | if (hw->mac_type >= e1000_82540) |
| 2650 | E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay); |
| 2651 | #endif |
| 2652 | /* Program the Transmit Control Register */ |
| 2653 | tctl = E1000_READ_REG(hw, TCTL); |
| 2654 | tctl &= ~E1000_TCTL_CT; |
| 2655 | tctl |= E1000_TCTL_EN | E1000_TCTL_PSP | |
| 2656 | (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); |
| 2657 | E1000_WRITE_REG(hw, TCTL, tctl); |
| 2658 | |
| 2659 | e1000_config_collision_dist(hw); |
| 2660 | #if 0 |
| 2661 | /* Setup Transmit Descriptor Settings for this adapter */ |
| 2662 | adapter->txd_cmd = E1000_TXD_CMD_IFCS | E1000_TXD_CMD_IDE; |
| 2663 | |
| 2664 | if (adapter->hw.report_tx_early == 1) |
| 2665 | adapter->txd_cmd |= E1000_TXD_CMD_RS; |
| 2666 | else |
| 2667 | adapter->txd_cmd |= E1000_TXD_CMD_RPS; |
| 2668 | #endif |
| 2669 | } |
| 2670 | |
| 2671 | /** |
| 2672 | * e1000_setup_rctl - configure the receive control register |
| 2673 | * @adapter: Board private structure |
| 2674 | **/ |
| 2675 | static void |
| 2676 | e1000_setup_rctl(struct e1000_hw *hw) |
| 2677 | { |
| 2678 | uint32_t rctl; |
| 2679 | |
| 2680 | rctl = E1000_READ_REG(hw, RCTL); |
| 2681 | |
| 2682 | rctl &= ~(3 << E1000_RCTL_MO_SHIFT); |
| 2683 | |
| 2684 | rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF; /* | |
| 2685 | (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */ |
| 2686 | |
| 2687 | if (hw->tbi_compatibility_on == 1) |
| 2688 | rctl |= E1000_RCTL_SBP; |
| 2689 | else |
| 2690 | rctl &= ~E1000_RCTL_SBP; |
| 2691 | |
| 2692 | rctl &= ~(E1000_RCTL_SZ_4096); |
| 2693 | #if 0 |
| 2694 | switch (adapter->rx_buffer_len) { |
| 2695 | case E1000_RXBUFFER_2048: |
| 2696 | default: |
| 2697 | #endif |
| 2698 | rctl |= E1000_RCTL_SZ_2048; |
| 2699 | rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE); |
| 2700 | #if 0 |
| 2701 | break; |
| 2702 | case E1000_RXBUFFER_4096: |
| 2703 | rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX | E1000_RCTL_LPE; |
| 2704 | break; |
| 2705 | case E1000_RXBUFFER_8192: |
| 2706 | rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX | E1000_RCTL_LPE; |
| 2707 | break; |
| 2708 | case E1000_RXBUFFER_16384: |
| 2709 | rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX | E1000_RCTL_LPE; |
| 2710 | break; |
| 2711 | } |
| 2712 | #endif |
| 2713 | E1000_WRITE_REG(hw, RCTL, rctl); |
| 2714 | } |
| 2715 | |
| 2716 | /** |
| 2717 | * e1000_configure_rx - Configure 8254x Receive Unit after Reset |
| 2718 | * @adapter: board private structure |
| 2719 | * |
| 2720 | * Configure the Rx unit of the MAC after a reset. |
| 2721 | **/ |
| 2722 | static void |
| 2723 | e1000_configure_rx(struct e1000_hw *hw) |
| 2724 | { |
| 2725 | unsigned long ptr; |
| 2726 | unsigned long rctl; |
| 2727 | #if 0 |
| 2728 | unsigned long rxcsum; |
| 2729 | #endif |
| 2730 | rx_tail = 0; |
| 2731 | /* make sure receives are disabled while setting up the descriptors */ |
| 2732 | rctl = E1000_READ_REG(hw, RCTL); |
| 2733 | E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN); |
| 2734 | #if 0 |
| 2735 | /* set the Receive Delay Timer Register */ |
| 2736 | |
| 2737 | E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay); |
| 2738 | #endif |
| 2739 | if (hw->mac_type >= e1000_82540) { |
| 2740 | #if 0 |
| 2741 | E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay); |
| 2742 | #endif |
| 2743 | /* Set the interrupt throttling rate. Value is calculated |
| 2744 | * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */ |
| 2745 | #define MAX_INTS_PER_SEC 8000 |
| 2746 | #define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256) |
| 2747 | E1000_WRITE_REG(hw, ITR, DEFAULT_ITR); |
| 2748 | } |
| 2749 | |
| 2750 | /* Setup the Base and Length of the Rx Descriptor Ring */ |
| 2751 | ptr = (u32) rx_pool; |
| 2752 | if (ptr & 0xf) |
| 2753 | ptr = (ptr + 0x10) & (~0xf); |
| 2754 | rx_base = (typeof(rx_base)) ptr; |
| 2755 | E1000_WRITE_REG(hw, RDBAL, (u32) rx_base); |
| 2756 | E1000_WRITE_REG(hw, RDBAH, 0); |
| 2757 | |
| 2758 | E1000_WRITE_REG(hw, RDLEN, 128); |
| 2759 | |
| 2760 | /* Setup the HW Rx Head and Tail Descriptor Pointers */ |
| 2761 | E1000_WRITE_REG(hw, RDH, 0); |
| 2762 | E1000_WRITE_REG(hw, RDT, 0); |
| 2763 | #if 0 |
| 2764 | /* Enable 82543 Receive Checksum Offload for TCP and UDP */ |
| 2765 | if ((adapter->hw.mac_type >= e1000_82543) && (adapter->rx_csum == TRUE)) { |
| 2766 | rxcsum = E1000_READ_REG(hw, RXCSUM); |
| 2767 | rxcsum |= E1000_RXCSUM_TUOFL; |
| 2768 | E1000_WRITE_REG(hw, RXCSUM, rxcsum); |
| 2769 | } |
| 2770 | #endif |
| 2771 | /* Enable Receives */ |
| 2772 | |
| 2773 | E1000_WRITE_REG(hw, RCTL, rctl); |
| 2774 | fill_rx(hw); |
| 2775 | } |
| 2776 | |
| 2777 | /************************************************************************** |
| 2778 | POLL - Wait for a frame |
| 2779 | ***************************************************************************/ |
| 2780 | static int |
| 2781 | e1000_poll(struct eth_device *nic) |
| 2782 | { |
| 2783 | struct e1000_hw *hw = nic->priv; |
| 2784 | struct e1000_rx_desc *rd; |
| 2785 | /* return true if there's an ethernet packet ready to read */ |
| 2786 | rd = rx_base + rx_last; |
| 2787 | if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD) |
| 2788 | return 0; |
| 2789 | /*DEBUGOUT("recv: packet len=%d \n", rd->length); */ |
| 2790 | NetReceive(packet, le32_to_cpu(rd->length)); |
| 2791 | fill_rx(hw); |
| 2792 | return 1; |
| 2793 | } |
| 2794 | |
| 2795 | /************************************************************************** |
| 2796 | TRANSMIT - Transmit a frame |
| 2797 | ***************************************************************************/ |
| 2798 | static int |
| 2799 | e1000_transmit(struct eth_device *nic, volatile void *packet, int length) |
| 2800 | { |
| 2801 | struct e1000_hw *hw = nic->priv; |
| 2802 | struct e1000_tx_desc *txp; |
| 2803 | int i = 0; |
| 2804 | |
| 2805 | txp = tx_base + tx_tail; |
| 2806 | tx_tail = (tx_tail + 1) % 8; |
| 2807 | |
| 2808 | txp->buffer_addr = cpu_to_le64(virt_to_bus(packet)); |
| 2809 | txp->lower.data = cpu_to_le32(E1000_TXD_CMD_RPS | E1000_TXD_CMD_EOP | |
| 2810 | E1000_TXD_CMD_IFCS | length); |
| 2811 | txp->upper.data = 0; |
| 2812 | E1000_WRITE_REG(hw, TDT, tx_tail); |
| 2813 | |
| 2814 | while (!(le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)) { |
| 2815 | if (i++ > TOUT_LOOP) { |
| 2816 | DEBUGOUT("e1000: tx timeout\n"); |
| 2817 | return 0; |
| 2818 | } |
| 2819 | udelay(10); /* give the nic a chance to write to the register */ |
| 2820 | } |
| 2821 | return 1; |
| 2822 | } |
| 2823 | |
| 2824 | /*reset function*/ |
| 2825 | static inline int |
| 2826 | e1000_reset(struct eth_device *nic) |
| 2827 | { |
| 2828 | struct e1000_hw *hw = nic->priv; |
| 2829 | |
| 2830 | e1000_reset_hw(hw); |
| 2831 | if (hw->mac_type >= e1000_82544) { |
| 2832 | E1000_WRITE_REG(hw, WUC, 0); |
| 2833 | } |
| 2834 | return e1000_init_hw(nic); |
| 2835 | } |
| 2836 | |
| 2837 | /************************************************************************** |
| 2838 | DISABLE - Turn off ethernet interface |
| 2839 | ***************************************************************************/ |
| 2840 | static void |
| 2841 | e1000_disable(struct eth_device *nic) |
| 2842 | { |
| 2843 | struct e1000_hw *hw = nic->priv; |
| 2844 | |
| 2845 | /* Turn off the ethernet interface */ |
| 2846 | E1000_WRITE_REG(hw, RCTL, 0); |
| 2847 | E1000_WRITE_REG(hw, TCTL, 0); |
| 2848 | |
| 2849 | /* Clear the transmit ring */ |
| 2850 | E1000_WRITE_REG(hw, TDH, 0); |
| 2851 | E1000_WRITE_REG(hw, TDT, 0); |
| 2852 | |
| 2853 | /* Clear the receive ring */ |
| 2854 | E1000_WRITE_REG(hw, RDH, 0); |
| 2855 | E1000_WRITE_REG(hw, RDT, 0); |
| 2856 | |
| 2857 | /* put the card in its initial state */ |
| 2858 | #if 0 |
| 2859 | E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST); |
| 2860 | #endif |
| 2861 | mdelay(10); |
| 2862 | |
| 2863 | } |
| 2864 | |
| 2865 | /************************************************************************** |
| 2866 | INIT - set up ethernet interface(s) |
| 2867 | ***************************************************************************/ |
| 2868 | static int |
| 2869 | e1000_init(struct eth_device *nic, bd_t * bis) |
| 2870 | { |
| 2871 | struct e1000_hw *hw = nic->priv; |
| 2872 | int ret_val = 0; |
| 2873 | |
| 2874 | ret_val = e1000_reset(nic); |
| 2875 | if (ret_val < 0) { |
| 2876 | if ((ret_val == -E1000_ERR_NOLINK) || |
| 2877 | (ret_val == -E1000_ERR_TIMEOUT)) { |
| 2878 | E1000_ERR("Valid Link not detected\n"); |
| 2879 | } else { |
| 2880 | E1000_ERR("Hardware Initialization Failed\n"); |
| 2881 | } |
| 2882 | return 0; |
| 2883 | } |
| 2884 | e1000_configure_tx(hw); |
| 2885 | e1000_setup_rctl(hw); |
| 2886 | e1000_configure_rx(hw); |
| 2887 | return 1; |
| 2888 | } |
| 2889 | |
| 2890 | /************************************************************************** |
| 2891 | PROBE - Look for an adapter, this routine's visible to the outside |
| 2892 | You should omit the last argument struct pci_device * for a non-PCI NIC |
| 2893 | ***************************************************************************/ |
| 2894 | int |
| 2895 | e1000_initialize(bd_t * bis) |
| 2896 | { |
| 2897 | pci_dev_t devno; |
| 2898 | int card_number = 0; |
| 2899 | struct eth_device *nic = NULL; |
| 2900 | struct e1000_hw *hw = NULL; |
| 2901 | u32 iobase; |
| 2902 | int idx = 0; |
| 2903 | u32 PciCommandWord; |
| 2904 | |
| 2905 | while (1) { /* Find PCI device(s) */ |
| 2906 | if ((devno = pci_find_devices(supported, idx++)) < 0) { |
| 2907 | break; |
| 2908 | } |
| 2909 | |
| 2910 | pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &iobase); |
| 2911 | iobase &= ~0xf; /* Mask the bits that say "this is an io addr" */ |
| 2912 | DEBUGOUT("e1000#%d: iobase 0x%08x\n", card_number, iobase); |
| 2913 | |
| 2914 | pci_write_config_dword(devno, PCI_COMMAND, |
| 2915 | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER); |
| 2916 | /* Check if I/O accesses and Bus Mastering are enabled. */ |
| 2917 | pci_read_config_dword(devno, PCI_COMMAND, &PciCommandWord); |
| 2918 | if (!(PciCommandWord & PCI_COMMAND_MEMORY)) { |
| 2919 | printf("Error: Can not enable MEM access.\n"); |
| 2920 | continue; |
| 2921 | } else if (!(PciCommandWord & PCI_COMMAND_MASTER)) { |
| 2922 | printf("Error: Can not enable Bus Mastering.\n"); |
| 2923 | continue; |
| 2924 | } |
| 2925 | |
| 2926 | nic = (struct eth_device *) malloc(sizeof (*nic)); |
| 2927 | hw = (struct e1000_hw *) malloc(sizeof (*hw)); |
| 2928 | hw->pdev = devno; |
| 2929 | nic->priv = hw; |
| 2930 | nic->iobase = bus_to_phys(devno, iobase); |
| 2931 | |
| 2932 | sprintf(nic->name, "e1000#%d", card_number); |
| 2933 | |
| 2934 | /* Are these variables needed? */ |
| 2935 | #if 0 |
| 2936 | hw->fc = e1000_fc_none; |
| 2937 | hw->original_fc = e1000_fc_none; |
| 2938 | #else |
| 2939 | hw->fc = e1000_fc_default; |
| 2940 | hw->original_fc = e1000_fc_default; |
| 2941 | #endif |
| 2942 | hw->autoneg_failed = 0; |
| 2943 | hw->get_link_status = TRUE; |
| 2944 | hw->hw_addr = (typeof(hw->hw_addr)) iobase; |
| 2945 | hw->mac_type = e1000_undefined; |
| 2946 | |
| 2947 | /* MAC and Phy settings */ |
| 2948 | if (e1000_sw_init(nic, card_number) < 0) { |
| 2949 | free(hw); |
| 2950 | free(nic); |
| 2951 | return 0; |
| 2952 | } |
| 2953 | if (e1000_validate_eeprom_checksum(nic) < 0) { |
| 2954 | printf("The EEPROM Checksum Is Not Valid\n"); |
| 2955 | free(hw); |
| 2956 | free(nic); |
| 2957 | return 0; |
| 2958 | } |
| 2959 | e1000_read_mac_addr(nic); |
| 2960 | |
| 2961 | E1000_WRITE_REG(hw, PBA, E1000_DEFAULT_PBA); |
| 2962 | |
| 2963 | printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n", |
| 2964 | nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2], |
| 2965 | nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]); |
| 2966 | |
| 2967 | nic->init = e1000_init; |
| 2968 | nic->recv = e1000_poll; |
| 2969 | nic->send = e1000_transmit; |
| 2970 | nic->halt = e1000_disable; |
| 2971 | |
| 2972 | eth_register(nic); |
| 2973 | |
| 2974 | card_number++; |
| 2975 | } |
| 2976 | return 1; |
| 2977 | } |
| 2978 | |
| 2979 | #endif |