blob: a4b9d54c7b25e0e96d1480843f31419813ee31f1 [file] [log] [blame]
Jon Loeligerdebb7352006-04-26 17:58:56 -05001/*
2 * Copyright 2004 Freescale Semiconductor.
3 * (C) Copyright 2003 Motorola Inc.
4 * Xianghua Xiao (X.Xiao@motorola.com)
5 *
6 * See file CREDITS for list of people who contributed to this
7 * project.
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of
12 * the License, or (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
22 * MA 02111-1307 USA
23 */
24
25#include <common.h>
26#include <asm/processor.h>
27#include <i2c.h>
28#include <spd.h>
29#include <asm/mmu.h>
30
31
32#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
33extern void dma_init(void);
34extern uint dma_check(void);
35extern int dma_xfer(void *dest, uint count, void *src);
36#endif
37
38#ifdef CONFIG_SPD_EEPROM
39
40#ifndef CFG_READ_SPD
41#define CFG_READ_SPD i2c_read
42#endif
43
44/*
Jon Loeliger9a655872006-05-19 13:26:34 -050045 * Only one of the following three should be 1; others should be 0
46 * By default the cache line interleaving is selected if
John Traill91a414c2006-08-08 11:32:43 +010047 * the CONFIG_DDR_INTERLEAVE flag is defined
Jon Loeliger9a655872006-05-19 13:26:34 -050048 */
49#define CFG_PAGE_INTERLEAVING 0
50#define CFG_BANK_INTERLEAVING 0
51#define CFG_SUPER_BANK_INTERLEAVING 0
52
53/*
Jon Loeligerdebb7352006-04-26 17:58:56 -050054 * Convert picoseconds into clock cycles (rounding up if needed).
55 */
56
57int
58picos_to_clk(int picos)
59{
60 int clks;
61
62 clks = picos / (2000000000 / (get_bus_freq(0) / 1000));
63 if (picos % (2000000000 / (get_bus_freq(0) / 1000)) != 0) {
64 clks++;
65 }
66
67 return clks;
68}
69
70
71/*
72 * Calculate the Density of each Physical Rank.
73 * Returned size is in bytes.
74 *
75 * Study these table from Byte 31 of JEDEC SPD Spec.
76 *
77 * DDR I DDR II
78 * Bit Size Size
79 * --- ----- ------
80 * 7 high 512MB 512MB
81 * 6 256MB 256MB
82 * 5 128MB 128MB
83 * 4 64MB 16GB
84 * 3 32MB 8GB
85 * 2 16MB 4GB
86 * 1 2GB 2GB
87 * 0 low 1GB 1GB
88 *
89 * Reorder Table to be linear by stripping the bottom
90 * 2 or 5 bits off and shifting them up to the top.
91 */
92
93unsigned int
94compute_banksize(unsigned int mem_type, unsigned char row_dens)
95{
96 unsigned int bsize;
97
98 if (mem_type == SPD_MEMTYPE_DDR) {
99 /* Bottom 2 bits up to the top. */
100 bsize = ((row_dens >> 2) | ((row_dens & 3) << 6)) << 24;
101 debug("DDR: DDR I rank density = 0x%08x\n", bsize);
102 } else {
103 /* Bottom 5 bits up to the top. */
104 bsize = ((row_dens >> 5) | ((row_dens & 31) << 3)) << 27;
105 debug("DDR: DDR II rank density = 0x%08x\n", bsize);
106 }
107 return bsize;
108}
109
110
111/*
112 * Convert a two-nibble BCD value into a cycle time.
113 * While the spec calls for nano-seconds, picos are returned.
114 *
115 * This implements the tables for bytes 9, 23 and 25 for both
116 * DDR I and II. No allowance for distinguishing the invalid
117 * fields absent for DDR I yet present in DDR II is made.
118 * (That is, cycle times of .25, .33, .66 and .75 ns are
119 * allowed for both DDR II and I.)
120 */
121
122unsigned int
123convert_bcd_tenths_to_cycle_time_ps(unsigned int spd_val)
124{
125 /*
126 * Table look up the lower nibble, allow DDR I & II.
127 */
128 unsigned int tenths_ps[16] = {
129 0,
130 100,
131 200,
132 300,
133 400,
134 500,
135 600,
136 700,
137 800,
138 900,
139 250,
John Traill91a414c2006-08-08 11:32:43 +0100140 330,
141 660,
Jon Loeligerdebb7352006-04-26 17:58:56 -0500142 750,
143 0, /* undefined */
144 0 /* undefined */
145 };
146
147 unsigned int whole_ns = (spd_val & 0xF0) >> 4;
148 unsigned int tenth_ns = spd_val & 0x0F;
149 unsigned int ps = whole_ns * 1000 + tenths_ps[tenth_ns];
150
151 return ps;
152}
153
154
155long int
Jon Loeliger9a655872006-05-19 13:26:34 -0500156spd_init(unsigned char i2c_address, unsigned int ddr_num,
157 unsigned int dimm_num, unsigned int start_addr)
Jon Loeligerdebb7352006-04-26 17:58:56 -0500158{
159 volatile immap_t *immap = (immap_t *)CFG_IMMR;
Jon Loeliger9a655872006-05-19 13:26:34 -0500160 volatile ccsr_ddr_t *ddr;
Jon Loeligerdebb7352006-04-26 17:58:56 -0500161 volatile ccsr_gur_t *gur = &immap->im_gur;
162 spd_eeprom_t spd;
163 unsigned int n_ranks;
164 unsigned int rank_density;
165 unsigned int odt_rd_cfg, odt_wr_cfg;
166 unsigned int odt_cfg, mode_odt_enable;
167 unsigned int dqs_cfg;
168 unsigned char twr_clk, twtr_clk, twr_auto_clk;
169 unsigned int tCKmin_ps, tCKmax_ps;
John Traill91a414c2006-08-08 11:32:43 +0100170 unsigned int max_data_rate;
Jon Loeligerdebb7352006-04-26 17:58:56 -0500171 unsigned int busfreq;
172 unsigned sdram_cfg_1;
173 unsigned int memsize;
174 unsigned char caslat, caslat_ctrl;
175 unsigned int trfc, trfc_clk, trfc_low, trfc_high;
176 unsigned int trcd_clk;
177 unsigned int trtp_clk;
178 unsigned char cke_min_clk;
179 unsigned char add_lat;
180 unsigned char wr_lat;
181 unsigned char wr_data_delay;
182 unsigned char four_act;
183 unsigned char cpo;
184 unsigned char burst_len;
185 unsigned int mode_caslat;
186 unsigned char sdram_type;
187 unsigned char d_init;
Jon Loeliger9a655872006-05-19 13:26:34 -0500188 unsigned int law_size;
189 volatile ccsr_local_mcm_t *mcm = &immap->im_local_mcm;
John Traill91a414c2006-08-08 11:32:43 +0100190 unsigned int tCycle_ps, modfreq;
Jon Loeligerdebb7352006-04-26 17:58:56 -0500191
Jon Loeliger9a655872006-05-19 13:26:34 -0500192 if (ddr_num == 1)
193 ddr = &immap->im_ddr1;
194 else
195 ddr = &immap->im_ddr2;
Jon Loeliger5c9efb32006-04-27 10:15:16 -0500196
Jon Loeligerdebb7352006-04-26 17:58:56 -0500197 /*
198 * Read SPD information.
199 */
200
Jon Loeliger9a655872006-05-19 13:26:34 -0500201 debug("Performing SPD read at I2C address 0x%02lx\n",i2c_address);
202 memset((void *)&spd, 0, sizeof(spd));
203 CFG_READ_SPD(i2c_address, 0, 1, (uchar *) &spd, sizeof(spd));
Jon Loeligerdebb7352006-04-26 17:58:56 -0500204
205 /*
206 * Check for supported memory module types.
207 */
208 if (spd.mem_type != SPD_MEMTYPE_DDR &&
209 spd.mem_type != SPD_MEMTYPE_DDR2) {
Jon Loeliger9a655872006-05-19 13:26:34 -0500210 debug("Warning: Unable to locate DDR I or DDR II module for DIMM %d of DDR controller %d.\n"
211 " Fundamental memory type is 0x%0x\n",
212 dimm_num,
213 ddr_num,
214 spd.mem_type);
Jon Loeligerdebb7352006-04-26 17:58:56 -0500215 return 0;
216 }
217
Jon Loeliger9a655872006-05-19 13:26:34 -0500218 debug("\nFound memory of type 0x%02lx ", spd.mem_type);
219 if (spd.mem_type == SPD_MEMTYPE_DDR)
220 debug("DDR I\n");
221 else
222 debug("DDR II\n");
223
Jon Loeligerdebb7352006-04-26 17:58:56 -0500224 /*
225 * These test gloss over DDR I and II differences in interpretation
226 * of bytes 3 and 4, but irrelevantly. Multiple asymmetric banks
227 * are not supported on DDR I; and not encoded on DDR II.
228 *
229 * Also note that the 8548 controller can support:
230 * 12 <= nrow <= 16
231 * and
232 * 8 <= ncol <= 11 (still, for DDR)
233 * 6 <= ncol <= 9 (for FCRAM)
234 */
235 if (spd.nrow_addr < 12 || spd.nrow_addr > 14) {
236 printf("DDR: Unsupported number of Row Addr lines: %d.\n",
237 spd.nrow_addr);
238 return 0;
239 }
240 if (spd.ncol_addr < 8 || spd.ncol_addr > 11) {
241 printf("DDR: Unsupported number of Column Addr lines: %d.\n",
242 spd.ncol_addr);
243 return 0;
244 }
245
246 /*
247 * Determine the number of physical banks controlled by
248 * different Chip Select signals. This is not quite the
249 * same as the number of DIMM modules on the board. Feh.
250 */
251 if (spd.mem_type == SPD_MEMTYPE_DDR) {
252 n_ranks = spd.nrows;
253 } else {
254 n_ranks = (spd.nrows & 0x7) + 1;
255 }
256
257 debug("DDR: number of ranks = %d\n", n_ranks);
258
259 if (n_ranks > 2) {
260 printf("DDR: Only 2 chip selects are supported: %d\n",
261 n_ranks);
262 return 0;
263 }
264
265 /*
266 * Adjust DDR II IO voltage biasing. It just makes it work.
267 */
268 if (spd.mem_type == SPD_MEMTYPE_DDR2) {
269 gur->ddrioovcr = (0
270 | 0x80000000 /* Enable */
271 | 0x10000000 /* VSEL to 1.8V */
272 );
273 }
274
275 /*
276 * Determine the size of each Rank in bytes.
277 */
278 rank_density = compute_banksize(spd.mem_type, spd.row_dens);
279
Jon Loeliger9a655872006-05-19 13:26:34 -0500280 debug("Start address for this controller is 0x%08lx\n", start_addr);
Jon Loeligerdebb7352006-04-26 17:58:56 -0500281
282 /*
283 * ODT configuration recommendation from DDR Controller Chapter.
284 */
285 odt_rd_cfg = 0; /* Never assert ODT */
286 odt_wr_cfg = 0; /* Never assert ODT */
287 if (spd.mem_type == SPD_MEMTYPE_DDR2) {
288 odt_wr_cfg = 1; /* Assert ODT on writes to CS0 */
289 }
290
Jon Loeliger9a655872006-05-19 13:26:34 -0500291#ifdef CONFIG_DDR_INTERLEAVE
John Traill91a414c2006-08-08 11:32:43 +0100292
Jon Loeliger9a655872006-05-19 13:26:34 -0500293 if (dimm_num != 1) {
294 printf("For interleaving memory on HPCN, need to use DIMM 1 for DDR Controller %d !\n", ddr_num);
295 return 0;
296 } else {
Jon Loeligerdebb7352006-04-26 17:58:56 -0500297 /*
Jon Loeliger9a655872006-05-19 13:26:34 -0500298 * Since interleaved memory only uses CS0, the
299 * memory sticks have to be identical in size and quantity
300 * of ranks. That essentially gives double the size on
301 * one rank, i.e on CS0 for both controllers put together.
302 * Confirm this???
Jon Loeligerdebb7352006-04-26 17:58:56 -0500303 */
Jon Loeliger9a655872006-05-19 13:26:34 -0500304 rank_density *= 2;
305
306 /*
307 * Eg: Bounds: 0x0000_0000 to 0x0f000_0000 first 256 Meg
308 */
309 start_addr = 0;
310 ddr->cs0_bnds = (start_addr >> 8)
311 | (((start_addr + rank_density - 1) >> 24));
312 /*
313 * Default interleaving mode to cache-line interleaving.
314 */
315 ddr->cs0_config = ( 1 << 31
316#if (CFG_PAGE_INTERLEAVING == 1)
317 | (PAGE_INTERLEAVING)
318#elif (CFG_BANK_INTERLEAVING == 1)
319 | (BANK_INTERLEAVING)
320#elif (CFG_SUPER_BANK_INTERLEAVING == 1)
321 | (SUPER_BANK_INTERLEAVING)
322#else
323 | (CACHE_LINE_INTERLEAVING)
324#endif
Jon Loeligerdebb7352006-04-26 17:58:56 -0500325 | (odt_rd_cfg << 20)
326 | (odt_wr_cfg << 16)
327 | (spd.nrow_addr - 12) << 8
328 | (spd.ncol_addr - 8) );
Jon Loeligerdebb7352006-04-26 17:58:56 -0500329
Jon Loeliger9a655872006-05-19 13:26:34 -0500330 debug("DDR: cs0_bnds = 0x%08x\n", ddr->cs0_bnds);
331 debug("DDR: cs0_config = 0x%08x\n", ddr->cs0_config);
332
333 /*
334 * Adjustment for dual rank memory to get correct memory
335 * size (return value of this function).
336 */
337 if (n_ranks == 2) {
338 n_ranks = 1;
339 rank_density /= 2;
340 } else {
341 rank_density /= 2;
342 }
343 }
Jon Loeliger9a655872006-05-19 13:26:34 -0500344#else /* CONFIG_DDR_INTERLEAVE */
345
346 if (dimm_num == 1) {
347 /*
348 * Eg: Bounds: 0x0000_0000 to 0x0f000_0000 first 256 Meg
349 */
350 ddr->cs0_bnds = (start_addr >> 8)
351 | (((start_addr + rank_density - 1) >> 24));
352
353 ddr->cs0_config = ( 1 << 31
354 | (odt_rd_cfg << 20)
355 | (odt_wr_cfg << 16)
356 | (spd.nrow_addr - 12) << 8
357 | (spd.ncol_addr - 8) );
358
359 debug("DDR: cs0_bnds = 0x%08x\n", ddr->cs0_bnds);
360 debug("DDR: cs0_config = 0x%08x\n", ddr->cs0_config);
361
362 if (n_ranks == 2) {
363 /*
364 * Eg: Bounds: 0x1000_0000 to 0x1f00_0000,
365 * second 256 Meg
366 */
367 ddr->cs1_bnds = (((start_addr + rank_density) >> 8)
368 | (( start_addr + 2*rank_density - 1)
369 >> 24));
370 ddr->cs1_config = ( 1<<31
371 | (odt_rd_cfg << 20)
372 | (odt_wr_cfg << 16)
373 | (spd.nrow_addr - 12) << 8
374 | (spd.ncol_addr - 8) );
375 debug("DDR: cs1_bnds = 0x%08x\n", ddr->cs1_bnds);
376 debug("DDR: cs1_config = 0x%08x\n", ddr->cs1_config);
377 }
378
379 } else {
380 /*
381 * This is the 2nd DIMM slot for this controller
382 */
383 /*
384 * Eg: Bounds: 0x0000_0000 to 0x0f000_0000 first 256 Meg
385 */
386 ddr->cs2_bnds = (start_addr >> 8)
387 | (((start_addr + rank_density - 1) >> 24));
388
389 ddr->cs2_config = ( 1 << 31
390 | (odt_rd_cfg << 20)
391 | (odt_wr_cfg << 16)
392 | (spd.nrow_addr - 12) << 8
393 | (spd.ncol_addr - 8) );
394
395 debug("DDR: cs2_bnds = 0x%08x\n", ddr->cs2_bnds);
396 debug("DDR: cs2_config = 0x%08x\n", ddr->cs2_config);
397
398 if (n_ranks == 2) {
399 /*
400 * Eg: Bounds: 0x1000_0000 to 0x1f00_0000,
401 * second 256 Meg
402 */
403 ddr->cs3_bnds = (((start_addr + rank_density) >> 8)
404 | (( start_addr + 2*rank_density - 1)
405 >> 24));
406 ddr->cs3_config = ( 1<<31
407 | (odt_rd_cfg << 20)
408 | (odt_wr_cfg << 16)
409 | (spd.nrow_addr - 12) << 8
410 | (spd.ncol_addr - 8) );
411 debug("DDR: cs3_bnds = 0x%08x\n", ddr->cs3_bnds);
412 debug("DDR: cs3_config = 0x%08x\n", ddr->cs3_config);
413 }
414 }
415#endif /* CONFIG_DDR_INTERLEAVE */
Jon Loeligerdebb7352006-04-26 17:58:56 -0500416
417 /*
418 * Find the largest CAS by locating the highest 1 bit
419 * in the spd.cas_lat field. Translate it to a DDR
420 * controller field value:
421 *
422 * CAS Lat DDR I DDR II Ctrl
423 * Clocks SPD Bit SPD Bit Value
424 * ------- ------- ------- -----
425 * 1.0 0 0001
426 * 1.5 1 0010
427 * 2.0 2 2 0011
428 * 2.5 3 0100
429 * 3.0 4 3 0101
430 * 3.5 5 0110
431 * 4.0 4 0111
432 * 4.5 1000
433 * 5.0 5 1001
434 */
435 caslat = __ilog2(spd.cas_lat);
436 if ((spd.mem_type == SPD_MEMTYPE_DDR)
437 && (caslat > 5)) {
438 printf("DDR I: Invalid SPD CAS Latency: 0x%x.\n", spd.cas_lat);
439 return 0;
440
441 } else if (spd.mem_type == SPD_MEMTYPE_DDR2
442 && (caslat < 2 || caslat > 5)) {
443 printf("DDR II: Invalid SPD CAS Latency: 0x%x.\n",
444 spd.cas_lat);
445 return 0;
446 }
447 debug("DDR: caslat SPD bit is %d\n", caslat);
448
449 /*
450 * Calculate the Maximum Data Rate based on the Minimum Cycle time.
451 * The SPD clk_cycle field (tCKmin) is measured in tenths of
452 * nanoseconds and represented as BCD.
453 */
454 tCKmin_ps = convert_bcd_tenths_to_cycle_time_ps(spd.clk_cycle);
455 debug("DDR: tCKmin = %d ps\n", tCKmin_ps);
456
457 /*
458 * Double-data rate, scaled 1000 to picoseconds, and back down to MHz.
459 */
460 max_data_rate = 2 * 1000 * 1000 / tCKmin_ps;
461 debug("DDR: Module max data rate = %d Mhz\n", max_data_rate);
462
463
464 /*
465 * Adjust the CAS Latency to allow for bus speeds that
466 * are slower than the DDR module.
467 */
468 busfreq = get_bus_freq(0) / 1000000; /* MHz */
469
John Traill91a414c2006-08-08 11:32:43 +0100470 if ((spd.mem_type == SPD_MEMTYPE_DDR2) && (busfreq < 266)) {
471 printf("DDR: platform frequency too low for correct DDR2 controller operation\n");
Jon Loeligerdebb7352006-04-26 17:58:56 -0500472 return 0;
John Traill91a414c2006-08-08 11:32:43 +0100473 } else if (busfreq < 90) {
474 printf("DDR: platform frequency too low for correct DDR1 operation\n");
Jon Loeligerdebb7352006-04-26 17:58:56 -0500475 return 0;
476 }
477
John Traill91a414c2006-08-08 11:32:43 +0100478 if ((busfreq <= modfreq) && (spd.cas_lat & (1 << (caslat - 2)))) {
479 caslat -= 2;
480 } else {
481 tCycle_ps = convert_bcd_tenths_to_cycle_time_ps(spd.clk_cycle2);
482 modfreq = 2 * 1000 * 1000 / tCycle_ps;
483 if ((busfreq <= modfreq) && (spd.cas_lat & (1 << (caslat - 1))))
484 caslat -= 1;
485 else if (busfreq > max_data_rate) {
486 printf("DDR: Bus freq %d MHz is not fit for DDR rate %d MHz\n",
487 busfreq, max_data_rate);
488 return 0;
489 }
490 }
491
492 /*
493 * Empirically set ~MCAS-to-preamble override for DDR 2.
494 * Your milage will vary.
495 */
496 cpo = 0;
497 if (spd.mem_type == SPD_MEMTYPE_DDR2) {
498 if (busfreq <= 333) {
499 cpo = 0x7;
500 } else if (busfreq <= 400) {
501 cpo = 0x9;
502 } else {
503 cpo = 0xa;
504 }
505 }
Jon Loeligerdebb7352006-04-26 17:58:56 -0500506
507 /*
508 * Convert caslat clocks to DDR controller value.
509 * Force caslat_ctrl to be DDR Controller field-sized.
510 */
511 if (spd.mem_type == SPD_MEMTYPE_DDR) {
512 caslat_ctrl = (caslat + 1) & 0x07;
513 } else {
514 caslat_ctrl = (2 * caslat - 1) & 0x0f;
515 }
516
Jon Loeligerdebb7352006-04-26 17:58:56 -0500517 debug("DDR: caslat SPD bit is %d, controller field is 0x%x\n",
518 caslat, caslat_ctrl);
519
520 /*
521 * Timing Config 0.
522 * Avoid writing for DDR I. The new PQ38 DDR controller
523 * dreams up non-zero default values to be backwards compatible.
524 */
525 if (spd.mem_type == SPD_MEMTYPE_DDR2) {
526 unsigned char taxpd_clk = 8; /* By the book. */
527 unsigned char tmrd_clk = 2; /* By the book. */
528 unsigned char act_pd_exit = 2; /* Empirical? */
529 unsigned char pre_pd_exit = 6; /* Empirical? */
530
Jon Loeliger9a655872006-05-19 13:26:34 -0500531 ddr->timing_cfg_0 = (0
Jon Loeligerdebb7352006-04-26 17:58:56 -0500532 | ((act_pd_exit & 0x7) << 20) /* ACT_PD_EXIT */
533 | ((pre_pd_exit & 0x7) << 16) /* PRE_PD_EXIT */
534 | ((taxpd_clk & 0xf) << 8) /* ODT_PD_EXIT */
535 | ((tmrd_clk & 0xf) << 0) /* MRS_CYC */
536 );
Jon Loeliger9a655872006-05-19 13:26:34 -0500537 debug("DDR: timing_cfg_0 = 0x%08x\n", ddr->timing_cfg_0);
Jon Loeligerdebb7352006-04-26 17:58:56 -0500538
Jon Loeligerdebb7352006-04-26 17:58:56 -0500539 }
540
541
542 /*
543 * Some Timing Config 1 values now.
544 * Sneak Extended Refresh Recovery in here too.
545 */
546
547 /*
548 * For DDR I, WRREC(Twr) and WRTORD(Twtr) are not in SPD,
549 * use conservative value.
550 * For DDR II, they are bytes 36 and 37, in quarter nanos.
551 */
552
553 if (spd.mem_type == SPD_MEMTYPE_DDR) {
554 twr_clk = 3; /* Clocks */
555 twtr_clk = 1; /* Clocks */
556 } else {
557 twr_clk = picos_to_clk(spd.twr * 250);
558 twtr_clk = picos_to_clk(spd.twtr * 250);
559 }
560
561 /*
562 * Calculate Trfc, in picos.
563 * DDR I: Byte 42 straight up in ns.
564 * DDR II: Byte 40 and 42 swizzled some, in ns.
565 */
566 if (spd.mem_type == SPD_MEMTYPE_DDR) {
567 trfc = spd.trfc * 1000; /* up to ps */
568 } else {
569 unsigned int byte40_table_ps[8] = {
570 0,
571 250,
572 330,
573 500,
574 660,
575 750,
576 0,
577 0
578 };
579
580 trfc = (((spd.trctrfc_ext & 0x1) * 256) + spd.trfc) * 1000
581 + byte40_table_ps[(spd.trctrfc_ext >> 1) & 0x7];
582 }
583 trfc_clk = picos_to_clk(trfc);
584
585 /*
586 * Trcd, Byte 29, from quarter nanos to ps and clocks.
587 */
588 trcd_clk = picos_to_clk(spd.trcd * 250) & 0x7;
589
590 /*
591 * Convert trfc_clk to DDR controller fields. DDR I should
592 * fit in the REFREC field (16-19) of TIMING_CFG_1, but the
593 * 8548 controller has an extended REFREC field of three bits.
594 * The controller automatically adds 8 clocks to this value,
595 * so preadjust it down 8 first before splitting it up.
596 */
597 trfc_low = (trfc_clk - 8) & 0xf;
598 trfc_high = ((trfc_clk - 8) >> 4) & 0x3;
599
600 /*
601 * Sneak in some Extended Refresh Recovery.
602 */
Jon Loeliger9a655872006-05-19 13:26:34 -0500603 ddr->ext_refrec = (trfc_high << 16);
604 debug("DDR: ext_refrec = 0x%08x\n", ddr->ext_refrec);
Jon Loeligerdebb7352006-04-26 17:58:56 -0500605
Jon Loeliger9a655872006-05-19 13:26:34 -0500606 ddr->timing_cfg_1 =
Jon Loeligerdebb7352006-04-26 17:58:56 -0500607 (0
608 | ((picos_to_clk(spd.trp * 250) & 0x07) << 28) /* PRETOACT */
609 | ((picos_to_clk(spd.tras * 1000) & 0x0f ) << 24) /* ACTTOPRE */
610 | (trcd_clk << 20) /* ACTTORW */
611 | (caslat_ctrl << 16) /* CASLAT */
612 | (trfc_low << 12) /* REFEC */
613 | ((twr_clk & 0x07) << 8) /* WRRREC */
614 | ((picos_to_clk(spd.trrd * 250) & 0x07) << 4) /* ACTTOACT */
615 | ((twtr_clk & 0x07) << 0) /* WRTORD */
616 );
617
Jon Loeliger9a655872006-05-19 13:26:34 -0500618 debug("DDR: timing_cfg_1 = 0x%08x\n", ddr->timing_cfg_1);
Jon Loeligerdebb7352006-04-26 17:58:56 -0500619
620
621 /*
622 * Timing_Config_2
623 * Was: 0x00000800;
624 */
625
626 /*
627 * Additive Latency
628 * For DDR I, 0.
629 * For DDR II, with ODT enabled, use "a value" less than ACTTORW,
630 * which comes from Trcd, and also note that:
631 * add_lat + caslat must be >= 4
632 */
633 add_lat = 0;
634 if (spd.mem_type == SPD_MEMTYPE_DDR2
635 && (odt_wr_cfg || odt_rd_cfg)
636 && (caslat < 4)) {
637 add_lat = 4 - caslat;
John Traill91a414c2006-08-08 11:32:43 +0100638 if (add_lat >= trcd_clk) {
Jon Loeligerdebb7352006-04-26 17:58:56 -0500639 add_lat = trcd_clk - 1;
640 }
641 }
642
643 /*
644 * Write Data Delay
645 * Historically 0x2 == 4/8 clock delay.
646 * Empirically, 0x3 == 6/8 clock delay is suggested for DDR I 266.
647 */
648 wr_data_delay = 3;
649
650 /*
651 * Write Latency
652 * Read to Precharge
653 * Minimum CKE Pulse Width.
654 * Four Activate Window
655 */
656 if (spd.mem_type == SPD_MEMTYPE_DDR) {
657 /*
658 * This is a lie. It should really be 1, but if it is
659 * set to 1, bits overlap into the old controller's
660 * otherwise unused ACSM field. If we leave it 0, then
661 * the HW will magically treat it as 1 for DDR 1. Oh Yea.
662 */
663 wr_lat = 0;
664
665 trtp_clk = 2; /* By the book. */
666 cke_min_clk = 1; /* By the book. */
667 four_act = 1; /* By the book. */
668
669 } else {
670 wr_lat = caslat - 1;
671
672 /* Convert SPD value from quarter nanos to picos. */
673 trtp_clk = picos_to_clk(spd.trtp * 250);
674
675 cke_min_clk = 3; /* By the book. */
676 four_act = picos_to_clk(37500); /* By the book. 1k pages? */
677 }
678
Jon Loeliger9a655872006-05-19 13:26:34 -0500679 ddr->timing_cfg_2 = (0
Jon Loeligerdebb7352006-04-26 17:58:56 -0500680 | ((add_lat & 0x7) << 28) /* ADD_LAT */
Jon Loeliger5c9efb32006-04-27 10:15:16 -0500681 | ((cpo & 0x1f) << 23) /* CPO */
Jon Loeligerdebb7352006-04-26 17:58:56 -0500682 | ((wr_lat & 0x7) << 19) /* WR_LAT */
683 | ((trtp_clk & 0x7) << 13) /* RD_TO_PRE */
684 | ((wr_data_delay & 0x7) << 10) /* WR_DATA_DELAY */
685 | ((cke_min_clk & 0x7) << 6) /* CKE_PLS */
686 | ((four_act & 0x1f) << 0) /* FOUR_ACT */
687 );
688
Jon Loeliger9a655872006-05-19 13:26:34 -0500689 debug("DDR: timing_cfg_2 = 0x%08x\n", ddr->timing_cfg_2);
Jon Loeligerdebb7352006-04-26 17:58:56 -0500690
691
692 /*
693 * Determine the Mode Register Set.
694 *
695 * This is nominally part specific, but it appears to be
696 * consistent for all DDR I devices, and for all DDR II devices.
697 *
698 * caslat must be programmed
699 * burst length is always 4
700 * burst type is sequential
701 *
702 * For DDR I:
703 * operating mode is "normal"
704 *
705 * For DDR II:
706 * other stuff
707 */
708
709 mode_caslat = 0;
710
711 /*
712 * Table lookup from DDR I or II Device Operation Specs.
713 */
714 if (spd.mem_type == SPD_MEMTYPE_DDR) {
715 if (1 <= caslat && caslat <= 4) {
716 unsigned char mode_caslat_table[4] = {
717 0x5, /* 1.5 clocks */
718 0x2, /* 2.0 clocks */
719 0x6, /* 2.5 clocks */
720 0x3 /* 3.0 clocks */
721 };
722 mode_caslat = mode_caslat_table[caslat - 1];
723 } else {
724 puts("DDR I: Only CAS Latencies of 1.5, 2.0, "
725 "2.5 and 3.0 clocks are supported.\n");
726 return 0;
727 }
728
729 } else {
730 if (2 <= caslat && caslat <= 5) {
731 mode_caslat = caslat;
732 } else {
733 puts("DDR II: Only CAS Latencies of 2.0, 3.0, "
734 "4.0 and 5.0 clocks are supported.\n");
735 return 0;
736 }
737 }
738
739 /*
Jon Loeliger9a655872006-05-19 13:26:34 -0500740 * Encoded Burst Length of 4.
Jon Loeligerdebb7352006-04-26 17:58:56 -0500741 */
742 burst_len = 2; /* Fiat. */
743
744 if (spd.mem_type == SPD_MEMTYPE_DDR) {
745 twr_auto_clk = 0; /* Historical */
746 } else {
747 /*
748 * Determine tCK max in picos. Grab tWR and convert to picos.
749 * Auto-precharge write recovery is:
750 * WR = roundup(tWR_ns/tCKmax_ns).
751 *
752 * Ponder: Is twr_auto_clk different than twr_clk?
753 */
754 tCKmax_ps = convert_bcd_tenths_to_cycle_time_ps(spd.tckmax);
755 twr_auto_clk = (spd.twr * 250 + tCKmax_ps - 1) / tCKmax_ps;
756 }
757
758
759 /*
760 * Mode Reg in bits 16 ~ 31,
761 * Extended Mode Reg 1 in bits 0 ~ 15.
762 */
763 mode_odt_enable = 0x0; /* Default disabled */
764 if (odt_wr_cfg || odt_rd_cfg) {
765 /*
766 * Bits 6 and 2 in Extended MRS(1)
767 * Bit 2 == 0x04 == 75 Ohm, with 2 DIMM modules.
768 * Bit 6 == 0x40 == 150 Ohm, with 1 DIMM module.
769 */
770 mode_odt_enable = 0x40; /* 150 Ohm */
771 }
772
Jon Loeliger9a655872006-05-19 13:26:34 -0500773 ddr->sdram_mode_1 =
Jon Loeligerdebb7352006-04-26 17:58:56 -0500774 (0
775 | (add_lat << (16 + 3)) /* Additive Latency in EMRS1 */
776 | (mode_odt_enable << 16) /* ODT Enable in EMRS1 */
777 | (twr_auto_clk << 9) /* Write Recovery Autopre */
778 | (mode_caslat << 4) /* caslat */
779 | (burst_len << 0) /* Burst length */
780 );
781
Jon Loeliger9a655872006-05-19 13:26:34 -0500782 debug("DDR: sdram_mode = 0x%08x\n", ddr->sdram_mode_1);
Jon Loeligerdebb7352006-04-26 17:58:56 -0500783
784
785 /*
786 * Clear EMRS2 and EMRS3.
787 */
Jon Loeliger9a655872006-05-19 13:26:34 -0500788 ddr->sdram_mode_2 = 0;
789 debug("DDR: sdram_mode_2 = 0x%08x\n", ddr->sdram_mode_2);
Jon Loeligerdebb7352006-04-26 17:58:56 -0500790
791
792 /*
793 * Determine Refresh Rate. Ignore self refresh bit on DDR I.
794 * Table from SPD Spec, Byte 12, converted to picoseconds and
795 * filled in with "default" normal values.
796 */
797 {
798 unsigned int refresh_clk;
799 unsigned int refresh_time_ns[8] = {
800 15625000, /* 0 Normal 1.00x */
801 3900000, /* 1 Reduced .25x */
802 7800000, /* 2 Extended .50x */
803 31300000, /* 3 Extended 2.00x */
804 62500000, /* 4 Extended 4.00x */
805 125000000, /* 5 Extended 8.00x */
806 15625000, /* 6 Normal 1.00x filler */
807 15625000, /* 7 Normal 1.00x filler */
808 };
809
810 refresh_clk = picos_to_clk(refresh_time_ns[spd.refresh & 0x7]);
811
812 /*
813 * Set BSTOPRE to 0x100 for page mode
814 * If auto-charge is used, set BSTOPRE = 0
815 */
Jon Loeliger9a655872006-05-19 13:26:34 -0500816 ddr->sdram_interval =
Jon Loeligerdebb7352006-04-26 17:58:56 -0500817 (0
818 | (refresh_clk & 0x3fff) << 16
819 | 0x100
820 );
Jon Loeliger9a655872006-05-19 13:26:34 -0500821 debug("DDR: sdram_interval = 0x%08x\n", ddr->sdram_interval);
Jon Loeligerdebb7352006-04-26 17:58:56 -0500822 }
823
824 /*
825 * Is this an ECC DDR chip?
826 * But don't mess with it if the DDR controller will init mem.
827 */
828#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
829 if (spd.config == 0x02) {
Jon Loeliger9a655872006-05-19 13:26:34 -0500830 ddr->err_disable = 0x0000000d;
831 ddr->err_sbe = 0x00ff0000;
Jon Loeligerdebb7352006-04-26 17:58:56 -0500832 }
Jon Loeliger9a655872006-05-19 13:26:34 -0500833 debug("DDR: err_disable = 0x%08x\n", ddr->err_disable);
834 debug("DDR: err_sbe = 0x%08x\n", ddr->err_sbe);
Jon Loeligerdebb7352006-04-26 17:58:56 -0500835#endif
836
837 asm("sync;isync");
838 udelay(500);
839
840 /*
841 * SDRAM Cfg 2
842 */
843
844 /*
845 * When ODT is enabled, Chap 9 suggests asserting ODT to
846 * internal IOs only during reads.
847 */
848 odt_cfg = 0;
849 if (odt_rd_cfg | odt_wr_cfg) {
850 odt_cfg = 0x2; /* ODT to IOs during reads */
851 }
852
853 /*
854 * Try to use differential DQS with DDR II.
855 */
856 if (spd.mem_type == SPD_MEMTYPE_DDR) {
857 dqs_cfg = 0; /* No Differential DQS for DDR I */
858 } else {
859 dqs_cfg = 0x1; /* Differential DQS for DDR II */
860 }
861
862#if defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
863 /*
864 * Use the DDR controller to auto initialize memory.
865 */
866 d_init = 1;
Jon Loeliger9a655872006-05-19 13:26:34 -0500867 ddr->sdram_data_init = CONFIG_MEM_INIT_VALUE;
868 debug("DDR: ddr_data_init = 0x%08x\n", ddr->sdram_data_init);
Jon Loeligerdebb7352006-04-26 17:58:56 -0500869#else
870 /*
871 * Memory will be initialized via DMA, or not at all.
872 */
Jon Loeliger5c9efb32006-04-27 10:15:16 -0500873 d_init = 0;
Jon Loeligerdebb7352006-04-26 17:58:56 -0500874#endif
875
Jon Loeliger9a655872006-05-19 13:26:34 -0500876 ddr->sdram_cfg_2 = (0
Jon Loeligerdebb7352006-04-26 17:58:56 -0500877 | (dqs_cfg << 26) /* Differential DQS */
878 | (odt_cfg << 21) /* ODT */
879 | (d_init << 4) /* D_INIT auto init DDR */
880 );
881
Jon Loeliger9a655872006-05-19 13:26:34 -0500882 debug("DDR: sdram_cfg_2 = 0x%08x\n", ddr->sdram_cfg_2);
Jon Loeligerdebb7352006-04-26 17:58:56 -0500883
884
885#ifdef MPC86xx_DDR_SDRAM_CLK_CNTL
886 {
887 unsigned char clk_adjust;
888
889 /*
890 * Setup the clock control.
891 * SDRAM_CLK_CNTL[0] = Source synchronous enable == 1
892 * SDRAM_CLK_CNTL[5-7] = Clock Adjust
893 * 0110 3/4 cycle late
894 * 0111 7/8 cycle late
895 */
896 if (spd.mem_type == SPD_MEMTYPE_DDR) {
897 clk_adjust = 0x6;
898 } else {
899 clk_adjust = 0x7;
900 }
901
Jon Loeliger9a655872006-05-19 13:26:34 -0500902 ddr->sdram_clk_cntl = (0
Jon Loeligerdebb7352006-04-26 17:58:56 -0500903 | 0x80000000
904 | (clk_adjust << 23)
905 );
Jon Loeliger9a655872006-05-19 13:26:34 -0500906 debug("DDR: sdram_clk_cntl = 0x%08x\n", ddr->sdram_clk_cntl);
Jon Loeligerdebb7352006-04-26 17:58:56 -0500907 }
908#endif
909
Jon Loeligerdebb7352006-04-26 17:58:56 -0500910
911 /*
912 * Figure out memory size in Megabytes.
913 */
Jon Loeliger9a655872006-05-19 13:26:34 -0500914 debug("# ranks = %d, rank_density = 0x%08lx\n", n_ranks, rank_density);
Jon Loeligerdebb7352006-04-26 17:58:56 -0500915 memsize = n_ranks * rank_density / 0x100000;
Jon Loeliger9a655872006-05-19 13:26:34 -0500916 return memsize;
917}
Jon Loeligerdebb7352006-04-26 17:58:56 -0500918
919
Jon Loeliger9a655872006-05-19 13:26:34 -0500920unsigned int enable_ddr(unsigned int ddr_num)
921{
922 volatile immap_t *immap = (immap_t *)CFG_IMMR;
923 spd_eeprom_t spd1,spd2;
924 volatile ccsr_ddr_t *ddr;
925 unsigned sdram_cfg_1;
926 unsigned char sdram_type, mem_type, config, mod_attr;
927 unsigned char d_init;
928 unsigned int no_dimm1=0, no_dimm2=0;
929
930 /* Set up pointer to enable the current ddr controller */
931 if (ddr_num == 1)
932 ddr = &immap->im_ddr1;
933 else
934 ddr = &immap->im_ddr2;
Jon Loeligerdebb7352006-04-26 17:58:56 -0500935
936 /*
Jon Loeliger9a655872006-05-19 13:26:34 -0500937 * Read both dimm slots and decide whether
938 * or not to enable this controller.
Jon Loeligerdebb7352006-04-26 17:58:56 -0500939 */
Jon Loeliger9a655872006-05-19 13:26:34 -0500940 memset((void *)&spd1,0,sizeof(spd1));
941 memset((void *)&spd2,0,sizeof(spd2));
Jon Loeliger5c9efb32006-04-27 10:15:16 -0500942
Jon Loeliger9a655872006-05-19 13:26:34 -0500943 if (ddr_num == 1) {
944 CFG_READ_SPD(SPD_EEPROM_ADDRESS1,
945 0, 1, (uchar *) &spd1, sizeof(spd1));
946 CFG_READ_SPD(SPD_EEPROM_ADDRESS2,
947 0, 1, (uchar *) &spd2, sizeof(spd2));
948 } else {
949 CFG_READ_SPD(SPD_EEPROM_ADDRESS3,
950 0, 1, (uchar *) &spd1, sizeof(spd1));
951 CFG_READ_SPD(SPD_EEPROM_ADDRESS4,
952 0, 1, (uchar *) &spd2, sizeof(spd2));
953 }
954
955 /*
956 * Check for supported memory module types.
957 */
958 if (spd1.mem_type != SPD_MEMTYPE_DDR
959 && spd1.mem_type != SPD_MEMTYPE_DDR2) {
960 no_dimm1 = 1;
961 } else {
962 debug("\nFound memory of type 0x%02lx ",spd1.mem_type );
963 if (spd1.mem_type == SPD_MEMTYPE_DDR)
964 debug("DDR I\n");
965 else
966 debug("DDR II\n");
967 }
968
969 if (spd2.mem_type != SPD_MEMTYPE_DDR &&
970 spd2.mem_type != SPD_MEMTYPE_DDR2) {
971 no_dimm2 = 1;
972 } else {
973 debug("\nFound memory of type 0x%02lx ",spd2.mem_type );
974 if (spd2.mem_type == SPD_MEMTYPE_DDR)
975 debug("DDR I\n");
976 else
977 debug("DDR II\n");
978 }
979
980#ifdef CONFIG_DDR_INTERLEAVE
981 if (no_dimm1) {
982 printf("For interleaved operation memory modules need to be present in CS0 DIMM slots of both DDR controllers!\n");
983 return 0;
984 }
985#endif
986
987 /*
988 * Memory is not present in DIMM1 and DIMM2 - so do not enable DDRn
989 */
990 if (no_dimm1 && no_dimm2) {
991 printf("No memory modules found for DDR controller %d!!\n", ddr_num);
992 return 0;
993 } else {
994 mem_type = no_dimm2 ? spd1.mem_type : spd2.mem_type;
995
996 /*
997 * Figure out the settings for the sdram_cfg register.
998 * Build up the entire register in 'sdram_cfg' before
999 * writing since the write into the register will
1000 * actually enable the memory controller; all settings
1001 * must be done before enabling.
1002 *
1003 * sdram_cfg[0] = 1 (ddr sdram logic enable)
1004 * sdram_cfg[1] = 1 (self-refresh-enable)
1005 * sdram_cfg[5:7] = (SDRAM type = DDR SDRAM)
1006 * 010 DDR 1 SDRAM
1007 * 011 DDR 2 SDRAM
1008 */
1009 sdram_type = (mem_type == SPD_MEMTYPE_DDR) ? 2 : 3;
1010 sdram_cfg_1 = (0
1011 | (1 << 31) /* Enable */
1012 | (1 << 30) /* Self refresh */
1013 | (sdram_type << 24) /* SDRAM type */
1014 );
1015
1016 /*
1017 * sdram_cfg[3] = RD_EN - registered DIMM enable
1018 * A value of 0x26 indicates micron registered
1019 * DIMMS (micron.com)
1020 */
1021 mod_attr = no_dimm2 ? spd1.mod_attr : spd2.mod_attr;
1022 if (mem_type == SPD_MEMTYPE_DDR && mod_attr == 0x26) {
1023 sdram_cfg_1 |= 0x10000000; /* RD_EN */
1024 }
1025
1026#if defined(CONFIG_DDR_ECC)
1027
1028 config = no_dimm2 ? spd1.config : spd2.config;
1029
1030 /*
1031 * If the user wanted ECC (enabled via sdram_cfg[2])
1032 */
1033 if (config == 0x02) {
Haiying Wang70205e52006-05-30 08:51:19 -05001034 ddr->err_disable = 0x00000000;
1035 asm("sync;isync;");
1036 ddr->err_sbe = 0x00ff0000;
1037 ddr->err_int_en = 0x0000000d;
Jon Loeliger9a655872006-05-19 13:26:34 -05001038 sdram_cfg_1 |= 0x20000000; /* ECC_EN */
1039 }
1040#endif
1041
1042 /*
Haiying Wang70205e52006-05-30 08:51:19 -05001043 * Set 1T or 2T timing based on 1 or 2 modules
Jon Loeliger9a655872006-05-19 13:26:34 -05001044 */
1045 {
Haiying Wang70205e52006-05-30 08:51:19 -05001046 if (!(no_dimm1 || no_dimm2)) {
Jon Loeliger9a655872006-05-19 13:26:34 -05001047 /*
Haiying Wang70205e52006-05-30 08:51:19 -05001048 * 2T timing,because both DIMMS are present.
Jon Loeliger9a655872006-05-19 13:26:34 -05001049 * Enable 2T timing by setting sdram_cfg[16].
1050 */
1051 sdram_cfg_1 |= 0x8000; /* 2T_EN */
Jon Loeliger9a655872006-05-19 13:26:34 -05001052 }
1053 }
1054
1055 /*
1056 * 200 painful micro-seconds must elapse between
1057 * the DDR clock setup and the DDR config enable.
1058 */
1059 udelay(200);
1060
1061 /*
1062 * Go!
1063 */
1064 ddr->sdram_cfg_1 = sdram_cfg_1;
1065
1066 asm volatile("sync;isync");
1067 udelay(500);
1068
1069 debug("DDR: sdram_cfg = 0x%08x\n", ddr->sdram_cfg_1);
1070
1071
1072#if defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
1073 d_init = 1;
1074 debug("DDR: memory initializing\n");
1075
1076 /*
1077 * Poll until memory is initialized.
1078 * 512 Meg at 400 might hit this 200 times or so.
1079 */
1080 while ((ddr->sdram_cfg_2 & (d_init << 4)) != 0) {
1081 udelay(1000);
1082 }
1083 debug("DDR: memory initialized\n\n");
1084#endif
1085
1086 debug("Enabled DDR Controller %d\n", ddr_num);
1087 return 1;
1088 }
Jon Loeligerdebb7352006-04-26 17:58:56 -05001089}
1090
Jon Loeliger9a655872006-05-19 13:26:34 -05001091
1092long int
1093spd_sdram(void)
1094{
1095 int memsize_ddr1_dimm1 = 0;
1096 int memsize_ddr1_dimm2 = 0;
1097 int memsize_ddr2_dimm1 = 0;
1098 int memsize_ddr2_dimm2 = 0;
1099 int memsize_total = 0;
1100 int memsize_ddr1 = 0;
1101 int memsize_ddr2 = 0;
1102 unsigned int ddr1_enabled = 0;
1103 unsigned int ddr2_enabled = 0;
1104 unsigned int law_size_ddr1;
1105 unsigned int law_size_ddr2;
1106 volatile immap_t *immap = (immap_t *)CFG_IMMR;
1107 volatile ccsr_ddr_t *ddr1 = &immap->im_ddr1;
1108 volatile ccsr_ddr_t *ddr2 = &immap->im_ddr2;
1109 volatile ccsr_local_mcm_t *mcm = &immap->im_local_mcm;
1110
1111#ifdef CONFIG_DDR_INTERLEAVE
1112 unsigned int law_size_interleaved;
1113
1114 memsize_ddr1_dimm1 = spd_init(SPD_EEPROM_ADDRESS1,
1115 1, 1,
1116 (unsigned int)memsize_total * 1024*1024);
1117 memsize_total += memsize_ddr1_dimm1;
1118
1119 memsize_ddr2_dimm1 = spd_init(SPD_EEPROM_ADDRESS3,
1120 2, 1,
1121 (unsigned int)memsize_total * 1024*1024);
1122 memsize_total += memsize_ddr2_dimm1;
1123
1124 if (memsize_ddr1_dimm1 != memsize_ddr2_dimm1) {
1125 if (memsize_ddr1_dimm1 < memsize_ddr2_dimm1)
1126 memsize_total -= memsize_ddr1_dimm1;
1127 else
1128 memsize_total -= memsize_ddr2_dimm1;
1129 debug("Total memory available for interleaving 0x%08lx\n",
1130 memsize_total * 1024 * 1024);
1131 debug("Adjusting CS0_BNDS to account for unequal DIMM sizes in interleaved memory\n");
1132 ddr1->cs0_bnds = ((memsize_total * 1024 * 1024) - 1) >> 24;
1133 ddr2->cs0_bnds = ((memsize_total * 1024 * 1024) - 1) >> 24;
1134 debug("DDR1: cs0_bnds = 0x%08x\n", ddr1->cs0_bnds);
1135 debug("DDR2: cs0_bnds = 0x%08x\n", ddr2->cs0_bnds);
1136 }
1137
1138 ddr1_enabled = enable_ddr(1);
1139 ddr2_enabled = enable_ddr(2);
1140
1141 /*
1142 * Both controllers need to be enabled for interleaving.
1143 */
1144 if (ddr1_enabled && ddr2_enabled) {
1145 law_size_interleaved = 19 + __ilog2(memsize_total);
1146
1147 /*
1148 * Set up LAWBAR for DDR 1 space.
1149 */
1150 mcm->lawbar1 = ((CFG_DDR_SDRAM_BASE >> 12) & 0xfffff);
1151 mcm->lawar1 = (LAWAR_EN
1152 | LAWAR_TRGT_IF_DDR_INTERLEAVED
1153 | (LAWAR_SIZE & law_size_interleaved));
1154 debug("DDR: LAWBAR1=0x%08x\n", mcm->lawbar1);
1155 debug("DDR: LAWAR1=0x%08x\n", mcm->lawar1);
1156 debug("Interleaved memory size is 0x%08lx\n", memsize_total);
1157
1158#ifdef CONFIG_DDR_INTERLEAVE
1159#if (CFG_PAGE_INTERLEAVING == 1)
1160 printf("Page ");
1161#elif (CFG_BANK_INTERLEAVING == 1)
1162 printf("Bank ");
1163#elif (CFG_SUPER_BANK_INTERLEAVING == 1)
1164 printf("Super-bank ");
1165#else
1166 printf("Cache-line ");
1167#endif
1168#endif
1169 printf("Interleaved");
1170 return memsize_total * 1024 * 1024;
1171 } else {
1172 printf("Interleaved memory not enabled - check CS0 DIMM slots for both controllers.\n");
1173 return 0;
1174 }
1175
1176#else
1177 /*
1178 * Call spd_sdram() routine to init ddr1 - pass I2c address,
1179 * controller number, dimm number, and starting address.
1180 */
1181 memsize_ddr1_dimm1 = spd_init(SPD_EEPROM_ADDRESS1,
1182 1, 1,
1183 (unsigned int)memsize_total * 1024*1024);
1184 memsize_total += memsize_ddr1_dimm1;
1185
1186 memsize_ddr1_dimm2 = spd_init(SPD_EEPROM_ADDRESS2,
1187 1, 2,
1188 (unsigned int)memsize_total * 1024*1024);
1189 memsize_total += memsize_ddr1_dimm2;
1190
1191 /*
1192 * Enable the DDR controller - pass ddr controller number.
1193 */
1194 ddr1_enabled = enable_ddr(1);
1195
1196 /* Keep track of memory to be addressed by DDR1 */
1197 memsize_ddr1 = memsize_ddr1_dimm1 + memsize_ddr1_dimm2;
1198
1199 /*
1200 * First supported LAW size is 16M, at LAWAR_SIZE_16M == 23. Fnord.
1201 */
1202 if (ddr1_enabled) {
1203 law_size_ddr1 = 19 + __ilog2(memsize_ddr1);
1204
1205 /*
1206 * Set up LAWBAR for DDR 1 space.
1207 */
1208 mcm->lawbar1 = ((CFG_DDR_SDRAM_BASE >> 12) & 0xfffff);
1209 mcm->lawar1 = (LAWAR_EN
1210 | LAWAR_TRGT_IF_DDR1
1211 | (LAWAR_SIZE & law_size_ddr1));
1212 debug("DDR: LAWBAR1=0x%08x\n", mcm->lawbar1);
1213 debug("DDR: LAWAR1=0x%08x\n", mcm->lawar1);
1214 }
1215
1216#if (CONFIG_NUM_DDR_CONTROLLERS > 1)
1217 memsize_ddr2_dimm1 = spd_init(SPD_EEPROM_ADDRESS3,
1218 2, 1,
1219 (unsigned int)memsize_total * 1024*1024);
1220 memsize_total += memsize_ddr2_dimm1;
1221
1222 memsize_ddr2_dimm2 = spd_init(SPD_EEPROM_ADDRESS4,
1223 2, 2,
1224 (unsigned int)memsize_total * 1024*1024);
1225 memsize_total += memsize_ddr2_dimm2;
1226
1227 ddr2_enabled = enable_ddr(2);
1228
1229 /* Keep track of memory to be addressed by DDR2 */
1230 memsize_ddr2 = memsize_ddr2_dimm1 + memsize_ddr2_dimm2;
1231
1232 if (ddr2_enabled) {
1233 law_size_ddr2 = 19 + __ilog2(memsize_ddr2);
1234
1235 /*
1236 * Set up LAWBAR for DDR 2 space.
1237 */
1238 if (ddr1_enabled)
1239 mcm->lawbar8 = (((memsize_ddr1 * 1024 * 1024) >> 12)
1240 & 0xfffff);
1241 else
1242 mcm->lawbar8 = ((CFG_DDR_SDRAM_BASE >> 12) & 0xfffff);
1243
1244 mcm->lawar8 = (LAWAR_EN
1245 | LAWAR_TRGT_IF_DDR2
1246 | (LAWAR_SIZE & law_size_ddr2));
1247 debug("\nDDR: LAWBAR8=0x%08x\n", mcm->lawbar8);
1248 debug("DDR: LAWAR8=0x%08x\n", mcm->lawar8);
1249 }
1250#endif /* CONFIG_NUM_DDR_CONTROLLERS > 1 */
1251
1252 debug("\nMemory sizes are DDR1 = 0x%08lx, DDR2 = 0x%08lx\n",
1253 memsize_ddr1, memsize_ddr2);
1254
1255 /*
1256 * If neither DDR controller is enabled return 0.
1257 */
1258 if (!ddr1_enabled && !ddr2_enabled)
1259 return 0;
1260 else {
1261 printf("Non-interleaved");
1262 return memsize_total * 1024 * 1024;
1263 }
1264
1265#endif /* CONFIG_DDR_INTERLEAVE */
1266}
1267
1268
Jon Loeligerdebb7352006-04-26 17:58:56 -05001269#endif /* CONFIG_SPD_EEPROM */
1270
1271
1272#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
1273
1274/*
1275 * Initialize all of memory for ECC, then enable errors.
1276 */
1277
1278void
1279ddr_enable_ecc(unsigned int dram_size)
1280{
1281 uint *p = 0;
1282 uint i = 0;
1283 volatile immap_t *immap = (immap_t *)CFG_IMMR;
1284 volatile ccsr_ddr_t *ddr1= &immap->im_ddr1;
1285
1286 dma_init();
1287
1288 for (*p = 0; p < (uint *)(8 * 1024); p++) {
1289 if (((unsigned int)p & 0x1f) == 0) {
1290 ppcDcbz((unsigned long) p);
1291 }
1292 *p = (unsigned int)CONFIG_MEM_INIT_VALUE;
1293 if (((unsigned int)p & 0x1c) == 0x1c) {
1294 ppcDcbf((unsigned long) p);
1295 }
1296 }
1297
1298 /* 8K */
1299 dma_xfer((uint *)0x2000, 0x2000, (uint *)0);
1300 /* 16K */
1301 dma_xfer((uint *)0x4000, 0x4000, (uint *)0);
1302 /* 32K */
1303 dma_xfer((uint *)0x8000, 0x8000, (uint *)0);
1304 /* 64K */
1305 dma_xfer((uint *)0x10000, 0x10000, (uint *)0);
1306 /* 128k */
1307 dma_xfer((uint *)0x20000, 0x20000, (uint *)0);
1308 /* 256k */
1309 dma_xfer((uint *)0x40000, 0x40000, (uint *)0);
1310 /* 512k */
1311 dma_xfer((uint *)0x80000, 0x80000, (uint *)0);
1312 /* 1M */
1313 dma_xfer((uint *)0x100000, 0x100000, (uint *)0);
1314 /* 2M */
1315 dma_xfer((uint *)0x200000, 0x200000, (uint *)0);
1316 /* 4M */
1317 dma_xfer((uint *)0x400000, 0x400000, (uint *)0);
1318
1319 for (i = 1; i < dram_size / 0x800000; i++) {
1320 dma_xfer((uint *)(0x800000*i), 0x800000, (uint *)0);
1321 }
1322
1323 /*
1324 * Enable errors for ECC.
1325 */
1326 debug("DMA DDR: err_disable = 0x%08x\n", ddr1->err_disable);
1327 ddr1->err_disable = 0x00000000;
1328 asm("sync;isync;msync");
1329 debug("DMA DDR: err_disable = 0x%08x\n", ddr1->err_disable);
1330}
1331
1332#endif /* CONFIG_DDR_ECC && ! CONFIG_ECC_INIT_VIA_DDRCONTROLLER */