blob: b8e2560cf7c826a53d2b70811b6e55360cc3b6c9 [file] [log] [blame]
wdenk945af8d2003-07-16 21:53:01 +00001/*
2 * (C) Copyright 2003
3 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
4 *
5 * This file is based on mpc4200fec.c,
6 * (C) Copyright Motorola, Inc., 2000
7 */
8
9#include <common.h>
10#include <mpc5xxx.h>
11#include <malloc.h>
12#include <net.h>
13#include <miiphy.h>
14#include "sdma.h"
15#include "fec.h"
16
17#define DEBUG 0x8
18
19#if (CONFIG_COMMANDS & CFG_CMD_NET) && defined(CONFIG_NET_MULTI) && \
20 defined(CONFIG_MPC5XXX_FEC)
21
22#if (DEBUG & 0x60)
23static void tfifo_print(mpc5xxx_fec_priv *fec);
24static void rfifo_print(mpc5xxx_fec_priv *fec);
25#endif /* DEBUG */
26
27#if (DEBUG & 0x40)
28static uint32 local_crc32(char *string, unsigned int crc_value, int len);
29#endif
30
31/********************************************************************/
32static int mpc5xxx_fec_rbd_init(mpc5xxx_fec_priv *fec)
33{
34 int ix;
35 char *data;
36
37 /*
38 * the receive ring is located right after the transmit one
39 */
40 for (ix = 0; ix < FEC_RBD_NUM; ix++) {
41 data = (char *)malloc(FEC_MAX_PKT_SIZE);
42 if (data == NULL) {
43 printf ("RBD INIT FAILED\n");
44 return -1;
45 }
46 fec->rbdBase[ix].status = FEC_RBD_EMPTY;
47 fec->rbdBase[ix].dataLength = 0;
48 fec->rbdBase[ix].dataPointer = (uint32)data;
49 }
50
51 /*
52 * have the last RBD to close the ring
53 */
54 fec->rbdBase[ix - 1].status |= FEC_RBD_WRAP;
55 fec->rbdIndex = 0;
56
57 return 0;
58}
59
60/********************************************************************/
61static void mpc5xxx_fec_tbd_init(mpc5xxx_fec_priv *fec)
62{
63 int ix;
64
65 for (ix = 0; ix < FEC_TBD_NUM; ix++) {
66 fec->tbdBase[ix].status = 0;
67 }
68
69 /*
70 * Have the last TBD to close the ring
71 */
72 fec->tbdBase[ix - 1].status |= FEC_TBD_WRAP;
73
74 /*
75 * Initialize some indices
76 */
77 fec->tbdIndex = 0;
78 fec->usedTbdIndex = 0;
79 fec->cleanTbdNum = FEC_TBD_NUM;
80}
81
82/********************************************************************/
83static void mpc5xxx_fec_rbd_clean(mpc5xxx_fec_priv *fec, FEC_RBD * pRbd)
84{
85 /*
86 * Reset buffer descriptor as empty
87 */
88 if ((fec->rbdIndex) == (FEC_RBD_NUM - 1))
89 pRbd->status = (FEC_RBD_WRAP | FEC_RBD_EMPTY);
90 else
91 pRbd->status = FEC_RBD_EMPTY;
92
93 pRbd->dataLength = 0;
94
95 /*
96 * Now, we have an empty RxBD, restart the SmartDMA receive task
97 */
98 SDMA_TASK_ENABLE(FEC_RECV_TASK_NO);
99
100 /*
101 * Increment BD count
102 */
103 fec->rbdIndex = (fec->rbdIndex + 1) % FEC_RBD_NUM;
104}
105
106/********************************************************************/
107static void mpc5xxx_fec_tbd_scrub(mpc5xxx_fec_priv *fec)
108{
109 FEC_TBD *pUsedTbd;
110
111#if (DEBUG & 0x1)
112 printf ("tbd_scrub: fec->cleanTbdNum = %d, fec->usedTbdIndex = %d\n",
113 fec->cleanTbdNum, fec->usedTbdIndex);
114#endif
115
116 /*
117 * process all the consumed TBDs
118 */
119 while (fec->cleanTbdNum < FEC_TBD_NUM) {
120 pUsedTbd = &fec->tbdBase[fec->usedTbdIndex];
121 if (pUsedTbd->status & FEC_TBD_READY) {
122#if (DEBUG & 0x20)
123 printf("Cannot clean TBD %d, in use\n", fec->cleanTbdNum);
124#endif
125 return;
126 }
127
128 /*
129 * clean this buffer descriptor
130 */
131 if (fec->usedTbdIndex == (FEC_TBD_NUM - 1))
132 pUsedTbd->status = FEC_TBD_WRAP;
133 else
134 pUsedTbd->status = 0;
135
136 /*
137 * update some indeces for a correct handling of the TBD ring
138 */
139 fec->cleanTbdNum++;
140 fec->usedTbdIndex = (fec->usedTbdIndex + 1) % FEC_TBD_NUM;
141 }
142}
143
144/********************************************************************/
145static void mpc5xxx_fec_set_hwaddr(mpc5xxx_fec_priv *fec, char *mac)
146{
147 uint8 currByte; /* byte for which to compute the CRC */
148 int byte; /* loop - counter */
149 int bit; /* loop - counter */
150 uint32 crc = 0xffffffff; /* initial value */
151
152 /*
153 * The algorithm used is the following:
154 * we loop on each of the six bytes of the provided address,
155 * and we compute the CRC by left-shifting the previous
156 * value by one position, so that each bit in the current
157 * byte of the address may contribute the calculation. If
158 * the latter and the MSB in the CRC are different, then
159 * the CRC value so computed is also ex-ored with the
160 * "polynomium generator". The current byte of the address
161 * is also shifted right by one bit at each iteration.
162 * This is because the CRC generatore in hardware is implemented
163 * as a shift-register with as many ex-ores as the radixes
164 * in the polynomium. This suggests that we represent the
165 * polynomiumm itself as a 32-bit constant.
166 */
167 for (byte = 0; byte < 6; byte++) {
168 currByte = mac[byte];
169 for (bit = 0; bit < 8; bit++) {
170 if ((currByte & 0x01) ^ (crc & 0x01)) {
171 crc >>= 1;
172 crc = crc ^ 0xedb88320;
173 } else {
174 crc >>= 1;
175 }
176 currByte >>= 1;
177 }
178 }
179
180 crc = crc >> 26;
181
182 /*
183 * Set individual hash table register
184 */
185 if (crc >= 32) {
186 fec->eth->iaddr1 = (1 << (crc - 32));
187 fec->eth->iaddr2 = 0;
188 } else {
189 fec->eth->iaddr1 = 0;
190 fec->eth->iaddr2 = (1 << crc);
191 }
192
193 /*
194 * Set physical address
195 */
196 fec->eth->paddr1 = (mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3];
197 fec->eth->paddr2 = (mac[4] << 24) + (mac[5] << 16) + 0x8808;
198}
199
200/********************************************************************/
201static int mpc5xxx_fec_init(struct eth_device *dev, bd_t * bis)
202{
203 mpc5xxx_fec_priv *fec = (mpc5xxx_fec_priv *)dev->priv;
204 struct mpc5xxx_sdma *sdma = (struct mpc5xxx_sdma *)MPC5XXX_SDMA;
205 const uint8 phyAddr = 0; /* Only one PHY */
206
207#if (DEBUG & 0x1)
208 printf ("mpc5xxx_fec_init... Begin\n");
209#endif
210
211 /*
212 * Initialize RxBD/TxBD rings
213 */
214 mpc5xxx_fec_rbd_init(fec);
215 mpc5xxx_fec_tbd_init(fec);
216
217 /*
218 * Initialize GPIO pins
219 */
220 if (fec->xcv_type == SEVENWIRE) {
221 /* 10MBit with 7-wire operation */
222 *(vu_long *)MPC5XXX_GPS_PORT_CONFIG |= 0x00020000;
223 } else {
224 /* 100MBit with MD operation */
225 *(vu_long *)MPC5XXX_GPS_PORT_CONFIG |= 0x00050000;
226 }
227
228 /*
229 * Clear FEC-Lite interrupt event register(IEVENT)
230 */
231 fec->eth->ievent = 0xffffffff;
232
233 /*
234 * Set interrupt mask register
235 */
236 fec->eth->imask = 0x00000000;
237
238 /*
239 * Set FEC-Lite receive control register(R_CNTRL):
240 */
241 if (fec->xcv_type == SEVENWIRE) {
242 /*
243 * Frame length=1518; 7-wire mode
244 */
245 fec->eth->r_cntrl = 0x05ee0020; /*0x05ee0000;FIXME */
246 } else {
247 /*
248 * Frame length=1518; MII mode;
249 */
250 fec->eth->r_cntrl = 0x05ee0024; /*0x05ee0004;FIXME */
251 }
252
253 if (fec->xcv_type == SEVENWIRE) {
254 /*
255 * Set FEC-Lite transmit control register(X_CNTRL):
256 */
257 /*fec->eth->x_cntrl = 0x00000002; */ /* half-duplex, heartbeat */
258 fec->eth->x_cntrl = 0x00000000; /* half-duplex, heartbeat disabled */
259 } else {
260 /*fec->eth->x_cntrl = 0x00000006; */ /* full-duplex, heartbeat */
261 fec->eth->x_cntrl = 0x00000004; /* full-duplex, heartbeat disabled */
262
263 /*
264 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock(25Mhz)
265 * and do not drop the Preamble.
266 */
267 fec->eth->mii_speed = (0x5 << 1); /* No MII for 7-wire mode */
268 }
269
270 /*
271 * Set Opcode/Pause Duration Register
272 */
273 fec->eth->op_pause = 0x00010020; /*FIXME0xffff0020; */
274
275 /*
276 * Set Rx FIFO alarm and granularity value
277 */
278 fec->eth->rfifo_cntrl = 0x0c000000;
279 fec->eth->rfifo_alarm = 0x0000030c;
280#if (DEBUG & 0x22)
281 if (fec->eth->rfifo_status & 0x00700000 ) {
282 printf("mpc5xxx_fec_init() RFIFO error\n");
283 }
284#endif
285
286 /*
287 * Set Tx FIFO granularity value
288 */
289 fec->eth->tfifo_cntrl = 0x0c000000;
290#if (DEBUG & 0x2)
291 printf("tfifo_status: 0x%08x\n", fec->eth->tfifo_status);
292 printf("tfifo_alarm: 0x%08x\n", fec->eth->tfifo_alarm);
293#endif
294
295 /*
296 * Set transmit fifo watermark register(X_WMRK), default = 64
297 */
298 fec->eth->tfifo_alarm = 0x00000080;
299 fec->eth->x_wmrk = 0x2;
300
301 /*
302 * Set individual address filter for unicast address
303 * and set physical address registers.
304 */
305 mpc5xxx_fec_set_hwaddr(fec, dev->enetaddr);
306
307 /*
308 * Set multicast address filter
309 */
310 fec->eth->gaddr1 = 0x00000000;
311 fec->eth->gaddr2 = 0x00000000;
312
313 /*
314 * Turn ON cheater FSM: ????
315 */
316 fec->eth->xmit_fsm = 0x03000000;
317
318#if defined(CONFIG_MPC5200)
319 /*
320 * Turn off COMM bus prefetch in the MGT5200 BestComm. It doesn't
321 * work w/ the current receive task.
322 */
323 sdma->PtdCntrl |= 0x00000001;
324#endif
325
326 /*
327 * Set priority of different initiators
328 */
329 sdma->IPR0 = 7; /* always */
330 sdma->IPR3 = 6; /* Eth RX */
331 sdma->IPR4 = 5; /* Eth Tx */
332
333 /*
334 * Clear SmartDMA task interrupt pending bits
335 */
336 SDMA_CLEAR_IEVENT(FEC_RECV_TASK_NO);
337
338 /*
339 * Set SmartDMA intMask register to enable SmartDMA task interrupts
340 */
341 SDMA_INT_ENABLE(FEC_RECV_TASK_NO);
342
343 /*
344 * Initialize SmartDMA parameters stored in SRAM
345 */
346 *(int *)FEC_TBD_BASE = (int)fec->tbdBase;
347 *(int *)FEC_RBD_BASE = (int)fec->rbdBase;
348 *(int *)FEC_TBD_NEXT = (int)fec->tbdBase;
349 *(int *)FEC_RBD_NEXT = (int)fec->rbdBase;
350
351 if (fec->xcv_type != SEVENWIRE) {
352 /*
353 * Initialize PHY(LXT971A):
354 *
355 * Generally, on power up, the LXT971A reads its configuration
356 * pins to check for forced operation, If not cofigured for
357 * forced operation, it uses auto-negotiation/parallel detection
358 * to automatically determine line operating conditions.
359 * If the PHY device on the other side of the link supports
360 * auto-negotiation, the LXT971A auto-negotiates with it
361 * using Fast Link Pulse(FLP) Bursts. If the PHY partner does not
362 * support auto-negotiation, the LXT971A automatically detects
363 * the presence of either link pulses(10Mbps PHY) or Idle
364 * symbols(100Mbps) and sets its operating conditions accordingly.
365 *
366 * When auto-negotiation is controlled by software, the following
367 * steps are recommended.
368 *
369 * Note:
370 * The physical address is dependent on hardware configuration.
371 *
372 */
373 int timeout = 1;
374 uint16 phyStatus;
375
376 /*
377 * Reset PHY, then delay 300ns
378 */
379 miiphy_write(phyAddr, 0x0, 0x8000);
380 udelay(1000);
381
382 if (fec->xcv_type == MII10) {
383 /*
384 * Force 10Base-T, FDX operation
385 */
386 printf("Forcing 10 Mbps ethernet link... ");
387 miiphy_read(phyAddr, 0x1, &phyStatus);
388 /*
389 miiphy_write(fec, phyAddr, 0x0, 0x0100);
390 */
391 miiphy_write(phyAddr, 0x0, 0x0180);
392
393 timeout = 20;
394 do { /* wait for link status to go down */
395 udelay(10000);
396 if ((timeout--) == 0) {
397#if (DEBUG & 0x2)
398 printf("hmmm, should not have waited...");
399#endif
400 break;
401 }
402 miiphy_read(phyAddr, 0x1, &phyStatus);
403#if (DEBUG & 0x2)
404 printf("=");
405#endif
406 } while ((phyStatus & 0x0004)); /* !link up */
407
408 timeout = 1000;
409 do { /* wait for link status to come back up */
410 udelay(10000);
411 if ((timeout--) == 0) {
412 printf("failed. Link is down.\n");
413 break;
414 }
415 miiphy_read(phyAddr, 0x1, &phyStatus);
416#if (DEBUG & 0x2)
417 printf("+");
418#endif
419 } while (!(phyStatus & 0x0004)); /* !link up */
420
421 printf ("done.\n");
422 } else { /* MII100 */
423 /*
424 * Set the auto-negotiation advertisement register bits
425 */
426 miiphy_write(phyAddr, 0x4, 0x01e1);
427
428 /*
429 * Set MDIO bit 0.12 = 1(&& bit 0.9=1?) to enable auto-negotiation
430 */
431 miiphy_write(phyAddr, 0x0, 0x1200);
432
433 /*
434 * Wait for AN completion
435 */
436 timeout = 5000;
437 do {
438 udelay(1000);
439
440 if ((timeout--) == 0) {
441#if (DEBUG & 0x2)
442 printf("PHY auto neg 0 failed...\n");
443#endif
444 return -1;
445 }
446
447 if (miiphy_read(phyAddr, 0x1, &phyStatus) != 0) {
448#if (DEBUG & 0x2)
449 printf("PHY auto neg 1 failed 0x%04x...\n", phyStatus);
450#endif
451 return -1;
452 }
453 } while ((phyStatus & 0x0020) != 0x0020);
454
455#if (DEBUG & 0x2)
456 printf("PHY auto neg complete! \n");
457#endif
458 }
459
460 }
461
462 /*
463 * Enable FEC-Lite controller
464 */
465 fec->eth->ecntrl |= 0x00000006;
466
467 if (fec->xcv_type != SEVENWIRE) {
468#if (DEBUG & 0x2)
469 uint16 phyStatus, i;
470 uint8 phyAddr = 0;
471
472 for (i = 0; i < 9; i++) {
473 miiphy_read(phyAddr, i, &phyStatus);
474 printf("Mii reg %d: 0x%04x\n", i, phyStatus);
475 }
476 for (i = 16; i < 21; i++) {
477 miiphy_read(phyAddr, i, &phyStatus);
478 printf("Mii reg %d: 0x%04x\n", i, phyStatus);
479 }
480#endif
481 }
482 /*
483 * Enable SmartDMA receive task
484 */
485 SDMA_TASK_ENABLE(FEC_RECV_TASK_NO);
486
487#if (DEBUG & 0x1)
488 printf("mpc5xxx_fec_init... Done \n");
489#endif
490
491 return 0;
492}
493
494/********************************************************************/
495static void mpc5xxx_fec_halt(struct eth_device *dev)
496{
497 mpc5xxx_fec_priv *fec = (mpc5xxx_fec_priv *)dev->priv;
498 struct mpc5xxx_sdma *sdma = (struct mpc5xxx_sdma *)MPC5XXX_SDMA;
499 int counter = 0xffff;
500
501#if (DEBUG & 0x2)
502 if (fec->xcv_type != SEVENWIRE) {
503 uint16 phyStatus, i;
504 uint8 phyAddr = 0;
505
506 for (i = 0; i < 9; i++) {
507 miiphy_read(phyAddr, i, &phyStatus);
508 printf("Mii reg %d: 0x%04x\n", i, phyStatus);
509 }
510 for (i = 16; i < 21; i++) {
511 miiphy_read(phyAddr, i, &phyStatus);
512 printf ("Mii reg %d: 0x%04x\n", i, phyStatus);
513 }
514 }
515#endif
516
517
518 /*
519 * mask FEC chip interrupts
520 */
521 fec->eth->imask = 0;
522
523 /*
524 * issue graceful stop command to the FEC transmitter if necessary
525 */
526 fec->eth->x_cntrl |= 0x00000001;
527
528 /*
529 * wait for graceful stop to register
530 */
531 while ((counter--) && (!(fec->eth->ievent & 0x10000000))) ;
532
533 SDMA_INT_DISABLE (FEC_RECV_TASK_NO);
534
535 /*
536 * Disable SmartDMA tasks
537 */
538 SDMA_TASK_DISABLE (FEC_XMIT_TASK_NO);
539 SDMA_TASK_DISABLE (FEC_RECV_TASK_NO);
540
541#if defined(CONFIG_MPC5200)
542 /*
543 * Turn on COMM bus prefetch in the MGT5200 BestComm after we're
544 * done. It doesn't work w/ the current receive task.
545 */
546 sdma->PtdCntrl &= ~0x00000001;
547#endif
548
549 /*
550 * Disable the Ethernet Controller
551 */
552 fec->eth->ecntrl &= 0xfffffffd;
553
554 /*
555 * Clear FIFO status registers
556 */
557 fec->eth->rfifo_status &= 0x00700000;
558 fec->eth->tfifo_status &= 0x00700000;
559
560 fec->eth->reset_cntrl = 0x01000000;
561
562 /*
563 * Issue a reset command to the FEC chip
564 */
565 fec->eth->ecntrl |= 0x1;
566
567 /*
568 * wait at least 16 clock cycles
569 */
570 udelay(10);
571
572#if (DEBUG & 0x3)
573 printf("Ethernet task stopped\n");
574#endif
575}
576
577#if (DEBUG & 0x60)
578/********************************************************************/
579
580static void tfifo_print(mpc5xxx_fec_priv *fec)
581{
582 uint16 phyAddr = 0;
583 uint16 phyStatus;
584
585 if ((fec->eth->tfifo_lrf_ptr != fec->eth->tfifo_lwf_ptr)
586 || (fec->eth->tfifo_rdptr != fec->eth->tfifo_wrptr)) {
587
588 miiphy_read(phyAddr, 0x1, &phyStatus);
589 printf("\nphyStatus: 0x%04x\n", phyStatus);
590 printf("ecntrl: 0x%08x\n", fec->eth->ecntrl);
591 printf("ievent: 0x%08x\n", fec->eth->ievent);
592 printf("x_status: 0x%08x\n", fec->eth->x_status);
593 printf("tfifo: status 0x%08x\n", fec->eth->tfifo_status);
594
595 printf(" control 0x%08x\n", fec->eth->tfifo_cntrl);
596 printf(" lrfp 0x%08x\n", fec->eth->tfifo_lrf_ptr);
597 printf(" lwfp 0x%08x\n", fec->eth->tfifo_lwf_ptr);
598 printf(" alarm 0x%08x\n", fec->eth->tfifo_alarm);
599 printf(" readptr 0x%08x\n", fec->eth->tfifo_rdptr);
600 printf(" writptr 0x%08x\n", fec->eth->tfifo_wrptr);
601 }
602}
603
604static void rfifo_print(mpc5xxx_fec_priv *fec)
605{
606 uint16 phyAddr = 0;
607 uint16 phyStatus;
608
609 if ((fec->eth->rfifo_lrf_ptr != fec->eth->rfifo_lwf_ptr)
610 || (fec->eth->rfifo_rdptr != fec->eth->rfifo_wrptr)) {
611
612 miiphy_read(phyAddr, 0x1, &phyStatus);
613 printf("\nphyStatus: 0x%04x\n", phyStatus);
614 printf("ecntrl: 0x%08x\n", fec->eth->ecntrl);
615 printf("ievent: 0x%08x\n", fec->eth->ievent);
616 printf("x_status: 0x%08x\n", fec->eth->x_status);
617 printf("rfifo: status 0x%08x\n", fec->eth->rfifo_status);
618
619 printf(" control 0x%08x\n", fec->eth->rfifo_cntrl);
620 printf(" lrfp 0x%08x\n", fec->eth->rfifo_lrf_ptr);
621 printf(" lwfp 0x%08x\n", fec->eth->rfifo_lwf_ptr);
622 printf(" alarm 0x%08x\n", fec->eth->rfifo_alarm);
623 printf(" readptr 0x%08x\n", fec->eth->rfifo_rdptr);
624 printf(" writptr 0x%08x\n", fec->eth->rfifo_wrptr);
625 }
626}
627#endif /* DEBUG */
628
629/********************************************************************/
630
631static int mpc5xxx_fec_send(struct eth_device *dev, volatile void *eth_data,
632 int data_length)
633{
634 /*
635 * This routine transmits one frame. This routine only accepts
636 * 6-byte Ethernet addresses.
637 */
638 mpc5xxx_fec_priv *fec = (mpc5xxx_fec_priv *)dev->priv;
639 FEC_TBD *pTbd;
640
641#if (DEBUG & 0x20)
642 printf("tbd status: 0x%04x\n", fec->tbdBase[0].status);
643 tfifo_print(fec);
644#endif
645
646 /*
647 * Clear Tx BD ring at first
648 */
649 mpc5xxx_fec_tbd_scrub(fec);
650
651 /*
652 * Check for valid length of data.
653 */
654 if ((data_length > 1500) || (data_length <= 0)) {
655 return -1;
656 }
657
658 /*
659 * Check the number of vacant TxBDs.
660 */
661 if (fec->cleanTbdNum < 1) {
662#if (DEBUG & 0x20)
663 printf("No available TxBDs ...\n");
664#endif
665 return -1;
666 }
667
668 /*
669 * Get the first TxBD to send the mac header
670 */
671 pTbd = &fec->tbdBase[fec->tbdIndex];
672 pTbd->dataLength = data_length;
673 pTbd->dataPointer = (uint32)eth_data;
674 pTbd->status |= FEC_TBD_READY;
675 fec->tbdIndex = (fec->tbdIndex + 1) % FEC_TBD_NUM;
676
677#if (DEBUG & 0x100)
678 printf("SDMA_TASK_ENABLE, fec->tbdIndex = %d \n", fec->tbdIndex);
679#endif
680
681 /*
682 * Kick the MII i/f
683 */
684 if (fec->xcv_type != SEVENWIRE) {
685 uint16 phyStatus;
686 miiphy_read(0, 0x1, &phyStatus);
687 }
688
689 /*
690 * Enable SmartDMA transmit task
691 */
692
693#if (DEBUG & 0x20)
694 tfifo_print(fec);
695#endif
696 SDMA_TASK_ENABLE (FEC_XMIT_TASK_NO);
697#if (DEBUG & 0x20)
698 tfifo_print(fec);
699#endif
700#if (DEBUG & 0x8)
701 printf( "+" );
702#endif
703
704 fec->cleanTbdNum -= 1;
705
706#if (DEBUG & 0x129) && (DEBUG & 0x80000000)
707 printf ("smartDMA ethernet Tx task enabled\n");
708#endif
709 /*
710 * wait until frame is sent .
711 */
712 while (pTbd->status & FEC_TBD_READY) {
713 udelay(10);
714#if (DEBUG & 0x8)
715 printf ("TDB status = %04x\n", pTbd->status);
716#endif
717 }
718
719 return 0;
720}
721
722
723/********************************************************************/
724static int mpc5xxx_fec_recv(struct eth_device *dev)
725{
726 /*
727 * This command pulls one frame from the card
728 */
729 mpc5xxx_fec_priv *fec = (mpc5xxx_fec_priv *)dev->priv;
730 FEC_RBD *pRbd = &fec->rbdBase[fec->rbdIndex];
731 unsigned long ievent;
732 int frame_length;
733 char *frame;
734
735#if (DEBUG & 0x1)
736 printf ("mpc5xxx_fec_recv %d Start...\n", fec->rbdIndex);
737#endif
738#if (DEBUG & 0x8)
739 printf( "-" );
740#endif
741
742 /*
743 * Check if any critical events have happened
744 */
745 ievent = fec->eth->ievent;
746 fec->eth->ievent = ievent;
747 if (ievent & 0x20060000) {
748 /* BABT, Rx/Tx FIFO errors */
749 mpc5xxx_fec_halt(dev);
750 mpc5xxx_fec_init(dev, NULL);
751 return 0;
752 }
753 if (ievent & 0x80000000) {
754 /* Heartbeat error */
755 fec->eth->x_cntrl |= 0x00000001;
756 }
757 if (ievent & 0x10000000) {
758 /* Graceful stop complete */
759 if (fec->eth->x_cntrl & 0x00000001) {
760 mpc5xxx_fec_halt(dev);
761 fec->eth->x_cntrl &= ~0x00000001;
762 mpc5xxx_fec_init(dev, NULL);
763 }
764 }
765
766 /*
767 * Do we have data in Rx FIFO?
768 */
769 if ((pRbd->status & FEC_RBD_EMPTY) || !(pRbd->status & FEC_RBD_LAST)){
770 return 0;
771 }
772
773 /*
774 * Pass the packet up only if reception was Ok
775 */
776 if ((pRbd->dataLength <= 14) || (pRbd->status & FEC_RBD_ERR)) {
777 mpc5xxx_fec_rbd_clean(fec, pRbd);
778#if (DEBUG & 0x8)
779 printf( "X0" );
780#endif
781 return 0;
782 }
783
784 /*
785 * Get buffer address and size
786 */
787 frame = (char *)pRbd->dataPointer;
788 frame_length = pRbd->dataLength;
789
790 /*
791 * Pass the buffer to upper layers
792 */
793 NetReceive(frame, frame_length);
794
795 /*
796 * Reset buffer descriptor as empty
797 */
798 mpc5xxx_fec_rbd_clean(fec, pRbd);
799
800 return frame_length;
801}
802
803
804/********************************************************************/
805int mpc5xxx_fec_initialize(bd_t * bis)
806{
807 mpc5xxx_fec_priv *fec;
808 struct eth_device *dev;
809
810 fec = (mpc5xxx_fec_priv *)malloc(sizeof(*fec));
811 dev = (struct eth_device *)malloc(sizeof(*dev));
812
813 fec->eth = (ethernet_regs *)MPC5XXX_FEC;
814 fec->tbdBase = (FEC_TBD *)FEC_BD_BASE;
815 fec->rbdBase = (FEC_RBD *)(FEC_BD_BASE + FEC_TBD_NUM * sizeof(FEC_TBD));
816#ifdef CONFIG_ICECUBE
817 fec->xcv_type = MII100;
818#endif
819
820 dev->priv = (void *)fec;
821 dev->iobase = MPC5XXX_FEC;
822 dev->init = mpc5xxx_fec_init;
823 dev->halt = mpc5xxx_fec_halt;
824 dev->send = mpc5xxx_fec_send;
825 dev->recv = mpc5xxx_fec_recv;
826
827 eth_register(dev);
828
829 return 1;
830}
831
832/* MII-interface related functions */
833/********************************************************************/
834int miiphy_read(uint8 phyAddr, uint8 regAddr, uint16 * retVal)
835{
836 ethernet_regs *eth = (ethernet_regs *)MPC5XXX_FEC;
837 uint32 reg; /* convenient holder for the PHY register */
838 uint32 phy; /* convenient holder for the PHY */
839 int timeout = 0xffff;
840
841 /*
842 * reading from any PHY's register is done by properly
843 * programming the FEC's MII data register.
844 */
845 reg = regAddr << FEC_MII_DATA_RA_SHIFT;
846 phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
847
848 eth->mii_data = (FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA | phy | reg);
849
850 /*
851 * wait for the related interrupt
852 */
853 while ((timeout--) && (!(eth->ievent & 0x00800000))) ;
854
855 if (timeout == 0) {
856#if (DEBUG & 0x2)
857 printf ("Read MDIO failed...\n");
858#endif
859 return -1;
860 }
861
862 /*
863 * clear mii interrupt bit
864 */
865 eth->ievent = 0x00800000;
866
867 /*
868 * it's now safe to read the PHY's register
869 */
870 *retVal = (uint16) eth->mii_data;
871
872 return 0;
873}
874
875/********************************************************************/
876int miiphy_write(uint8 phyAddr, uint8 regAddr, uint16 data)
877{
878 ethernet_regs *eth = (ethernet_regs *)MPC5XXX_FEC;
879 uint32 reg; /* convenient holder for the PHY register */
880 uint32 phy; /* convenient holder for the PHY */
881 int timeout = 0xffff;
882
883 reg = regAddr << FEC_MII_DATA_RA_SHIFT;
884 phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
885
886 eth->mii_data = (FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
887 FEC_MII_DATA_TA | phy | reg | data);
888
889 /*
890 * wait for the MII interrupt
891 */
892 while ((timeout--) && (!(eth->ievent & 0x00800000))) ;
893
894 if (timeout == 0) {
895#if (DEBUG & 0x2)
896 printf ("Write MDIO failed...\n");
897#endif
898 return -1;
899 }
900
901 /*
902 * clear MII interrupt bit
903 */
904 eth->ievent = 0x00800000;
905
906 return 0;
907}
908
909#if (DEBUG & 0x40)
910static uint32 local_crc32(char *string, unsigned int crc_value, int len)
911{
912 int i;
913 char c;
914 unsigned int crc, count;
915
916 /*
917 * crc32 algorithm
918 */
919 /*
920 * crc = 0xffffffff; * The initialized value should be 0xffffffff
921 */
922 crc = crc_value;
923
924 for (i = len; --i >= 0;) {
925 c = *string++;
926 for (count = 0; count < 8; count++) {
927 if ((c & 0x01) ^ (crc & 0x01)) {
928 crc >>= 1;
929 crc = crc ^ 0xedb88320;
930 } else {
931 crc >>= 1;
932 }
933 c >>= 1;
934 }
935 }
936
937 /*
938 * In big endian system, do byte swaping for crc value
939 */
940 /**/ return crc;
941}
942#endif /* DEBUG */
943
944#endif /* CONFIG_MPC5XXX_FEC */