blob: 5279bf0a15485d7f4d612b77abbfa065dd35af61 [file] [log] [blame]
Tom Rini83d290c2018-05-06 17:58:06 -04001// SPDX-License-Identifier: GPL-2.0
Philipp Tomsich403e9cb2017-06-23 00:12:05 +02002/*
3 * (C) Copyright 2017 Theobroma Systems Design und Consulting GmbH
Philipp Tomsich403e9cb2017-06-23 00:12:05 +02004 */
5
6#include <common.h>
7#include <clk.h>
8#include <dm.h>
Simon Glassdb41d652019-12-28 10:45:07 -07009#include <hang.h>
Simon Glassf7ae49f2020-05-10 11:40:05 -060010#include <log.h>
Philipp Tomsich403e9cb2017-06-23 00:12:05 +020011#include <dt-bindings/memory/rk3368-dmc.h>
12#include <dt-structs.h>
13#include <ram.h>
14#include <regmap.h>
15#include <syscon.h>
Kever Yang15f09a12019-03-28 11:01:23 +080016#include <asm/arch-rockchip/clock.h>
17#include <asm/arch-rockchip/cru_rk3368.h>
18#include <asm/arch-rockchip/grf_rk3368.h>
Quentin Schulzeda2c872024-03-11 13:01:56 +010019#include <asm/arch-rockchip/hardware.h>
Kever Yang15f09a12019-03-28 11:01:23 +080020#include <asm/arch-rockchip/ddr_rk3368.h>
Kever Yang5d19ddf2019-11-15 11:04:33 +080021#include <asm/arch-rockchip/sdram.h>
Kever Yang2a2f0b12019-11-15 11:04:32 +080022#include <asm/arch-rockchip/sdram_rk3288.h>
Simon Glasscd93d622020-05-10 11:40:13 -060023#include <linux/bitops.h>
Simon Glassc05ed002020-05-10 11:40:11 -060024#include <linux/delay.h>
Simon Glass61b29b82020-02-03 07:36:15 -070025#include <linux/err.h>
Simon Glass1e94b462023-09-14 18:21:46 -060026#include <linux/printk.h>
Philipp Tomsich403e9cb2017-06-23 00:12:05 +020027
Philipp Tomsich403e9cb2017-06-23 00:12:05 +020028struct dram_info {
29 struct ram_info info;
30 struct clk ddr_clk;
31 struct rk3368_cru *cru;
32 struct rk3368_grf *grf;
33 struct rk3368_ddr_pctl *pctl;
34 struct rk3368_ddrphy *phy;
35 struct rk3368_pmu_grf *pmugrf;
36 struct rk3368_msch *msch;
37};
38
39struct rk3368_sdram_params {
40#if CONFIG_IS_ENABLED(OF_PLATDATA)
41 struct dtd_rockchip_rk3368_dmc of_plat;
42#endif
43 struct rk3288_sdram_pctl_timing pctl_timing;
44 u32 trefi_mem_ddr3;
45 struct rk3288_sdram_channel chan;
46 struct regmap *map;
47 u32 ddr_freq;
48 u32 memory_schedule;
49 u32 ddr_speed_bin;
50 u32 tfaw_mult;
51};
52
53/* PTCL bits */
54enum {
55 /* PCTL_DFISTCFG0 */
56 DFI_INIT_START = BIT(0),
57 DFI_DATA_BYTE_DISABLE_EN = BIT(2),
58
59 /* PCTL_DFISTCFG1 */
60 DFI_DRAM_CLK_SR_EN = BIT(0),
61 DFI_DRAM_CLK_DPD_EN = BIT(1),
62 ODT_LEN_BL8_W_SHIFT = 16,
63
64 /* PCTL_DFISTCFG2 */
65 DFI_PARITY_INTR_EN = BIT(0),
66 DFI_PARITY_EN = BIT(1),
67
68 /* PCTL_DFILPCFG0 */
69 TLP_RESP_TIME_SHIFT = 16,
70 LP_SR_EN = BIT(8),
71 LP_PD_EN = BIT(0),
72
73 /* PCTL_DFIODTCFG */
74 RANK0_ODT_WRITE_SEL = BIT(3),
75 RANK1_ODT_WRITE_SEL = BIT(11),
76
77 /* PCTL_SCFG */
78 HW_LOW_POWER_EN = BIT(0),
79
80 /* PCTL_MCMD */
81 START_CMD = BIT(31),
82 MCMD_RANK0 = BIT(20),
83 MCMD_RANK1 = BIT(21),
84 DESELECT_CMD = 0,
85 PREA_CMD,
86 REF_CMD,
87 MRS_CMD,
88 ZQCS_CMD,
89 ZQCL_CMD,
90 RSTL_CMD,
91 MRR_CMD = 8,
92 DPDE_CMD,
93
94 /* PCTL_POWCTL */
95 POWER_UP_START = BIT(0),
96
97 /* PCTL_POWSTAT */
98 POWER_UP_DONE = BIT(0),
99
100 /* PCTL_SCTL */
101 INIT_STATE = 0,
102 CFG_STATE,
103 GO_STATE,
104 SLEEP_STATE,
105 WAKEUP_STATE,
106
107 /* PCTL_STAT */
108 LP_TRIG_SHIFT = 4,
109 LP_TRIG_MASK = 7,
110 PCTL_STAT_MSK = 7,
111 INIT_MEM = 0,
112 CONFIG,
Tom Rini6e7df1d2023-01-10 11:19:45 -0500113 CFG_REQ,
Philipp Tomsich403e9cb2017-06-23 00:12:05 +0200114 ACCESS,
115 ACCESS_REQ,
116 LOW_POWER,
117 LOW_POWER_ENTRY_REQ,
118 LOW_POWER_EXIT_REQ,
119
120 /* PCTL_MCFG */
121 DDR2_DDR3_BL_8 = BIT(0),
122 DDR3_EN = BIT(5),
123 TFAW_TRRD_MULT4 = (0 << 18),
124 TFAW_TRRD_MULT5 = (1 << 18),
125 TFAW_TRRD_MULT6 = (2 << 18),
126};
127
128#define DDR3_MR0_WR(n) \
129 ((n <= 8) ? ((n - 4) << 9) : (((n >> 1) & 0x7) << 9))
130#define DDR3_MR0_CL(n) \
131 ((((n - 4) & 0x7) << 4) | (((n - 4) & 0x8) >> 2))
132#define DDR3_MR0_BL8 \
133 (0 << 0)
134#define DDR3_MR0_DLL_RESET \
135 (1 << 8)
136#define DDR3_MR1_RTT120OHM \
137 ((0 << 9) | (1 << 6) | (0 << 2))
138#define DDR3_MR2_TWL(n) \
139 (((n - 5) & 0x7) << 3)
140
141
142#ifdef CONFIG_TPL_BUILD
143
144static void ddr_set_noc_spr_err_stall(struct rk3368_grf *grf, bool enable)
145{
146 if (enable)
147 rk_setreg(&grf->ddrc0_con0, NOC_RSP_ERR_STALL);
148 else
149 rk_clrreg(&grf->ddrc0_con0, NOC_RSP_ERR_STALL);
150}
151
152static void ddr_set_ddr3_mode(struct rk3368_grf *grf, bool ddr3_mode)
153{
154 if (ddr3_mode)
155 rk_setreg(&grf->ddrc0_con0, MSCH0_MAINDDR3_DDR3);
156 else
157 rk_clrreg(&grf->ddrc0_con0, MSCH0_MAINDDR3_DDR3);
158}
159
160static void ddrphy_config(struct rk3368_ddrphy *phy,
161 u32 tcl, u32 tal, u32 tcwl)
162{
163 int i;
164
165 /* Set to DDR3 mode */
166 clrsetbits_le32(&phy->reg[1], 0x3, 0x0);
167
168 /* DDRPHY_REGB: CL, AL */
169 clrsetbits_le32(&phy->reg[0xb], 0xff, tcl << 4 | tal);
170 /* DDRPHY_REGC: CWL */
171 clrsetbits_le32(&phy->reg[0xc], 0x0f, tcwl);
172
173 /* Update drive-strength */
174 writel(0xcc, &phy->reg[0x11]);
175 writel(0xaa, &phy->reg[0x16]);
176 /*
177 * Update NRCOMP/PRCOMP for all 4 channels (for details of all
178 * affected registers refer to the documentation of DDRPHY_REG20
179 * and DDRPHY_REG21 in the RK3368 TRM.
180 */
181 for (i = 0; i < 4; ++i) {
182 writel(0xcc, &phy->reg[0x20 + i * 0x10]);
183 writel(0x44, &phy->reg[0x21 + i * 0x10]);
184 }
185
186 /* Enable write-leveling calibration bypass */
187 setbits_le32(&phy->reg[2], BIT(3));
188}
189
190static void copy_to_reg(u32 *dest, const u32 *src, u32 n)
191{
192 int i;
193
194 for (i = 0; i < n / sizeof(u32); i++)
195 writel(*src++, dest++);
196}
197
198static void send_command(struct rk3368_ddr_pctl *pctl, u32 rank, u32 cmd)
199{
200 u32 mcmd = START_CMD | cmd | rank;
201
202 debug("%s: writing %x to MCMD\n", __func__, mcmd);
203 writel(mcmd, &pctl->mcmd);
204 while (readl(&pctl->mcmd) & START_CMD)
205 /* spin */;
206}
207
208static void send_mrs(struct rk3368_ddr_pctl *pctl,
209 u32 rank, u32 mr_num, u32 mr_data)
210{
211 u32 mcmd = START_CMD | MRS_CMD | rank | (mr_num << 17) | (mr_data << 4);
212
213 debug("%s: writing %x to MCMD\n", __func__, mcmd);
214 writel(mcmd, &pctl->mcmd);
215 while (readl(&pctl->mcmd) & START_CMD)
216 /* spin */;
217}
218
219static int memory_init(struct rk3368_ddr_pctl *pctl,
220 struct rk3368_sdram_params *params)
221{
222 u32 mr[4];
223 const ulong timeout_ms = 500;
224 ulong tmp;
225
226 /*
227 * Power up DRAM by DDR_PCTL_POWCTL[0] register of PCTL and
228 * wait power up DRAM finish with DDR_PCTL_POWSTAT[0] register
229 * of PCTL.
230 */
231 writel(POWER_UP_START, &pctl->powctl);
232
233 tmp = get_timer(0);
234 do {
235 if (get_timer(tmp) > timeout_ms) {
Masahiro Yamada9b643e32017-09-16 14:10:41 +0900236 pr_err("%s: POWER_UP_START did not complete in %ld ms\n",
Philipp Tomsich403e9cb2017-06-23 00:12:05 +0200237 __func__, timeout_ms);
238 return -ETIME;
239 }
240 } while (!(readl(&pctl->powstat) & POWER_UP_DONE));
241
242 /* Configure MR0 through MR3 */
243 mr[0] = DDR3_MR0_WR(params->pctl_timing.twr) |
244 DDR3_MR0_CL(params->pctl_timing.tcl) |
245 DDR3_MR0_DLL_RESET;
246 mr[1] = DDR3_MR1_RTT120OHM;
247 mr[2] = DDR3_MR2_TWL(params->pctl_timing.tcwl);
248 mr[3] = 0;
249
250 /*
251 * Also see RK3368 Technical Reference Manual:
252 * "16.6.2 Initialization (DDR3 Initialization Sequence)"
253 */
254 send_command(pctl, MCMD_RANK0 | MCMD_RANK1, DESELECT_CMD);
255 udelay(1);
256 send_command(pctl, MCMD_RANK0 | MCMD_RANK1, PREA_CMD);
257 send_mrs(pctl, MCMD_RANK0 | MCMD_RANK1, 2, mr[2]);
258 send_mrs(pctl, MCMD_RANK0 | MCMD_RANK1, 3, mr[3]);
259 send_mrs(pctl, MCMD_RANK0 | MCMD_RANK1, 1, mr[1]);
260 send_mrs(pctl, MCMD_RANK0 | MCMD_RANK1, 0, mr[0]);
261 send_command(pctl, MCMD_RANK0 | MCMD_RANK1, ZQCL_CMD);
262
263 return 0;
264}
265
266static void move_to_config_state(struct rk3368_ddr_pctl *pctl)
267{
268 /*
269 * Also see RK3368 Technical Reference Manual:
270 * "16.6.1 State transition of PCTL (Moving to Config State)"
271 */
272 u32 state = readl(&pctl->stat) & PCTL_STAT_MSK;
273
274 switch (state) {
275 case LOW_POWER:
276 writel(WAKEUP_STATE, &pctl->sctl);
277 while ((readl(&pctl->stat) & PCTL_STAT_MSK) != ACCESS)
278 /* spin */;
279
280 /* fall-through */
281 case ACCESS:
282 case INIT_MEM:
283 writel(CFG_STATE, &pctl->sctl);
284 while ((readl(&pctl->stat) & PCTL_STAT_MSK) != CONFIG)
285 /* spin */;
286 break;
287
288 case CONFIG:
289 return;
290
291 default:
292 break;
293 }
294}
295
296static void move_to_access_state(struct rk3368_ddr_pctl *pctl)
297{
298 /*
299 * Also see RK3368 Technical Reference Manual:
300 * "16.6.1 State transition of PCTL (Moving to Access State)"
301 */
302 u32 state = readl(&pctl->stat) & PCTL_STAT_MSK;
303
304 switch (state) {
305 case LOW_POWER:
306 if (((readl(&pctl->stat) >> LP_TRIG_SHIFT) &
307 LP_TRIG_MASK) == 1)
308 return;
309
310 writel(WAKEUP_STATE, &pctl->sctl);
311 while ((readl(&pctl->stat) & PCTL_STAT_MSK) != ACCESS)
312 /* spin */;
313
314 /* fall-through */
315 case INIT_MEM:
316 writel(CFG_STATE, &pctl->sctl);
317 while ((readl(&pctl->stat) & PCTL_STAT_MSK) != CONFIG)
318 /* spin */;
319
320 /* fall-through */
321 case CONFIG:
322 writel(GO_STATE, &pctl->sctl);
323 while ((readl(&pctl->stat) & PCTL_STAT_MSK) == CONFIG)
324 /* spin */;
325 break;
326
327 case ACCESS:
328 return;
329
330 default:
331 break;
332 }
333}
334
335static void ddrctl_reset(struct rk3368_cru *cru)
336{
337 const u32 ctl_reset = BIT(3) | BIT(2);
338 const u32 phy_reset = BIT(1) | BIT(0);
339
340 /*
341 * The PHY reset should be released before the PCTL reset.
342 *
343 * Note that the following sequence (including the number of
344 * us to delay between releasing the PHY and PCTL reset) has
345 * been adapted per feedback received from Rockchips, so do
346 * not try to optimise.
347 */
348 rk_setreg(&cru->softrst_con[10], ctl_reset | phy_reset);
349 udelay(1);
350 rk_clrreg(&cru->softrst_con[10], phy_reset);
351 udelay(5);
352 rk_clrreg(&cru->softrst_con[10], ctl_reset);
353}
354
355static void ddrphy_reset(struct rk3368_ddrphy *ddrphy)
356{
357 /*
358 * The analog part of the PHY should be release at least 1000
359 * DRAM cycles before the digital part of the PHY (waiting for
360 * 5us will ensure this for a DRAM clock as low as 200MHz).
361 */
362 clrbits_le32(&ddrphy->reg[0], BIT(3) | BIT(2));
363 udelay(1);
364 setbits_le32(&ddrphy->reg[0], BIT(2));
365 udelay(5);
366 setbits_le32(&ddrphy->reg[0], BIT(3));
367}
368
369static void ddrphy_config_delays(struct rk3368_ddrphy *ddrphy, u32 freq)
370{
371 u32 dqs_dll_delay;
372
373 setbits_le32(&ddrphy->reg[0x13], BIT(4));
374 clrbits_le32(&ddrphy->reg[0x14], BIT(3));
375
376 setbits_le32(&ddrphy->reg[0x26], BIT(4));
377 clrbits_le32(&ddrphy->reg[0x27], BIT(3));
378
379 setbits_le32(&ddrphy->reg[0x36], BIT(4));
380 clrbits_le32(&ddrphy->reg[0x37], BIT(3));
381
382 setbits_le32(&ddrphy->reg[0x46], BIT(4));
383 clrbits_le32(&ddrphy->reg[0x47], BIT(3));
384
385 setbits_le32(&ddrphy->reg[0x56], BIT(4));
386 clrbits_le32(&ddrphy->reg[0x57], BIT(3));
387
388 if (freq <= 400000000)
389 setbits_le32(&ddrphy->reg[0xa4], 0x1f);
390 else
391 clrbits_le32(&ddrphy->reg[0xa4], 0x1f);
392
393 if (freq < 681000000)
394 dqs_dll_delay = 3; /* 67.5 degree delay */
395 else
396 dqs_dll_delay = 2; /* 45 degree delay */
397
398 writel(dqs_dll_delay, &ddrphy->reg[0x28]);
399 writel(dqs_dll_delay, &ddrphy->reg[0x38]);
400 writel(dqs_dll_delay, &ddrphy->reg[0x48]);
401 writel(dqs_dll_delay, &ddrphy->reg[0x58]);
402}
403
404static int dfi_cfg(struct rk3368_ddr_pctl *pctl)
405{
406 const ulong timeout_ms = 200;
407 ulong tmp;
408
409 writel(DFI_DATA_BYTE_DISABLE_EN, &pctl->dfistcfg0);
410
411 writel(DFI_DRAM_CLK_SR_EN | DFI_DRAM_CLK_DPD_EN,
412 &pctl->dfistcfg1);
413 writel(DFI_PARITY_INTR_EN | DFI_PARITY_EN, &pctl->dfistcfg2);
414 writel(7 << TLP_RESP_TIME_SHIFT | LP_SR_EN | LP_PD_EN,
415 &pctl->dfilpcfg0);
416
417 writel(1, &pctl->dfitphyupdtype0);
418
419 writel(0x1f, &pctl->dfitphyrdlat);
420 writel(0, &pctl->dfitphywrdata);
421 writel(0, &pctl->dfiupdcfg); /* phyupd and ctrlupd disabled */
422
423 setbits_le32(&pctl->dfistcfg0, DFI_INIT_START);
424
425 tmp = get_timer(0);
426 do {
427 if (get_timer(tmp) > timeout_ms) {
Masahiro Yamada9b643e32017-09-16 14:10:41 +0900428 pr_err("%s: DFI init did not complete within %ld ms\n",
Philipp Tomsich403e9cb2017-06-23 00:12:05 +0200429 __func__, timeout_ms);
430 return -ETIME;
431 }
432 } while ((readl(&pctl->dfiststat0) & 1) == 0);
433
434 return 0;
435}
436
437static inline u32 ps_to_tCK(const u32 ps, const ulong freq)
438{
439 const ulong MHz = 1000000;
440 return DIV_ROUND_UP(ps * freq, 1000000 * MHz);
441}
442
443static inline u32 ns_to_tCK(const u32 ns, const ulong freq)
444{
445 return ps_to_tCK(ns * 1000, freq);
446}
447
448static inline u32 tCK_to_ps(const ulong tCK, const ulong freq)
449{
450 const ulong MHz = 1000000;
451 return DIV_ROUND_UP(tCK * 1000000 * MHz, freq);
452}
453
454static int pctl_calc_timings(struct rk3368_sdram_params *params,
455 ulong freq)
456{
457 struct rk3288_sdram_pctl_timing *pctl_timing = &params->pctl_timing;
458 const ulong MHz = 1000000;
459 u32 tccd;
460 u32 tfaw_as_ps;
461
462 if (params->ddr_speed_bin != DDR3_1600K) {
Masahiro Yamada9b643e32017-09-16 14:10:41 +0900463 pr_err("%s: unimplemented DDR3 speed bin %d\n",
Philipp Tomsich403e9cb2017-06-23 00:12:05 +0200464 __func__, params->ddr_speed_bin);
465 return -1;
466 }
467
468 /* PCTL is clocked at 1/2 the DRAM clock; err on the side of caution */
469 pctl_timing->togcnt1u = DIV_ROUND_UP(freq, 2 * MHz);
470 pctl_timing->togcnt100n = DIV_ROUND_UP(freq / 10, 2 * MHz);
471
472 pctl_timing->tinit = 200; /* 200 usec */
473 pctl_timing->trsth = 500; /* 500 usec */
474 pctl_timing->trefi = 78; /* 7.8usec = 78 * 100ns */
475 params->trefi_mem_ddr3 = ns_to_tCK(pctl_timing->trefi * 100, freq);
476
477 if (freq <= (400 * MHz)) {
478 pctl_timing->tcl = 6;
479 pctl_timing->tcwl = 10;
480 } else if (freq <= (533 * MHz)) {
481 pctl_timing->tcl = 8;
482 pctl_timing->tcwl = 6;
483 } else if (freq <= (666 * MHz)) {
484 pctl_timing->tcl = 10;
485 pctl_timing->tcwl = 7;
486 } else {
487 pctl_timing->tcl = 11;
488 pctl_timing->tcwl = 8;
489 }
490
491 pctl_timing->tmrd = 4; /* 4 tCK (all speed bins) */
492 pctl_timing->trfc = ns_to_tCK(350, freq); /* tRFC: 350 (max) @ 8GBit */
493 pctl_timing->trp = max(4u, ps_to_tCK(13750, freq));
494 /*
495 * JESD-79:
496 * READ to WRITE Command Delay = RL + tCCD / 2 + 2tCK - WL
497 */
498 tccd = 4;
499 pctl_timing->trtw = pctl_timing->tcl + tccd/2 + 2 - pctl_timing->tcwl;
500 pctl_timing->tal = 0;
501 pctl_timing->tras = ps_to_tCK(35000, freq);
502 pctl_timing->trc = ps_to_tCK(48750, freq);
503 pctl_timing->trcd = ps_to_tCK(13750, freq);
504 pctl_timing->trrd = max(4u, ps_to_tCK(7500, freq));
505 pctl_timing->trtp = max(4u, ps_to_tCK(7500, freq));
506 pctl_timing->twr = ps_to_tCK(15000, freq);
507 /* The DDR3 mode-register does only support even values for tWR > 8. */
508 if (pctl_timing->twr > 8)
509 pctl_timing->twr = (pctl_timing->twr + 1) & ~1;
510 pctl_timing->twtr = max(4u, ps_to_tCK(7500, freq));
511 pctl_timing->texsr = 512; /* tEXSR(max) is tDLLLK */
512 pctl_timing->txp = max(3u, ps_to_tCK(6000, freq));
513 pctl_timing->txpdll = max(10u, ps_to_tCK(24000, freq));
514 pctl_timing->tzqcs = max(64u, ps_to_tCK(80000, freq));
515 pctl_timing->tzqcsi = 10000; /* as used by Rockchip */
516 pctl_timing->tdqs = 1; /* fixed for DDR3 */
517 pctl_timing->tcksre = max(5u, ps_to_tCK(10000, freq));
518 pctl_timing->tcksrx = max(5u, ps_to_tCK(10000, freq));
519 pctl_timing->tcke = max(3u, ps_to_tCK(5000, freq));
520 pctl_timing->tmod = max(12u, ps_to_tCK(15000, freq));
521 pctl_timing->trstl = ns_to_tCK(100, freq);
522 pctl_timing->tzqcl = max(256u, ps_to_tCK(320000, freq)); /* tZQoper */
523 pctl_timing->tmrr = 0;
524 pctl_timing->tckesr = pctl_timing->tcke + 1; /* JESD-79: tCKE + 1tCK */
525 pctl_timing->tdpd = 0; /* RK3368 TRM: "allowed values for DDR3: 0" */
526
527
528 /*
529 * The controller can represent tFAW as 4x, 5x or 6x tRRD only.
530 * We want to use the smallest multiplier that satisfies the tFAW
531 * requirements of the given speed-bin. If necessary, we stretch out
532 * tRRD to allow us to operate on a 6x multiplier for tFAW.
533 */
534 tfaw_as_ps = 40000; /* 40ns: tFAW for DDR3-1600K, 2KB page-size */
535 if (tCK_to_ps(pctl_timing->trrd * 6, freq) < tfaw_as_ps) {
536 /* If tFAW is > 6 x tRRD, we need to stretch tRRD */
537 pctl_timing->trrd = ps_to_tCK(DIV_ROUND_UP(40000, 6), freq);
538 params->tfaw_mult = TFAW_TRRD_MULT6;
539 } else if (tCK_to_ps(pctl_timing->trrd * 5, freq) < tfaw_as_ps) {
540 params->tfaw_mult = TFAW_TRRD_MULT6;
541 } else if (tCK_to_ps(pctl_timing->trrd * 4, freq) < tfaw_as_ps) {
542 params->tfaw_mult = TFAW_TRRD_MULT5;
543 } else {
544 params->tfaw_mult = TFAW_TRRD_MULT4;
545 }
546
547 return 0;
548}
549
550static void pctl_cfg(struct rk3368_ddr_pctl *pctl,
551 struct rk3368_sdram_params *params,
552 struct rk3368_grf *grf)
553{
554 /* Configure PCTL timing registers */
555 params->pctl_timing.trefi |= BIT(31); /* see PCTL_TREFI */
556 copy_to_reg(&pctl->togcnt1u, &params->pctl_timing.togcnt1u,
557 sizeof(params->pctl_timing));
558 writel(params->trefi_mem_ddr3, &pctl->trefi_mem_ddr3);
559
560 /* Set up ODT write selector and ODT write length */
561 writel((RANK0_ODT_WRITE_SEL | RANK1_ODT_WRITE_SEL), &pctl->dfiodtcfg);
562 writel(7 << ODT_LEN_BL8_W_SHIFT, &pctl->dfiodtcfg1);
563
564 /* Set up the CL/CWL-dependent timings of DFI */
565 writel((params->pctl_timing.tcl - 1) / 2 - 1, &pctl->dfitrddataen);
566 writel((params->pctl_timing.tcwl - 1) / 2 - 1, &pctl->dfitphywrlat);
567
568 /* DDR3 */
569 writel(params->tfaw_mult | DDR3_EN | DDR2_DDR3_BL_8, &pctl->mcfg);
570 writel(0x001c0004, &grf->ddrc0_con0);
571
572 setbits_le32(&pctl->scfg, HW_LOW_POWER_EN);
573}
574
575static int ddrphy_data_training(struct rk3368_ddr_pctl *pctl,
576 struct rk3368_ddrphy *ddrphy)
577{
578 const u32 trefi = readl(&pctl->trefi);
579 const ulong timeout_ms = 500;
580 ulong tmp;
581
582 /* disable auto-refresh */
583 writel(0 | BIT(31), &pctl->trefi);
584
585 clrsetbits_le32(&ddrphy->reg[2], 0x33, 0x20);
586 clrsetbits_le32(&ddrphy->reg[2], 0x33, 0x21);
587
588 tmp = get_timer(0);
589 do {
590 if (get_timer(tmp) > timeout_ms) {
Masahiro Yamada9b643e32017-09-16 14:10:41 +0900591 pr_err("%s: did not complete within %ld ms\n",
Philipp Tomsich403e9cb2017-06-23 00:12:05 +0200592 __func__, timeout_ms);
593 return -ETIME;
594 }
595 } while ((readl(&ddrphy->reg[0xff]) & 0xf) != 0xf);
596
597 send_command(pctl, MCMD_RANK0 | MCMD_RANK1, PREA_CMD);
598 clrsetbits_le32(&ddrphy->reg[2], 0x33, 0x20);
599 /* resume auto-refresh */
600 writel(trefi | BIT(31), &pctl->trefi);
601
602 return 0;
603}
604
605static int sdram_col_row_detect(struct udevice *dev)
606{
607 struct dram_info *priv = dev_get_priv(dev);
Simon Glassc69cda22020-12-03 16:55:20 -0700608 struct rk3368_sdram_params *params = dev_get_plat(dev);
Philipp Tomsich403e9cb2017-06-23 00:12:05 +0200609 struct rk3368_ddr_pctl *pctl = priv->pctl;
610 struct rk3368_msch *msch = priv->msch;
611 const u32 test_pattern = 0x5aa5f00f;
612 int row, col;
613 uintptr_t addr;
614
615 move_to_config_state(pctl);
616 writel(6, &msch->ddrconf);
617 move_to_access_state(pctl);
618
619 /* Detect col */
620 for (col = 11; col >= 9; col--) {
Tom Riniaa6e94d2022-11-16 13:10:37 -0500621 writel(0, CFG_SYS_SDRAM_BASE);
622 addr = CFG_SYS_SDRAM_BASE +
Philipp Tomsich403e9cb2017-06-23 00:12:05 +0200623 (1 << (col + params->chan.bw - 1));
624 writel(test_pattern, addr);
625 if ((readl(addr) == test_pattern) &&
Tom Riniaa6e94d2022-11-16 13:10:37 -0500626 (readl(CFG_SYS_SDRAM_BASE) == 0))
Philipp Tomsich403e9cb2017-06-23 00:12:05 +0200627 break;
628 }
629
630 if (col == 8) {
Masahiro Yamada9b643e32017-09-16 14:10:41 +0900631 pr_err("%s: col detect error\n", __func__);
Philipp Tomsich403e9cb2017-06-23 00:12:05 +0200632 return -EINVAL;
633 }
634
635 move_to_config_state(pctl);
636 writel(15, &msch->ddrconf);
637 move_to_access_state(pctl);
638
639 /* Detect row*/
640 for (row = 16; row >= 12; row--) {
Tom Riniaa6e94d2022-11-16 13:10:37 -0500641 writel(0, CFG_SYS_SDRAM_BASE);
642 addr = CFG_SYS_SDRAM_BASE + (1 << (row + 15 - 1));
Philipp Tomsich403e9cb2017-06-23 00:12:05 +0200643 writel(test_pattern, addr);
644 if ((readl(addr) == test_pattern) &&
Tom Riniaa6e94d2022-11-16 13:10:37 -0500645 (readl(CFG_SYS_SDRAM_BASE) == 0))
Philipp Tomsich403e9cb2017-06-23 00:12:05 +0200646 break;
647 }
648
649 if (row == 11) {
Masahiro Yamada9b643e32017-09-16 14:10:41 +0900650 pr_err("%s: row detect error\n", __func__);
Philipp Tomsich403e9cb2017-06-23 00:12:05 +0200651 return -EINVAL;
652 }
653
654 /* Record results */
655 debug("%s: col %d, row %d\n", __func__, col, row);
656 params->chan.col = col;
657 params->chan.cs0_row = row;
658 params->chan.cs1_row = row;
659 params->chan.row_3_4 = 0;
660
661 return 0;
662}
663
664static int msch_niu_config(struct rk3368_msch *msch,
665 struct rk3368_sdram_params *params)
666{
667 int i;
668 const u8 cols = params->chan.col - ((params->chan.bw == 2) ? 0 : 1);
669 const u8 rows = params->chan.cs0_row;
670
671 /*
672 * The DDR address-translation table always assumes a 32bit
673 * bus and the comparison below takes care of adjusting for
674 * a 16bit bus (i.e. one column-address is consumed).
675 */
676 const struct {
677 u8 rows;
678 u8 columns;
679 u8 type;
680 } ddrconf_table[] = {
681 /*
682 * C-B-R-D patterns are first. For these we require an
683 * exact match for the columns and rows (as there's
684 * one entry per possible configuration).
685 */
686 [0] = { .rows = 13, .columns = 10, .type = DMC_MSCH_CBRD },
687 [1] = { .rows = 14, .columns = 10, .type = DMC_MSCH_CBRD },
688 [2] = { .rows = 15, .columns = 10, .type = DMC_MSCH_CBRD },
689 [3] = { .rows = 16, .columns = 10, .type = DMC_MSCH_CBRD },
690 [4] = { .rows = 14, .columns = 11, .type = DMC_MSCH_CBRD },
691 [5] = { .rows = 15, .columns = 11, .type = DMC_MSCH_CBRD },
692 [6] = { .rows = 16, .columns = 11, .type = DMC_MSCH_CBRD },
693 [7] = { .rows = 13, .columns = 9, .type = DMC_MSCH_CBRD },
694 [8] = { .rows = 14, .columns = 9, .type = DMC_MSCH_CBRD },
695 [9] = { .rows = 15, .columns = 9, .type = DMC_MSCH_CBRD },
696 [10] = { .rows = 16, .columns = 9, .type = DMC_MSCH_CBRD },
697 /*
698 * 11 through 13 are C-R-B-D patterns. These are
699 * matched for an exact number of columns and to
700 * ensure that the hardware uses at least as many rows
701 * as the pattern requires (i.e. we make sure that
702 * there's no gaps up until we hit the device/chip-select;
703 * however, these patterns can accept up to 16 rows,
704 * as the row-address continues right after the CS
705 * switching)
706 */
707 [11] = { .rows = 15, .columns = 10, .type = DMC_MSCH_CRBD },
708 [12] = { .rows = 14, .columns = 11, .type = DMC_MSCH_CRBD },
709 [13] = { .rows = 13, .columns = 10, .type = DMC_MSCH_CRBD },
710 /*
711 * 14 and 15 are catch-all variants using a C-B-D-R
712 * scheme (i.e. alternating the chip-select every time
713 * C-B overflows) and stuffing the remaining C-bits
714 * into the top. Matching needs to make sure that the
715 * number of columns is either an exact match (i.e. we
716 * can use less the the maximum number of rows) -or-
717 * that the columns exceed what is given in this table
718 * and the rows are an exact match (in which case the
719 * remaining C-bits will be stuffed onto the top after
720 * the device/chip-select switches).
721 */
722 [14] = { .rows = 16, .columns = 10, .type = DMC_MSCH_CBDR },
723 [15] = { .rows = 16, .columns = 9, .type = DMC_MSCH_CBDR },
724 };
725
726 /*
727 * For C-B-R-D, we need an exact match (i.e. both for the number of
728 * columns and rows), while for C-B-D-R, only the the number of
729 * columns needs to match.
730 */
731 for (i = 0; i < ARRAY_SIZE(ddrconf_table); i++) {
732 bool match = false;
733
734 /* If this entry if for a different matcher, then skip it */
735 if (ddrconf_table[i].type != params->memory_schedule)
736 continue;
737
738 /*
739 * Match according to the rules (exact/inexact/at-least)
740 * documented in the ddrconf_table above.
741 */
742 switch (params->memory_schedule) {
743 case DMC_MSCH_CBRD:
744 match = (ddrconf_table[i].columns == cols) &&
745 (ddrconf_table[i].rows == rows);
746 break;
747
748 case DMC_MSCH_CRBD:
749 match = (ddrconf_table[i].columns == cols) &&
750 (ddrconf_table[i].rows <= rows);
751 break;
752
753 case DMC_MSCH_CBDR:
754 match = (ddrconf_table[i].columns == cols) ||
755 ((ddrconf_table[i].columns <= cols) &&
756 (ddrconf_table[i].rows == rows));
757 break;
758
759 default:
760 break;
761 }
762
763 if (match) {
764 debug("%s: setting ddrconf 0x%x\n", __func__, i);
765 writel(i, &msch->ddrconf);
766 return 0;
767 }
768 }
769
Masahiro Yamada9b643e32017-09-16 14:10:41 +0900770 pr_err("%s: ddrconf (NIU config) not found\n", __func__);
Philipp Tomsich403e9cb2017-06-23 00:12:05 +0200771 return -EINVAL;
772}
773
774static void dram_all_config(struct udevice *dev)
775{
776 struct dram_info *priv = dev_get_priv(dev);
777 struct rk3368_pmu_grf *pmugrf = priv->pmugrf;
Simon Glassc69cda22020-12-03 16:55:20 -0700778 struct rk3368_sdram_params *params = dev_get_plat(dev);
Philipp Tomsich403e9cb2017-06-23 00:12:05 +0200779 const struct rk3288_sdram_channel *info = &params->chan;
780 u32 sys_reg = 0;
781 const int chan = 0;
782
783 sys_reg |= DDR3 << SYS_REG_DDRTYPE_SHIFT;
784 sys_reg |= 0 << SYS_REG_NUM_CH_SHIFT;
785
786 sys_reg |= info->row_3_4 << SYS_REG_ROW_3_4_SHIFT(chan);
787 sys_reg |= 1 << SYS_REG_CHINFO_SHIFT(chan);
788 sys_reg |= (info->rank - 1) << SYS_REG_RANK_SHIFT(chan);
789 sys_reg |= (info->col - 9) << SYS_REG_COL_SHIFT(chan);
790 sys_reg |= info->bk == 3 ? 0 : 1 << SYS_REG_BK_SHIFT(chan);
791 sys_reg |= (info->cs0_row - 13) << SYS_REG_CS0_ROW_SHIFT(chan);
792 sys_reg |= (info->cs1_row - 13) << SYS_REG_CS1_ROW_SHIFT(chan);
793 sys_reg |= (2 >> info->bw) << SYS_REG_BW_SHIFT(chan);
794 sys_reg |= (2 >> info->dbw) << SYS_REG_DBW_SHIFT(chan);
795
796 writel(sys_reg, &pmugrf->os_reg[2]);
797}
798
799static int setup_sdram(struct udevice *dev)
800{
801 struct dram_info *priv = dev_get_priv(dev);
Simon Glassc69cda22020-12-03 16:55:20 -0700802 struct rk3368_sdram_params *params = dev_get_plat(dev);
Philipp Tomsich403e9cb2017-06-23 00:12:05 +0200803
804 struct rk3368_ddr_pctl *pctl = priv->pctl;
805 struct rk3368_ddrphy *ddrphy = priv->phy;
806 struct rk3368_cru *cru = priv->cru;
807 struct rk3368_grf *grf = priv->grf;
808 struct rk3368_msch *msch = priv->msch;
809
810 int ret;
811
812 /* The input clock (i.e. DPLL) needs to be 2x the DRAM frequency */
813 ret = clk_set_rate(&priv->ddr_clk, 2 * params->ddr_freq);
814 if (ret < 0) {
815 debug("%s: could not set DDR clock: %d\n", __func__, ret);
816 return ret;
817 }
818
819 /* Update the read-latency for the RK3368 */
820 writel(0x32, &msch->readlatency);
821
822 /* Initialise the DDR PCTL and DDR PHY */
823 ddrctl_reset(cru);
824 ddrphy_reset(ddrphy);
825 ddrphy_config_delays(ddrphy, params->ddr_freq);
826 dfi_cfg(pctl);
827 /* Configure relative system information of grf_ddrc0_con0 register */
828 ddr_set_ddr3_mode(grf, true);
829 ddr_set_noc_spr_err_stall(grf, true);
830 /* Calculate timings */
831 pctl_calc_timings(params, params->ddr_freq);
832 /* Initialise the device timings in protocol controller */
833 pctl_cfg(pctl, params, grf);
834 /* Configure AL, CL ... information of PHY registers */
835 ddrphy_config(ddrphy,
836 params->pctl_timing.tcl,
837 params->pctl_timing.tal,
838 params->pctl_timing.tcwl);
839
840 /* Initialize DRAM and configure with mode-register values */
841 ret = memory_init(pctl, params);
842 if (ret)
843 goto error;
844
845 move_to_config_state(pctl);
846 /* Perform data-training */
847 ddrphy_data_training(pctl, ddrphy);
848 move_to_access_state(pctl);
849
850 /* TODO(prt): could detect rank in training... */
Kever Yang99a1a5b2019-03-29 22:48:29 +0800851#ifdef CONFIG_TARGET_EVB_PX5
852 params->chan.rank = 1;
853#else
Philipp Tomsich403e9cb2017-06-23 00:12:05 +0200854 params->chan.rank = 2;
Kever Yang99a1a5b2019-03-29 22:48:29 +0800855#endif
Philipp Tomsich403e9cb2017-06-23 00:12:05 +0200856 /* TODO(prt): bus width is not auto-detected (yet)... */
857 params->chan.bw = 2; /* 32bit wide bus */
858 params->chan.dbw = params->chan.dbw; /* 32bit wide bus */
859
860 /* DDR3 is always 8 bank */
861 params->chan.bk = 3;
862 /* Detect col and row number */
863 ret = sdram_col_row_detect(dev);
864 if (ret)
865 goto error;
866
867 /* Configure NIU DDR configuration */
868 ret = msch_niu_config(msch, params);
869 if (ret)
870 goto error;
871
872 /* set up OS_REG to communicate w/ next stage and OS */
873 dram_all_config(dev);
874
875 return 0;
876
877error:
878 printf("DRAM init failed!\n");
879 hang();
880}
881#endif
882
Simon Glassd1998a92020-12-03 16:55:21 -0700883static int rk3368_dmc_of_to_plat(struct udevice *dev)
Philipp Tomsich403e9cb2017-06-23 00:12:05 +0200884{
885 int ret = 0;
886
Simon Glassdcfc42b2021-08-07 07:24:06 -0600887 if (CONFIG_IS_ENABLED(OF_REAL)) {
888 struct rk3368_sdram_params *plat = dev_get_plat(dev);
Philipp Tomsich403e9cb2017-06-23 00:12:05 +0200889
Simon Glassdcfc42b2021-08-07 07:24:06 -0600890 ret = regmap_init_mem(dev_ofnode(dev), &plat->map);
891 if (ret)
892 return ret;
893 }
Philipp Tomsich403e9cb2017-06-23 00:12:05 +0200894
895 return ret;
896}
897
898#if CONFIG_IS_ENABLED(OF_PLATDATA)
Simon Glass8a8d24b2020-12-03 16:55:23 -0700899static int conv_of_plat(struct udevice *dev)
Philipp Tomsich403e9cb2017-06-23 00:12:05 +0200900{
Simon Glassc69cda22020-12-03 16:55:20 -0700901 struct rk3368_sdram_params *plat = dev_get_plat(dev);
Philipp Tomsich403e9cb2017-06-23 00:12:05 +0200902 struct dtd_rockchip_rk3368_dmc *of_plat = &plat->of_plat;
Philipp Tomsich403e9cb2017-06-23 00:12:05 +0200903
904 plat->ddr_freq = of_plat->rockchip_ddr_frequency;
905 plat->ddr_speed_bin = of_plat->rockchip_ddr_speed_bin;
906 plat->memory_schedule = of_plat->rockchip_memory_schedule;
907
Philipp Tomsich403e9cb2017-06-23 00:12:05 +0200908 return 0;
909}
910#endif
911
912static int rk3368_dmc_probe(struct udevice *dev)
913{
914#ifdef CONFIG_TPL_BUILD
Simon Glassc69cda22020-12-03 16:55:20 -0700915 struct rk3368_sdram_params *plat = dev_get_plat(dev);
Philipp Tomsich403e9cb2017-06-23 00:12:05 +0200916 struct rk3368_ddr_pctl *pctl;
917 struct rk3368_ddrphy *ddrphy;
918 struct rk3368_cru *cru;
919 struct rk3368_grf *grf;
920 struct rk3368_msch *msch;
921 int ret;
922 struct udevice *dev_clk;
923#endif
924 struct dram_info *priv = dev_get_priv(dev);
925
926#if CONFIG_IS_ENABLED(OF_PLATDATA)
Simon Glass8a8d24b2020-12-03 16:55:23 -0700927 ret = conv_of_plat(dev);
Philipp Tomsich403e9cb2017-06-23 00:12:05 +0200928 if (ret)
929 return ret;
930#endif
931
932 priv->pmugrf = syscon_get_first_range(ROCKCHIP_SYSCON_PMUGRF);
933 debug("%s: pmugrf=%p\n", __func__, priv->pmugrf);
934
935#ifdef CONFIG_TPL_BUILD
Philipp Tomsich1d70f0a2017-08-14 19:05:32 +0200936 pctl = (struct rk3368_ddr_pctl *)plat->of_plat.reg[0];
937 ddrphy = (struct rk3368_ddrphy *)plat->of_plat.reg[2];
Philipp Tomsich403e9cb2017-06-23 00:12:05 +0200938 msch = syscon_get_first_range(ROCKCHIP_SYSCON_MSCH);
939 grf = syscon_get_first_range(ROCKCHIP_SYSCON_GRF);
940
941 priv->pctl = pctl;
942 priv->phy = ddrphy;
943 priv->msch = msch;
944 priv->grf = grf;
945
946 ret = rockchip_get_clk(&dev_clk);
947 if (ret)
948 return ret;
949 priv->ddr_clk.id = CLK_DDR;
950 ret = clk_request(dev_clk, &priv->ddr_clk);
951 if (ret)
952 return ret;
953
954 cru = rockchip_get_cru();
955 priv->cru = cru;
956 if (IS_ERR(priv->cru))
957 return PTR_ERR(priv->cru);
958
959 ret = setup_sdram(dev);
960 if (ret)
961 return ret;
962#endif
963
964 priv->info.base = 0;
965 priv->info.size =
966 rockchip_sdram_size((phys_addr_t)&priv->pmugrf->os_reg[2]);
967
968 /*
969 * we use the 0x00000000~0xfdffffff space since 0xff000000~0xffffffff
970 * is SoC register space (i.e. reserved), and 0xfe000000~0xfeffffff is
971 * inaccessible for some IP controller.
972 */
973 priv->info.size = min(priv->info.size, (size_t)0xfe000000);
974
975 return 0;
976}
977
978static int rk3368_dmc_get_info(struct udevice *dev, struct ram_info *info)
979{
980 struct dram_info *priv = dev_get_priv(dev);
981
982 *info = priv->info;
983 return 0;
984}
985
986static struct ram_ops rk3368_dmc_ops = {
987 .get_info = rk3368_dmc_get_info,
988};
989
990
991static const struct udevice_id rk3368_dmc_ids[] = {
992 { .compatible = "rockchip,rk3368-dmc" },
993 { }
994};
995
Walter Lozanoe3e24702020-06-25 01:10:04 -0300996U_BOOT_DRIVER(rockchip_rk3368_dmc) = {
Philipp Tomsich403e9cb2017-06-23 00:12:05 +0200997 .name = "rockchip_rk3368_dmc",
998 .id = UCLASS_RAM,
999 .of_match = rk3368_dmc_ids,
1000 .ops = &rk3368_dmc_ops,
1001 .probe = rk3368_dmc_probe,
Simon Glass41575d82020-12-03 16:55:17 -07001002 .priv_auto = sizeof(struct dram_info),
Simon Glassd1998a92020-12-03 16:55:21 -07001003 .of_to_plat = rk3368_dmc_of_to_plat,
Philipp Tomsich403e9cb2017-06-23 00:12:05 +02001004 .probe = rk3368_dmc_probe,
Simon Glass41575d82020-12-03 16:55:17 -07001005 .priv_auto = sizeof(struct dram_info),
Simon Glasscaa4daa2020-12-03 16:55:18 -07001006 .plat_auto = sizeof(struct rk3368_sdram_params),
Philipp Tomsich403e9cb2017-06-23 00:12:05 +02001007};