Mike Dunn | 956b03e | 2013-04-12 11:59:18 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * drivers/mtd/nand/docg4.c |
| 3 | * |
| 4 | * Copyright (C) 2013 Mike Dunn <mikedunn@newsguy.com> |
| 5 | * |
| 6 | * This file is released under the terms of GPL v2 and any later version. |
| 7 | * See the file COPYING in the root directory of the source tree for details. |
| 8 | * |
| 9 | * mtd nand driver for M-Systems DiskOnChip G4 |
| 10 | * |
| 11 | * Tested on the Palm Treo 680. The G4 is also present on Toshiba Portege, Asus |
| 12 | * P526, some HTC smartphones (Wizard, Prophet, ...), O2 XDA Zinc, maybe others. |
| 13 | * Should work on these as well. Let me know! |
| 14 | * |
| 15 | * TODO: |
| 16 | * |
| 17 | * Mechanism for management of password-protected areas |
| 18 | * |
| 19 | * Hamming ecc when reading oob only |
| 20 | * |
| 21 | * According to the M-Sys documentation, this device is also available in a |
| 22 | * "dual-die" configuration having a 256MB capacity, but no mechanism for |
| 23 | * detecting this variant is documented. Currently this driver assumes 128MB |
| 24 | * capacity. |
| 25 | * |
| 26 | * Support for multiple cascaded devices ("floors"). Not sure which gadgets |
| 27 | * contain multiple G4s in a cascaded configuration, if any. |
| 28 | * |
| 29 | */ |
| 30 | |
| 31 | |
| 32 | #include <common.h> |
| 33 | #include <asm/arch/hardware.h> |
| 34 | #include <asm/io.h> |
| 35 | #include <asm/bitops.h> |
| 36 | #include <asm/errno.h> |
| 37 | #include <malloc.h> |
| 38 | #include <nand.h> |
| 39 | #include <linux/bch.h> |
| 40 | #include <linux/bitrev.h> |
| 41 | #include <linux/mtd/docg4.h> |
| 42 | |
| 43 | /* |
| 44 | * The device has a nop register which M-Sys claims is for the purpose of |
| 45 | * inserting precise delays. But beware; at least some operations fail if the |
| 46 | * nop writes are replaced with a generic delay! |
| 47 | */ |
| 48 | static inline void write_nop(void __iomem *docptr) |
| 49 | { |
| 50 | writew(0, docptr + DOC_NOP); |
| 51 | } |
| 52 | |
| 53 | |
| 54 | static int poll_status(void __iomem *docptr) |
| 55 | { |
| 56 | /* |
| 57 | * Busy-wait for the FLASHREADY bit to be set in the FLASHCONTROL |
| 58 | * register. Operations known to take a long time (e.g., block erase) |
| 59 | * should sleep for a while before calling this. |
| 60 | */ |
| 61 | |
| 62 | uint8_t flash_status; |
| 63 | |
| 64 | /* hardware quirk requires reading twice initially */ |
| 65 | flash_status = readb(docptr + DOC_FLASHCONTROL); |
| 66 | |
| 67 | do { |
| 68 | flash_status = readb(docptr + DOC_FLASHCONTROL); |
| 69 | } while (!(flash_status & DOC_CTRL_FLASHREADY)); |
| 70 | |
| 71 | return 0; |
| 72 | } |
| 73 | |
| 74 | static void write_addr(void __iomem *docptr, uint32_t docg4_addr) |
| 75 | { |
| 76 | /* write the four address bytes packed in docg4_addr to the device */ |
| 77 | |
| 78 | writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS); |
| 79 | docg4_addr >>= 8; |
| 80 | writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS); |
| 81 | docg4_addr >>= 8; |
| 82 | writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS); |
| 83 | docg4_addr >>= 8; |
| 84 | writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS); |
| 85 | } |
| 86 | |
| 87 | /* |
| 88 | * This is a module parameter in the linux kernel version of this driver. It is |
| 89 | * hard-coded to 'off' for u-boot. This driver uses oob to mark bad blocks. |
| 90 | * This can be problematic when dealing with data not intended for the mtd/nand |
| 91 | * subsystem. For example, on boards that boot from the docg4 and use the IPL |
| 92 | * to load an spl + u-boot image, the blocks containing the image will be |
| 93 | * reported as "bad" because the oob of the first page of each block contains a |
| 94 | * magic number that the IPL looks for, which causes the badblock scan to |
| 95 | * erroneously add them to the bad block table. To erase such a block, use |
| 96 | * u-boot's 'nand scrub'. scrub is safe for the docg4. The device does have a |
| 97 | * factory bad block table, but it is read-only, and is used in conjunction with |
| 98 | * oob bad block markers that are written by mtd/nand when a block is deemed to |
| 99 | * be bad. To read data from "bad" blocks, use 'read.raw'. Unfortunately, |
| 100 | * read.raw does not use ecc, which would still work fine on such misidentified |
| 101 | * bad blocks. TODO: u-boot nand utilities need the ability to ignore bad |
| 102 | * blocks. |
| 103 | */ |
| 104 | static const int ignore_badblocks; /* remains false */ |
| 105 | |
| 106 | struct docg4_priv { |
| 107 | int status; |
| 108 | struct { |
| 109 | unsigned int command; |
| 110 | int column; |
| 111 | int page; |
| 112 | } last_command; |
| 113 | uint8_t oob_buf[16]; |
| 114 | uint8_t ecc_buf[7]; |
| 115 | int oob_page; |
| 116 | struct bch_control *bch; |
| 117 | }; |
| 118 | /* |
| 119 | * Oob bytes 0 - 6 are available to the user. |
| 120 | * Byte 7 is hamming ecc for first 7 bytes. Bytes 8 - 14 are hw-generated ecc. |
| 121 | * Byte 15 (the last) is used by the driver as a "page written" flag. |
| 122 | */ |
| 123 | static struct nand_ecclayout docg4_oobinfo = { |
| 124 | .eccbytes = 9, |
| 125 | .eccpos = {7, 8, 9, 10, 11, 12, 13, 14, 15}, |
| 126 | .oobavail = 7, |
| 127 | .oobfree = { {0, 7} } |
| 128 | }; |
| 129 | |
| 130 | static void reset(void __iomem *docptr) |
| 131 | { |
| 132 | /* full device reset */ |
| 133 | |
| 134 | writew(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN, docptr + DOC_ASICMODE); |
| 135 | writew(~(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN), |
| 136 | docptr + DOC_ASICMODECONFIRM); |
| 137 | write_nop(docptr); |
| 138 | |
| 139 | writew(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN, |
| 140 | docptr + DOC_ASICMODE); |
| 141 | writew(~(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN), |
| 142 | docptr + DOC_ASICMODECONFIRM); |
| 143 | |
| 144 | writew(DOC_ECCCONF1_ECC_ENABLE, docptr + DOC_ECCCONF1); |
| 145 | |
| 146 | poll_status(docptr); |
| 147 | } |
| 148 | |
| 149 | static void docg4_select_chip(struct mtd_info *mtd, int chip) |
| 150 | { |
| 151 | /* |
| 152 | * Select among multiple cascaded chips ("floors"). Multiple floors are |
| 153 | * not yet supported, so the only valid non-negative value is 0. |
| 154 | */ |
| 155 | void __iomem *docptr = CONFIG_SYS_NAND_BASE; |
| 156 | |
| 157 | if (chip < 0) |
| 158 | return; /* deselected */ |
| 159 | |
| 160 | if (chip > 0) |
| 161 | printf("multiple floors currently unsupported\n"); |
| 162 | |
| 163 | writew(0, docptr + DOC_DEVICESELECT); |
| 164 | } |
| 165 | |
| 166 | static void read_hw_ecc(void __iomem *docptr, uint8_t *ecc_buf) |
| 167 | { |
| 168 | /* read the 7 hw-generated ecc bytes */ |
| 169 | |
| 170 | int i; |
| 171 | for (i = 0; i < 7; i++) { /* hw quirk; read twice */ |
| 172 | ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i)); |
| 173 | ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i)); |
| 174 | } |
| 175 | } |
| 176 | |
| 177 | static int correct_data(struct mtd_info *mtd, uint8_t *buf, int page) |
| 178 | { |
| 179 | /* |
| 180 | * Called after a page read when hardware reports bitflips. |
| 181 | * Up to four bitflips can be corrected. |
| 182 | */ |
| 183 | |
| 184 | struct nand_chip *nand = mtd->priv; |
| 185 | struct docg4_priv *doc = nand->priv; |
| 186 | void __iomem *docptr = CONFIG_SYS_NAND_BASE; |
| 187 | int i, numerrs; |
| 188 | unsigned int errpos[4]; |
| 189 | const uint8_t blank_read_hwecc[8] = { |
| 190 | 0xcf, 0x72, 0xfc, 0x1b, 0xa9, 0xc7, 0xb9, 0 }; |
| 191 | |
| 192 | read_hw_ecc(docptr, doc->ecc_buf); /* read 7 hw-generated ecc bytes */ |
| 193 | |
| 194 | /* check if read error is due to a blank page */ |
| 195 | if (!memcmp(doc->ecc_buf, blank_read_hwecc, 7)) |
| 196 | return 0; /* yes */ |
| 197 | |
| 198 | /* skip additional check of "written flag" if ignore_badblocks */ |
| 199 | if (!ignore_badblocks) { |
| 200 | /* |
| 201 | * If the hw ecc bytes are not those of a blank page, there's |
| 202 | * still a chance that the page is blank, but was read with |
| 203 | * errors. Check the "written flag" in last oob byte, which |
| 204 | * is set to zero when a page is written. If more than half |
| 205 | * the bits are set, assume a blank page. Unfortunately, the |
| 206 | * bit flips(s) are not reported in stats. |
| 207 | */ |
| 208 | |
| 209 | if (doc->oob_buf[15]) { |
| 210 | int bit, numsetbits = 0; |
| 211 | unsigned long written_flag = doc->oob_buf[15]; |
| 212 | |
| 213 | for (bit = 0; bit < 8; bit++) { |
| 214 | if (written_flag & 0x01) |
| 215 | numsetbits++; |
| 216 | written_flag >>= 1; |
| 217 | } |
| 218 | if (numsetbits > 4) { /* assume blank */ |
| 219 | printf("errors in blank page at offset %08x\n", |
| 220 | page * DOCG4_PAGE_SIZE); |
| 221 | return 0; |
| 222 | } |
| 223 | } |
| 224 | } |
| 225 | |
| 226 | /* |
| 227 | * The hardware ecc unit produces oob_ecc ^ calc_ecc. The kernel's bch |
| 228 | * algorithm is used to decode this. However the hw operates on page |
| 229 | * data in a bit order that is the reverse of that of the bch alg, |
| 230 | * requiring that the bits be reversed on the result. Thanks to Ivan |
| 231 | * Djelic for his analysis! |
| 232 | */ |
| 233 | for (i = 0; i < 7; i++) |
| 234 | doc->ecc_buf[i] = bitrev8(doc->ecc_buf[i]); |
| 235 | |
| 236 | numerrs = decode_bch(doc->bch, NULL, DOCG4_USERDATA_LEN, NULL, |
| 237 | doc->ecc_buf, NULL, errpos); |
| 238 | |
| 239 | if (numerrs == -EBADMSG) { |
| 240 | printf("uncorrectable errors at offset %08x\n", |
| 241 | page * DOCG4_PAGE_SIZE); |
| 242 | return -EBADMSG; |
| 243 | } |
| 244 | |
| 245 | BUG_ON(numerrs < 0); /* -EINVAL, or anything other than -EBADMSG */ |
| 246 | |
| 247 | /* undo last step in BCH alg (modulo mirroring not needed) */ |
| 248 | for (i = 0; i < numerrs; i++) |
| 249 | errpos[i] = (errpos[i] & ~7)|(7-(errpos[i] & 7)); |
| 250 | |
| 251 | /* fix the errors */ |
| 252 | for (i = 0; i < numerrs; i++) { |
| 253 | /* ignore if error within oob ecc bytes */ |
| 254 | if (errpos[i] > DOCG4_USERDATA_LEN * 8) |
| 255 | continue; |
| 256 | |
| 257 | /* if error within oob area preceeding ecc bytes... */ |
| 258 | if (errpos[i] > DOCG4_PAGE_SIZE * 8) |
| 259 | __change_bit(errpos[i] - DOCG4_PAGE_SIZE * 8, |
| 260 | (unsigned long *)doc->oob_buf); |
| 261 | |
| 262 | else /* error in page data */ |
| 263 | __change_bit(errpos[i], (unsigned long *)buf); |
| 264 | } |
| 265 | |
| 266 | printf("%d error(s) corrected at offset %08x\n", |
| 267 | numerrs, page * DOCG4_PAGE_SIZE); |
| 268 | |
| 269 | return numerrs; |
| 270 | } |
| 271 | |
| 272 | static int read_progstatus(struct docg4_priv *doc, void __iomem *docptr) |
| 273 | { |
| 274 | /* |
| 275 | * This apparently checks the status of programming. Done after an |
| 276 | * erasure, and after page data is written. On error, the status is |
| 277 | * saved, to be later retrieved by the nand infrastructure code. |
| 278 | */ |
| 279 | |
| 280 | /* status is read from the I/O reg */ |
| 281 | uint16_t status1 = readw(docptr + DOC_IOSPACE_DATA); |
| 282 | uint16_t status2 = readw(docptr + DOC_IOSPACE_DATA); |
| 283 | uint16_t status3 = readw(docptr + DOCG4_MYSTERY_REG); |
| 284 | |
| 285 | MTDDEBUG(MTD_DEBUG_LEVEL3, "docg4: %s: %02x %02x %02x\n", |
| 286 | __func__, status1, status2, status3); |
| 287 | |
| 288 | if (status1 != DOCG4_PROGSTATUS_GOOD || |
| 289 | status2 != DOCG4_PROGSTATUS_GOOD_2 || |
| 290 | status3 != DOCG4_PROGSTATUS_GOOD_2) { |
| 291 | doc->status = NAND_STATUS_FAIL; |
| 292 | printf("read_progstatus failed: %02x, %02x, %02x\n", |
| 293 | status1, status2, status3); |
| 294 | return -EIO; |
| 295 | } |
| 296 | return 0; |
| 297 | } |
| 298 | |
| 299 | static int pageprog(struct mtd_info *mtd) |
| 300 | { |
| 301 | /* |
| 302 | * Final step in writing a page. Writes the contents of its |
| 303 | * internal buffer out to the flash array, or some such. |
| 304 | */ |
| 305 | |
| 306 | struct nand_chip *nand = mtd->priv; |
| 307 | struct docg4_priv *doc = nand->priv; |
| 308 | void __iomem *docptr = CONFIG_SYS_NAND_BASE; |
| 309 | int retval = 0; |
| 310 | |
| 311 | MTDDEBUG(MTD_DEBUG_LEVEL3, "docg4: %s\n", __func__); |
| 312 | |
| 313 | writew(DOCG4_SEQ_PAGEPROG, docptr + DOC_FLASHSEQUENCE); |
| 314 | writew(DOC_CMD_PROG_CYCLE2, docptr + DOC_FLASHCOMMAND); |
| 315 | write_nop(docptr); |
| 316 | write_nop(docptr); |
| 317 | |
| 318 | /* Just busy-wait; usleep_range() slows things down noticeably. */ |
| 319 | poll_status(docptr); |
| 320 | |
| 321 | writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE); |
| 322 | writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND); |
| 323 | writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0); |
| 324 | write_nop(docptr); |
| 325 | write_nop(docptr); |
| 326 | write_nop(docptr); |
| 327 | write_nop(docptr); |
| 328 | write_nop(docptr); |
| 329 | |
| 330 | retval = read_progstatus(doc, docptr); |
| 331 | writew(0, docptr + DOC_DATAEND); |
| 332 | write_nop(docptr); |
| 333 | poll_status(docptr); |
| 334 | write_nop(docptr); |
| 335 | |
| 336 | return retval; |
| 337 | } |
| 338 | |
| 339 | static void sequence_reset(void __iomem *docptr) |
| 340 | { |
| 341 | /* common starting sequence for all operations */ |
| 342 | |
| 343 | writew(DOC_CTRL_UNKNOWN | DOC_CTRL_CE, docptr + DOC_FLASHCONTROL); |
| 344 | writew(DOC_SEQ_RESET, docptr + DOC_FLASHSEQUENCE); |
| 345 | writew(DOC_CMD_RESET, docptr + DOC_FLASHCOMMAND); |
| 346 | write_nop(docptr); |
| 347 | write_nop(docptr); |
| 348 | poll_status(docptr); |
| 349 | write_nop(docptr); |
| 350 | } |
| 351 | |
| 352 | static void read_page_prologue(void __iomem *docptr, uint32_t docg4_addr) |
| 353 | { |
| 354 | /* first step in reading a page */ |
| 355 | |
| 356 | sequence_reset(docptr); |
| 357 | |
| 358 | writew(DOCG4_SEQ_PAGE_READ, docptr + DOC_FLASHSEQUENCE); |
| 359 | writew(DOCG4_CMD_PAGE_READ, docptr + DOC_FLASHCOMMAND); |
| 360 | write_nop(docptr); |
| 361 | |
| 362 | write_addr(docptr, docg4_addr); |
| 363 | |
| 364 | write_nop(docptr); |
| 365 | writew(DOCG4_CMD_READ2, docptr + DOC_FLASHCOMMAND); |
| 366 | write_nop(docptr); |
| 367 | write_nop(docptr); |
| 368 | |
| 369 | poll_status(docptr); |
| 370 | } |
| 371 | |
| 372 | static void write_page_prologue(void __iomem *docptr, uint32_t docg4_addr) |
| 373 | { |
| 374 | /* first step in writing a page */ |
| 375 | |
| 376 | sequence_reset(docptr); |
| 377 | writew(DOCG4_SEQ_PAGEWRITE, docptr + DOC_FLASHSEQUENCE); |
| 378 | writew(DOCG4_CMD_PAGEWRITE, docptr + DOC_FLASHCOMMAND); |
| 379 | write_nop(docptr); |
| 380 | write_addr(docptr, docg4_addr); |
| 381 | write_nop(docptr); |
| 382 | write_nop(docptr); |
| 383 | poll_status(docptr); |
| 384 | } |
| 385 | |
| 386 | static uint32_t mtd_to_docg4_address(int page, int column) |
| 387 | { |
| 388 | /* |
| 389 | * Convert mtd address to format used by the device, 32 bit packed. |
| 390 | * |
| 391 | * Some notes on G4 addressing... The M-Sys documentation on this device |
| 392 | * claims that pages are 2K in length, and indeed, the format of the |
| 393 | * address used by the device reflects that. But within each page are |
| 394 | * four 512 byte "sub-pages", each with its own oob data that is |
| 395 | * read/written immediately after the 512 bytes of page data. This oob |
| 396 | * data contains the ecc bytes for the preceeding 512 bytes. |
| 397 | * |
| 398 | * Rather than tell the mtd nand infrastructure that page size is 2k, |
| 399 | * with four sub-pages each, we engage in a little subterfuge and tell |
| 400 | * the infrastructure code that pages are 512 bytes in size. This is |
| 401 | * done because during the course of reverse-engineering the device, I |
| 402 | * never observed an instance where an entire 2K "page" was read or |
| 403 | * written as a unit. Each "sub-page" is always addressed individually, |
| 404 | * its data read/written, and ecc handled before the next "sub-page" is |
| 405 | * addressed. |
| 406 | * |
| 407 | * This requires us to convert addresses passed by the mtd nand |
| 408 | * infrastructure code to those used by the device. |
| 409 | * |
| 410 | * The address that is written to the device consists of four bytes: the |
| 411 | * first two are the 2k page number, and the second is the index into |
| 412 | * the page. The index is in terms of 16-bit half-words and includes |
| 413 | * the preceeding oob data, so e.g., the index into the second |
| 414 | * "sub-page" is 0x108, and the full device address of the start of mtd |
| 415 | * page 0x201 is 0x00800108. |
| 416 | */ |
| 417 | int g4_page = page / 4; /* device's 2K page */ |
| 418 | int g4_index = (page % 4) * 0x108 + column/2; /* offset into page */ |
| 419 | return (g4_page << 16) | g4_index; /* pack */ |
| 420 | } |
| 421 | |
| 422 | static void docg4_command(struct mtd_info *mtd, unsigned command, int column, |
| 423 | int page_addr) |
| 424 | { |
| 425 | /* handle standard nand commands */ |
| 426 | |
| 427 | struct nand_chip *nand = mtd->priv; |
| 428 | struct docg4_priv *doc = nand->priv; |
| 429 | uint32_t g4_addr = mtd_to_docg4_address(page_addr, column); |
| 430 | |
| 431 | MTDDEBUG(MTD_DEBUG_LEVEL3, "%s %x, page_addr=%x, column=%x\n", |
| 432 | __func__, command, page_addr, column); |
| 433 | |
| 434 | /* |
| 435 | * Save the command and its arguments. This enables emulation of |
| 436 | * standard flash devices, and also some optimizations. |
| 437 | */ |
| 438 | doc->last_command.command = command; |
| 439 | doc->last_command.column = column; |
| 440 | doc->last_command.page = page_addr; |
| 441 | |
| 442 | switch (command) { |
| 443 | case NAND_CMD_RESET: |
| 444 | reset(CONFIG_SYS_NAND_BASE); |
| 445 | break; |
| 446 | |
| 447 | case NAND_CMD_READ0: |
| 448 | read_page_prologue(CONFIG_SYS_NAND_BASE, g4_addr); |
| 449 | break; |
| 450 | |
| 451 | case NAND_CMD_STATUS: |
| 452 | /* next call to read_byte() will expect a status */ |
| 453 | break; |
| 454 | |
| 455 | case NAND_CMD_SEQIN: |
| 456 | write_page_prologue(CONFIG_SYS_NAND_BASE, g4_addr); |
| 457 | |
| 458 | /* hack for deferred write of oob bytes */ |
| 459 | if (doc->oob_page == page_addr) |
| 460 | memcpy(nand->oob_poi, doc->oob_buf, 16); |
| 461 | break; |
| 462 | |
| 463 | case NAND_CMD_PAGEPROG: |
| 464 | pageprog(mtd); |
| 465 | break; |
| 466 | |
| 467 | /* we don't expect these, based on review of nand_base.c */ |
| 468 | case NAND_CMD_READOOB: |
| 469 | case NAND_CMD_READID: |
| 470 | case NAND_CMD_ERASE1: |
| 471 | case NAND_CMD_ERASE2: |
| 472 | printf("docg4_command: unexpected nand command 0x%x\n", |
| 473 | command); |
| 474 | break; |
| 475 | } |
| 476 | } |
| 477 | |
| 478 | static void docg4_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) |
| 479 | { |
| 480 | int i; |
| 481 | struct nand_chip *nand = mtd->priv; |
| 482 | uint16_t *p = (uint16_t *)buf; |
| 483 | len >>= 1; |
| 484 | |
| 485 | for (i = 0; i < len; i++) |
| 486 | p[i] = readw(nand->IO_ADDR_R); |
| 487 | } |
| 488 | |
| 489 | static int docg4_read_oob(struct mtd_info *mtd, struct nand_chip *nand, |
| 490 | int page, int sndcmd) |
| 491 | { |
| 492 | struct docg4_priv *doc = nand->priv; |
| 493 | void __iomem *docptr = CONFIG_SYS_NAND_BASE; |
| 494 | uint16_t status; |
| 495 | |
| 496 | MTDDEBUG(MTD_DEBUG_LEVEL3, "%s: page %x\n", __func__, page); |
| 497 | |
| 498 | /* |
| 499 | * Oob bytes are read as part of a normal page read. If the previous |
| 500 | * nand command was a read of the page whose oob is now being read, just |
| 501 | * copy the oob bytes that we saved in a local buffer and avoid a |
| 502 | * separate oob read. |
| 503 | */ |
| 504 | if (doc->last_command.command == NAND_CMD_READ0 && |
| 505 | doc->last_command.page == page) { |
| 506 | memcpy(nand->oob_poi, doc->oob_buf, 16); |
| 507 | return 0; |
| 508 | } |
| 509 | |
| 510 | /* |
| 511 | * Separate read of oob data only. |
| 512 | */ |
| 513 | docg4_command(mtd, NAND_CMD_READ0, nand->ecc.size, page); |
| 514 | |
| 515 | writew(DOC_ECCCONF0_READ_MODE | DOCG4_OOB_SIZE, docptr + DOC_ECCCONF0); |
| 516 | write_nop(docptr); |
| 517 | write_nop(docptr); |
| 518 | write_nop(docptr); |
| 519 | write_nop(docptr); |
| 520 | write_nop(docptr); |
| 521 | |
| 522 | /* the 1st byte from the I/O reg is a status; the rest is oob data */ |
| 523 | status = readw(docptr + DOC_IOSPACE_DATA); |
| 524 | if (status & DOCG4_READ_ERROR) { |
| 525 | printf("docg4_read_oob failed: status = 0x%02x\n", status); |
| 526 | return -EIO; |
| 527 | } |
| 528 | |
| 529 | MTDDEBUG(MTD_DEBUG_LEVEL3, "%s: status = 0x%x\n", __func__, status); |
| 530 | |
| 531 | docg4_read_buf(mtd, nand->oob_poi, 16); |
| 532 | |
| 533 | write_nop(docptr); |
| 534 | write_nop(docptr); |
| 535 | write_nop(docptr); |
| 536 | writew(0, docptr + DOC_DATAEND); |
| 537 | write_nop(docptr); |
| 538 | |
| 539 | return 0; |
| 540 | } |
| 541 | |
| 542 | static int docg4_write_oob(struct mtd_info *mtd, struct nand_chip *nand, |
| 543 | int page) |
| 544 | { |
| 545 | /* |
| 546 | * Writing oob-only is not really supported, because MLC nand must write |
| 547 | * oob bytes at the same time as page data. Nonetheless, we save the |
| 548 | * oob buffer contents here, and then write it along with the page data |
| 549 | * if the same page is subsequently written. This allows user space |
| 550 | * utilities that write the oob data prior to the page data to work |
| 551 | * (e.g., nandwrite). The disdvantage is that, if the intention was to |
| 552 | * write oob only, the operation is quietly ignored. Also, oob can get |
| 553 | * corrupted if two concurrent processes are running nandwrite. |
| 554 | */ |
| 555 | |
| 556 | /* note that bytes 7..14 are hw generated hamming/ecc and overwritten */ |
| 557 | struct docg4_priv *doc = nand->priv; |
| 558 | doc->oob_page = page; |
| 559 | memcpy(doc->oob_buf, nand->oob_poi, 16); |
| 560 | return 0; |
| 561 | } |
| 562 | |
| 563 | static int docg4_block_neverbad(struct mtd_info *mtd, loff_t ofs, int getchip) |
| 564 | { |
| 565 | /* only called when module_param ignore_badblocks is set */ |
| 566 | return 0; |
| 567 | } |
| 568 | |
| 569 | static void docg4_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len) |
| 570 | { |
| 571 | int i; |
| 572 | struct nand_chip *nand = mtd->priv; |
| 573 | uint16_t *p = (uint16_t *)buf; |
| 574 | len >>= 1; |
| 575 | |
| 576 | for (i = 0; i < len; i++) |
| 577 | writew(p[i], nand->IO_ADDR_W); |
| 578 | } |
| 579 | |
| 580 | static void write_page(struct mtd_info *mtd, struct nand_chip *nand, |
| 581 | const uint8_t *buf, int use_ecc) |
| 582 | { |
| 583 | void __iomem *docptr = CONFIG_SYS_NAND_BASE; |
| 584 | uint8_t ecc_buf[8]; |
| 585 | |
| 586 | writew(DOC_ECCCONF0_ECC_ENABLE | |
| 587 | DOC_ECCCONF0_UNKNOWN | |
| 588 | DOCG4_BCH_SIZE, |
| 589 | docptr + DOC_ECCCONF0); |
| 590 | write_nop(docptr); |
| 591 | |
| 592 | /* write the page data */ |
| 593 | docg4_write_buf16(mtd, buf, DOCG4_PAGE_SIZE); |
| 594 | |
| 595 | /* oob bytes 0 through 5 are written to I/O reg */ |
| 596 | docg4_write_buf16(mtd, nand->oob_poi, 6); |
| 597 | |
| 598 | /* oob byte 6 written to a separate reg */ |
| 599 | writew(nand->oob_poi[6], docptr + DOCG4_OOB_6_7); |
| 600 | |
| 601 | write_nop(docptr); |
| 602 | write_nop(docptr); |
| 603 | |
| 604 | /* write hw-generated ecc bytes to oob */ |
| 605 | if (likely(use_ecc)) { |
| 606 | /* oob byte 7 is hamming code */ |
| 607 | uint8_t hamming = readb(docptr + DOC_HAMMINGPARITY); |
| 608 | hamming = readb(docptr + DOC_HAMMINGPARITY); /* 2nd read */ |
| 609 | writew(hamming, docptr + DOCG4_OOB_6_7); |
| 610 | write_nop(docptr); |
| 611 | |
| 612 | /* read the 7 bch bytes from ecc regs */ |
| 613 | read_hw_ecc(docptr, ecc_buf); |
| 614 | ecc_buf[7] = 0; /* clear the "page written" flag */ |
| 615 | } |
| 616 | |
| 617 | /* write user-supplied bytes to oob */ |
| 618 | else { |
| 619 | writew(nand->oob_poi[7], docptr + DOCG4_OOB_6_7); |
| 620 | write_nop(docptr); |
| 621 | memcpy(ecc_buf, &nand->oob_poi[8], 8); |
| 622 | } |
| 623 | |
| 624 | docg4_write_buf16(mtd, ecc_buf, 8); |
| 625 | write_nop(docptr); |
| 626 | write_nop(docptr); |
| 627 | writew(0, docptr + DOC_DATAEND); |
| 628 | write_nop(docptr); |
| 629 | } |
| 630 | |
| 631 | static void docg4_write_page_raw(struct mtd_info *mtd, struct nand_chip *nand, |
| 632 | const uint8_t *buf) |
| 633 | { |
| 634 | return write_page(mtd, nand, buf, 0); |
| 635 | } |
| 636 | |
| 637 | static void docg4_write_page(struct mtd_info *mtd, struct nand_chip *nand, |
| 638 | const uint8_t *buf) |
| 639 | { |
| 640 | return write_page(mtd, nand, buf, 1); |
| 641 | } |
| 642 | |
| 643 | static int read_page(struct mtd_info *mtd, struct nand_chip *nand, |
| 644 | uint8_t *buf, int page, int use_ecc) |
| 645 | { |
| 646 | struct docg4_priv *doc = nand->priv; |
| 647 | void __iomem *docptr = CONFIG_SYS_NAND_BASE; |
| 648 | uint16_t status, edc_err, *buf16; |
| 649 | |
| 650 | writew(DOC_ECCCONF0_READ_MODE | |
| 651 | DOC_ECCCONF0_ECC_ENABLE | |
| 652 | DOC_ECCCONF0_UNKNOWN | |
| 653 | DOCG4_BCH_SIZE, |
| 654 | docptr + DOC_ECCCONF0); |
| 655 | write_nop(docptr); |
| 656 | write_nop(docptr); |
| 657 | write_nop(docptr); |
| 658 | write_nop(docptr); |
| 659 | write_nop(docptr); |
| 660 | |
| 661 | /* the 1st byte from the I/O reg is a status; the rest is page data */ |
| 662 | status = readw(docptr + DOC_IOSPACE_DATA); |
| 663 | if (status & DOCG4_READ_ERROR) { |
| 664 | printf("docg4_read_page: bad status: 0x%02x\n", status); |
| 665 | writew(0, docptr + DOC_DATAEND); |
| 666 | return -EIO; |
| 667 | } |
| 668 | |
| 669 | docg4_read_buf(mtd, buf, DOCG4_PAGE_SIZE); /* read the page data */ |
| 670 | |
| 671 | /* first 14 oob bytes read from I/O reg */ |
| 672 | docg4_read_buf(mtd, nand->oob_poi, 14); |
| 673 | |
| 674 | /* last 2 read from another reg */ |
| 675 | buf16 = (uint16_t *)(nand->oob_poi + 14); |
| 676 | *buf16 = readw(docptr + DOCG4_MYSTERY_REG); |
| 677 | |
| 678 | /* |
| 679 | * Diskonchips read oob immediately after a page read. Mtd |
| 680 | * infrastructure issues a separate command for reading oob after the |
| 681 | * page is read. So we save the oob bytes in a local buffer and just |
| 682 | * copy it if the next command reads oob from the same page. |
| 683 | */ |
| 684 | memcpy(doc->oob_buf, nand->oob_poi, 16); |
| 685 | |
| 686 | write_nop(docptr); |
| 687 | |
| 688 | if (likely(use_ecc)) { |
| 689 | /* read the register that tells us if bitflip(s) detected */ |
| 690 | edc_err = readw(docptr + DOC_ECCCONF1); |
| 691 | edc_err = readw(docptr + DOC_ECCCONF1); |
| 692 | |
| 693 | /* If bitflips are reported, attempt to correct with ecc */ |
| 694 | if (edc_err & DOC_ECCCONF1_BCH_SYNDROM_ERR) { |
| 695 | int bits_corrected = correct_data(mtd, buf, page); |
| 696 | if (bits_corrected == -EBADMSG) |
| 697 | mtd->ecc_stats.failed++; |
| 698 | else |
| 699 | mtd->ecc_stats.corrected += bits_corrected; |
| 700 | } |
| 701 | } |
| 702 | |
| 703 | writew(0, docptr + DOC_DATAEND); |
| 704 | return 0; |
| 705 | } |
| 706 | |
| 707 | |
| 708 | static int docg4_read_page_raw(struct mtd_info *mtd, struct nand_chip *nand, |
| 709 | uint8_t *buf, int page) |
| 710 | { |
| 711 | return read_page(mtd, nand, buf, page, 0); |
| 712 | } |
| 713 | |
| 714 | static int docg4_read_page(struct mtd_info *mtd, struct nand_chip *nand, |
| 715 | uint8_t *buf, int page) |
| 716 | { |
| 717 | return read_page(mtd, nand, buf, page, 1); |
| 718 | } |
| 719 | |
| 720 | static void docg4_erase_block(struct mtd_info *mtd, int page) |
| 721 | { |
| 722 | struct nand_chip *nand = mtd->priv; |
| 723 | struct docg4_priv *doc = nand->priv; |
| 724 | void __iomem *docptr = CONFIG_SYS_NAND_BASE; |
| 725 | uint16_t g4_page; |
| 726 | |
| 727 | MTDDEBUG(MTD_DEBUG_LEVEL3, "%s: page %04x\n", __func__, page); |
| 728 | |
| 729 | sequence_reset(docptr); |
| 730 | |
| 731 | writew(DOCG4_SEQ_BLOCKERASE, docptr + DOC_FLASHSEQUENCE); |
| 732 | writew(DOC_CMD_PROG_BLOCK_ADDR, docptr + DOC_FLASHCOMMAND); |
| 733 | write_nop(docptr); |
| 734 | |
| 735 | /* only 2 bytes of address are written to specify erase block */ |
| 736 | g4_page = (uint16_t)(page / 4); /* to g4's 2k page addressing */ |
| 737 | writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS); |
| 738 | g4_page >>= 8; |
| 739 | writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS); |
| 740 | write_nop(docptr); |
| 741 | |
| 742 | /* start the erasure */ |
| 743 | writew(DOC_CMD_ERASECYCLE2, docptr + DOC_FLASHCOMMAND); |
| 744 | write_nop(docptr); |
| 745 | write_nop(docptr); |
| 746 | |
| 747 | poll_status(docptr); |
| 748 | writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE); |
| 749 | writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND); |
| 750 | writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0); |
| 751 | write_nop(docptr); |
| 752 | write_nop(docptr); |
| 753 | write_nop(docptr); |
| 754 | write_nop(docptr); |
| 755 | write_nop(docptr); |
| 756 | |
| 757 | read_progstatus(doc, docptr); |
| 758 | |
| 759 | writew(0, docptr + DOC_DATAEND); |
| 760 | write_nop(docptr); |
| 761 | poll_status(docptr); |
| 762 | write_nop(docptr); |
| 763 | } |
| 764 | |
| 765 | static int read_factory_bbt(struct mtd_info *mtd) |
| 766 | { |
| 767 | /* |
| 768 | * The device contains a read-only factory bad block table. Read it and |
| 769 | * update the memory-based bbt accordingly. |
| 770 | */ |
| 771 | |
| 772 | struct nand_chip *nand = mtd->priv; |
| 773 | uint32_t g4_addr = mtd_to_docg4_address(DOCG4_FACTORY_BBT_PAGE, 0); |
| 774 | uint8_t *buf; |
| 775 | int i, block, status; |
| 776 | |
| 777 | buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL); |
| 778 | if (buf == NULL) |
| 779 | return -ENOMEM; |
| 780 | |
| 781 | read_page_prologue(CONFIG_SYS_NAND_BASE, g4_addr); |
| 782 | status = docg4_read_page(mtd, nand, buf, DOCG4_FACTORY_BBT_PAGE); |
| 783 | if (status) |
| 784 | goto exit; |
| 785 | |
| 786 | /* |
| 787 | * If no memory-based bbt was created, exit. This will happen if module |
| 788 | * parameter ignore_badblocks is set. Then why even call this function? |
| 789 | * For an unknown reason, block erase always fails if it's the first |
| 790 | * operation after device power-up. The above read ensures it never is. |
| 791 | * Ugly, I know. |
| 792 | */ |
| 793 | if (nand->bbt == NULL) /* no memory-based bbt */ |
| 794 | goto exit; |
| 795 | |
| 796 | /* |
| 797 | * Parse factory bbt and update memory-based bbt. Factory bbt format is |
| 798 | * simple: one bit per block, block numbers increase left to right (msb |
| 799 | * to lsb). Bit clear means bad block. |
| 800 | */ |
| 801 | for (i = block = 0; block < DOCG4_NUMBLOCKS; block += 8, i++) { |
| 802 | int bitnum; |
| 803 | uint8_t mask; |
| 804 | for (bitnum = 0, mask = 0x80; |
| 805 | bitnum < 8; bitnum++, mask >>= 1) { |
| 806 | if (!(buf[i] & mask)) { |
| 807 | int badblock = block + bitnum; |
| 808 | nand->bbt[badblock / 4] |= |
| 809 | 0x03 << ((badblock % 4) * 2); |
| 810 | mtd->ecc_stats.badblocks++; |
| 811 | printf("factory-marked bad block: %d\n", |
| 812 | badblock); |
| 813 | } |
| 814 | } |
| 815 | } |
| 816 | exit: |
| 817 | kfree(buf); |
| 818 | return status; |
| 819 | } |
| 820 | |
| 821 | static int docg4_block_markbad(struct mtd_info *mtd, loff_t ofs) |
| 822 | { |
| 823 | /* |
| 824 | * Mark a block as bad. Bad blocks are marked in the oob area of the |
| 825 | * first page of the block. The default scan_bbt() in the nand |
| 826 | * infrastructure code works fine for building the memory-based bbt |
| 827 | * during initialization, as does the nand infrastructure function that |
| 828 | * checks if a block is bad by reading the bbt. This function replaces |
| 829 | * the nand default because writes to oob-only are not supported. |
| 830 | */ |
| 831 | |
| 832 | int ret, i; |
| 833 | uint8_t *buf; |
| 834 | struct nand_chip *nand = mtd->priv; |
| 835 | struct nand_bbt_descr *bbtd = nand->badblock_pattern; |
| 836 | int block = (int)(ofs >> nand->bbt_erase_shift); |
| 837 | int page = (int)(ofs >> nand->page_shift); |
| 838 | uint32_t g4_addr = mtd_to_docg4_address(page, 0); |
| 839 | |
| 840 | MTDDEBUG(MTD_DEBUG_LEVEL3, "%s: %08llx\n", __func__, ofs); |
| 841 | |
| 842 | if (unlikely(ofs & (DOCG4_BLOCK_SIZE - 1))) |
| 843 | printf("%s: ofs %llx not start of block!\n", |
| 844 | __func__, ofs); |
| 845 | |
| 846 | /* allocate blank buffer for page data */ |
| 847 | buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL); |
| 848 | if (buf == NULL) |
| 849 | return -ENOMEM; |
| 850 | |
| 851 | /* update bbt in memory */ |
| 852 | nand->bbt[block / 4] |= 0x01 << ((block & 0x03) * 2); |
| 853 | |
| 854 | /* write bit-wise negation of pattern to oob buffer */ |
| 855 | memset(nand->oob_poi, 0xff, mtd->oobsize); |
| 856 | for (i = 0; i < bbtd->len; i++) |
| 857 | nand->oob_poi[bbtd->offs + i] = ~bbtd->pattern[i]; |
| 858 | |
| 859 | /* write first page of block */ |
| 860 | write_page_prologue(CONFIG_SYS_NAND_BASE, g4_addr); |
| 861 | docg4_write_page(mtd, nand, buf); |
| 862 | ret = pageprog(mtd); |
| 863 | if (!ret) |
| 864 | mtd->ecc_stats.badblocks++; |
| 865 | |
| 866 | kfree(buf); |
| 867 | |
| 868 | return ret; |
| 869 | } |
| 870 | |
| 871 | static uint8_t docg4_read_byte(struct mtd_info *mtd) |
| 872 | { |
| 873 | struct nand_chip *nand = mtd->priv; |
| 874 | struct docg4_priv *doc = nand->priv; |
| 875 | |
| 876 | MTDDEBUG(MTD_DEBUG_LEVEL3, "%s\n", __func__); |
| 877 | |
| 878 | if (doc->last_command.command == NAND_CMD_STATUS) { |
| 879 | int status; |
| 880 | |
| 881 | /* |
| 882 | * Previous nand command was status request, so nand |
| 883 | * infrastructure code expects to read the status here. If an |
| 884 | * error occurred in a previous operation, report it. |
| 885 | */ |
| 886 | doc->last_command.command = 0; |
| 887 | |
| 888 | if (doc->status) { |
| 889 | status = doc->status; |
| 890 | doc->status = 0; |
| 891 | } |
| 892 | |
| 893 | /* why is NAND_STATUS_WP inverse logic?? */ |
| 894 | else |
| 895 | status = NAND_STATUS_WP | NAND_STATUS_READY; |
| 896 | |
| 897 | return status; |
| 898 | } |
| 899 | |
| 900 | printf("unexpectd call to read_byte()\n"); |
| 901 | |
| 902 | return 0; |
| 903 | } |
| 904 | |
| 905 | static int docg4_wait(struct mtd_info *mtd, struct nand_chip *nand) |
| 906 | { |
| 907 | struct docg4_priv *doc = nand->priv; |
| 908 | int status = NAND_STATUS_WP; /* inverse logic?? */ |
| 909 | MTDDEBUG(MTD_DEBUG_LEVEL3, "%s...\n", __func__); |
| 910 | |
| 911 | /* report any previously unreported error */ |
| 912 | if (doc->status) { |
| 913 | status |= doc->status; |
| 914 | doc->status = 0; |
| 915 | return status; |
| 916 | } |
| 917 | |
| 918 | status |= poll_status(CONFIG_SYS_NAND_BASE); |
| 919 | return status; |
| 920 | } |
| 921 | |
| 922 | int docg4_nand_init(struct mtd_info *mtd, struct nand_chip *nand, int devnum) |
| 923 | { |
| 924 | uint16_t id1, id2; |
| 925 | struct docg4_priv *docg4; |
| 926 | int retval; |
| 927 | |
| 928 | docg4 = kzalloc(sizeof(*docg4), GFP_KERNEL); |
| 929 | if (!docg4) |
| 930 | return -1; |
| 931 | |
| 932 | mtd->priv = nand; |
| 933 | nand->priv = docg4; |
| 934 | |
| 935 | /* These must be initialized here because the docg4 is non-standard |
| 936 | * and doesn't produce an id that the nand code can use to look up |
| 937 | * these values (nand_scan_ident() not called). |
| 938 | */ |
| 939 | mtd->size = DOCG4_CHIP_SIZE; |
| 940 | mtd->name = "Msys_Diskonchip_G4"; |
| 941 | mtd->writesize = DOCG4_PAGE_SIZE; |
| 942 | mtd->erasesize = DOCG4_BLOCK_SIZE; |
| 943 | mtd->oobsize = DOCG4_OOB_SIZE; |
| 944 | |
| 945 | nand->IO_ADDR_R = |
| 946 | (void __iomem *)CONFIG_SYS_NAND_BASE + DOC_IOSPACE_DATA; |
| 947 | nand->IO_ADDR_W = nand->IO_ADDR_R; |
| 948 | nand->chipsize = DOCG4_CHIP_SIZE; |
| 949 | nand->chip_shift = DOCG4_CHIP_SHIFT; |
| 950 | nand->bbt_erase_shift = DOCG4_ERASE_SHIFT; |
| 951 | nand->phys_erase_shift = DOCG4_ERASE_SHIFT; |
| 952 | nand->chip_delay = 20; |
| 953 | nand->page_shift = DOCG4_PAGE_SHIFT; |
| 954 | nand->pagemask = 0x3ffff; |
| 955 | nand->badblockpos = NAND_LARGE_BADBLOCK_POS; |
| 956 | nand->badblockbits = 8; |
| 957 | nand->ecc.layout = &docg4_oobinfo; |
| 958 | nand->ecc.mode = NAND_ECC_HW_SYNDROME; |
| 959 | nand->ecc.size = DOCG4_PAGE_SIZE; |
| 960 | nand->ecc.prepad = 8; |
| 961 | nand->ecc.bytes = 8; |
| 962 | nand->options = |
| 963 | NAND_BUSWIDTH_16 | NAND_NO_SUBPAGE_WRITE | NAND_NO_AUTOINCR; |
| 964 | nand->controller = &nand->hwcontrol; |
| 965 | |
| 966 | /* methods */ |
| 967 | nand->cmdfunc = docg4_command; |
| 968 | nand->waitfunc = docg4_wait; |
| 969 | nand->select_chip = docg4_select_chip; |
| 970 | nand->read_byte = docg4_read_byte; |
| 971 | nand->block_markbad = docg4_block_markbad; |
| 972 | nand->read_buf = docg4_read_buf; |
| 973 | nand->write_buf = docg4_write_buf16; |
| 974 | nand->scan_bbt = nand_default_bbt; |
| 975 | nand->erase_cmd = docg4_erase_block; |
| 976 | nand->ecc.read_page = docg4_read_page; |
| 977 | nand->ecc.write_page = docg4_write_page; |
| 978 | nand->ecc.read_page_raw = docg4_read_page_raw; |
| 979 | nand->ecc.write_page_raw = docg4_write_page_raw; |
| 980 | nand->ecc.read_oob = docg4_read_oob; |
| 981 | nand->ecc.write_oob = docg4_write_oob; |
| 982 | |
| 983 | /* |
| 984 | * The way the nand infrastructure code is written, a memory-based bbt |
| 985 | * is not created if NAND_SKIP_BBTSCAN is set. With no memory bbt, |
| 986 | * nand->block_bad() is used. So when ignoring bad blocks, we skip the |
| 987 | * scan and define a dummy block_bad() which always returns 0. |
| 988 | */ |
| 989 | if (ignore_badblocks) { |
| 990 | nand->options |= NAND_SKIP_BBTSCAN; |
| 991 | nand->block_bad = docg4_block_neverbad; |
| 992 | } |
| 993 | |
| 994 | reset(CONFIG_SYS_NAND_BASE); |
| 995 | |
| 996 | /* check for presence of g4 chip by reading id registers */ |
| 997 | id1 = readw(CONFIG_SYS_NAND_BASE + DOC_CHIPID); |
| 998 | id1 = readw(CONFIG_SYS_NAND_BASE + DOCG4_MYSTERY_REG); |
| 999 | id2 = readw(CONFIG_SYS_NAND_BASE + DOC_CHIPID_INV); |
| 1000 | id2 = readw(CONFIG_SYS_NAND_BASE + DOCG4_MYSTERY_REG); |
| 1001 | if (id1 != DOCG4_IDREG1_VALUE || id2 != DOCG4_IDREG2_VALUE) |
| 1002 | return -1; |
| 1003 | |
| 1004 | /* initialize bch algorithm */ |
| 1005 | docg4->bch = init_bch(DOCG4_M, DOCG4_T, DOCG4_PRIMITIVE_POLY); |
| 1006 | if (docg4->bch == NULL) |
| 1007 | return -1; |
| 1008 | |
| 1009 | retval = nand_scan_tail(mtd); |
| 1010 | if (retval) |
| 1011 | return -1; |
| 1012 | |
| 1013 | /* |
| 1014 | * Scan for bad blocks and create bbt here, then add the factory-marked |
| 1015 | * bad blocks to the bbt. |
| 1016 | */ |
| 1017 | nand->scan_bbt(mtd); |
| 1018 | nand->options |= NAND_BBT_SCANNED; |
| 1019 | retval = read_factory_bbt(mtd); |
| 1020 | if (retval) |
| 1021 | return -1; |
| 1022 | |
| 1023 | retval = nand_register(devnum); |
| 1024 | if (retval) |
| 1025 | return -1; |
| 1026 | |
| 1027 | return 0; |
| 1028 | } |