Kevin Scholz | 3bb3f26 | 2019-10-07 19:26:36 +0530 | [diff] [blame] | 1 | // SPDX-License-Identifier: BSD-3-Clause |
| 2 | /****************************************************************************** |
| 3 | * Copyright (C) 2012-2018 Cadence Design Systems, Inc. |
| 4 | * Copyright (C) 2019 Texas Instruments Incorporated - http://www.ti.com/ |
| 5 | * |
| 6 | * lpddr4.c |
| 7 | * |
| 8 | ***************************************************************************** |
| 9 | */ |
| 10 | #include "cps_drv_lpddr4.h" |
| 11 | #include "lpddr4_ctl_regs.h" |
| 12 | #include "lpddr4_if.h" |
| 13 | #include "lpddr4_private.h" |
| 14 | #include "lpddr4_sanity.h" |
| 15 | #include "lpddr4_structs_if.h" |
| 16 | |
| 17 | #define LPDDR4_CUSTOM_TIMEOUT_DELAY 100000000U |
| 18 | |
| 19 | /** |
| 20 | * Internal Function:Poll for status of interrupt received by the Controller. |
| 21 | * @param[in] pD Driver state info specific to this instance. |
| 22 | * @param[in] irqBit Interrupt status bit to be checked. |
| 23 | * @param[in] delay time delay. |
| 24 | * @return CDN_EOK on success (Interrupt status high). |
| 25 | * @return EIO on poll time out. |
| 26 | * @return EINVAL checking status was not successful. |
| 27 | */ |
| 28 | static uint32_t lpddr4_pollctlirq(const lpddr4_privatedata * pd, |
| 29 | lpddr4_ctlinterrupt irqbit, uint32_t delay) |
| 30 | { |
| 31 | |
| 32 | uint32_t result = 0U; |
| 33 | uint32_t timeout = 0U; |
| 34 | bool irqstatus = false; |
| 35 | |
| 36 | /* Loop until irqStatus found to be 1 or if value of 'result' !=CDN_EOK */ |
| 37 | do { |
| 38 | if (++timeout == delay) { |
| 39 | result = EIO; |
| 40 | break; |
| 41 | } |
| 42 | /* cps_delayns(10000000U); */ |
| 43 | result = lpddr4_checkctlinterrupt(pd, irqbit, &irqstatus); |
| 44 | } while ((irqstatus == false) && (result == (uint32_t) CDN_EOK)); |
| 45 | |
| 46 | return result; |
| 47 | } |
| 48 | |
| 49 | /** |
| 50 | * Internal Function:Poll for status of interrupt received by the PHY Independent Module. |
| 51 | * @param[in] pD Driver state info specific to this instance. |
| 52 | * @param[in] irqBit Interrupt status bit to be checked. |
| 53 | * @param[in] delay time delay. |
| 54 | * @return CDN_EOK on success (Interrupt status high). |
| 55 | * @return EIO on poll time out. |
| 56 | * @return EINVAL checking status was not successful. |
| 57 | */ |
| 58 | static uint32_t lpddr4_pollphyindepirq(const lpddr4_privatedata * pd, |
| 59 | lpddr4_phyindepinterrupt irqbit, |
| 60 | uint32_t delay) |
| 61 | { |
| 62 | |
| 63 | uint32_t result = 0U; |
| 64 | uint32_t timeout = 0U; |
| 65 | bool irqstatus = false; |
| 66 | |
| 67 | /* Loop until irqStatus found to be 1 or if value of 'result' !=CDN_EOK */ |
| 68 | do { |
| 69 | if (++timeout == delay) { |
| 70 | result = EIO; |
| 71 | break; |
| 72 | } |
| 73 | /* cps_delayns(10000000U); */ |
| 74 | result = lpddr4_checkphyindepinterrupt(pd, irqbit, &irqstatus); |
| 75 | } while ((irqstatus == false) && (result == (uint32_t) CDN_EOK)); |
| 76 | |
| 77 | return result; |
| 78 | } |
| 79 | |
| 80 | /** |
| 81 | * Internal Function:Trigger function to poll and Ack IRQs |
| 82 | * @param[in] pD Driver state info specific to this instance. |
| 83 | * @return CDN_EOK on success (Interrupt status high). |
| 84 | * @return EIO on poll time out. |
| 85 | * @return EINVAL checking status was not successful. |
| 86 | */ |
| 87 | static uint32_t lpddr4_pollandackirq(const lpddr4_privatedata * pd) |
| 88 | { |
| 89 | uint32_t result = 0U; |
| 90 | |
| 91 | /* Wait for PhyIndependent module to finish up ctl init sequence */ |
| 92 | result = |
| 93 | lpddr4_pollphyindepirq(pd, LPDDR4_PHY_INDEP_INIT_DONE_BIT, |
| 94 | LPDDR4_CUSTOM_TIMEOUT_DELAY); |
| 95 | |
| 96 | /* Ack to clear the PhyIndependent interrupt bit */ |
| 97 | if (result == (uint32_t) CDN_EOK) { |
| 98 | result = |
| 99 | lpddr4_ackphyindepinterrupt(pd, |
| 100 | LPDDR4_PHY_INDEP_INIT_DONE_BIT); |
| 101 | } |
| 102 | /* Wait for the CTL end of initialization */ |
| 103 | if (result == (uint32_t) CDN_EOK) { |
| 104 | result = |
| 105 | lpddr4_pollctlirq(pd, LPDDR4_MC_INIT_DONE, |
| 106 | LPDDR4_CUSTOM_TIMEOUT_DELAY); |
| 107 | } |
| 108 | /* Ack to clear the Ctl interrupt bit */ |
| 109 | if (result == (uint32_t) CDN_EOK) { |
| 110 | result = lpddr4_ackctlinterrupt(pd, LPDDR4_MC_INIT_DONE); |
| 111 | } |
| 112 | return result; |
| 113 | } |
| 114 | |
| 115 | /** |
| 116 | * Internal Function: Controller start sequence. |
| 117 | * @param[in] pD Driver state info specific to this instance. |
| 118 | * @return CDN_EOK on success. |
| 119 | * @return EINVAL starting controller was not successful. |
| 120 | */ |
| 121 | static uint32_t lpddr4_startsequencecontroller(const lpddr4_privatedata * pd) |
| 122 | { |
| 123 | uint32_t result = 0U; |
| 124 | uint32_t regval = 0U; |
| 125 | lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase; |
| 126 | lpddr4_infotype infotype; |
| 127 | |
| 128 | /* Set the PI_start to initiate leveling procedure */ |
| 129 | regval = |
| 130 | CPS_FLD_SET(LPDDR4__PI_START__FLD, |
| 131 | CPS_REG_READ(&(ctlregbase->LPDDR4__PI_START__REG))); |
| 132 | CPS_REG_WRITE((&(ctlregbase->LPDDR4__PI_START__REG)), regval); |
| 133 | |
| 134 | /* Set the Ctl_start */ |
| 135 | regval = |
| 136 | CPS_FLD_SET(LPDDR4__START__FLD, |
| 137 | CPS_REG_READ(&(ctlregbase->LPDDR4__START__REG))); |
| 138 | CPS_REG_WRITE(&(ctlregbase->LPDDR4__START__REG), regval); |
| 139 | |
| 140 | if (pd->infohandler != NULL) { |
| 141 | /* If a handler is registered, call it with the relevant information type */ |
| 142 | infotype = LPDDR4_DRV_SOC_PLL_UPDATE; |
| 143 | pd->infohandler(pd, infotype); |
| 144 | } |
| 145 | |
| 146 | result = lpddr4_pollandackirq(pd); |
| 147 | |
| 148 | return result; |
| 149 | } |
| 150 | |
| 151 | /** |
| 152 | * Internal Function: To add the offset to given address. |
| 153 | * @param[in] addr Address to which the offset has to be added. |
| 154 | * @param[in] regOffset The offset |
| 155 | * @return regAddr The address value after the summation. |
| 156 | */ |
| 157 | static volatile uint32_t *lpddr4_addoffset(volatile uint32_t * addr, |
| 158 | uint32_t regoffset) |
| 159 | { |
| 160 | |
| 161 | volatile uint32_t *local_addr = addr; |
| 162 | /* Declaring as array to add the offset value. */ |
| 163 | volatile uint32_t *regaddr = &local_addr[regoffset]; |
| 164 | return regaddr; |
| 165 | } |
| 166 | |
| 167 | /** |
| 168 | * Checks configuration object. |
| 169 | * @param[in] config Driver/hardware configuration required. |
| 170 | * @param[out] configSize Size of memory allocations required. |
| 171 | * @return CDN_EOK on success (requirements structure filled). |
| 172 | * @return ENOTSUP if configuration cannot be supported due to driver/hardware constraints. |
| 173 | */ |
| 174 | uint32_t lpddr4_probe(const lpddr4_config * config, uint16_t * configsize) |
| 175 | { |
| 176 | uint32_t result; |
| 177 | |
| 178 | result = (uint32_t) (lpddr4_probesf(config, configsize)); |
| 179 | if (result == (uint32_t) CDN_EOK) { |
| 180 | *configsize = (uint16_t) (sizeof(lpddr4_privatedata)); |
| 181 | } |
| 182 | return result; |
| 183 | } |
| 184 | |
| 185 | /** |
| 186 | * Init function to be called after LPDDR4_probe() to set up the driver configuration. |
| 187 | * Memory should be allocated for drv_data (using the size determined using LPDDR4_probe) before |
| 188 | * calling this API, init_settings should be initialized with base addresses for PHY Independent Module, |
| 189 | * Controller and PHY before calling this function. |
| 190 | * If callbacks are required for interrupt handling, these should also be configured in init_settings. |
| 191 | * @param[in] pD Driver state info specific to this instance. |
| 192 | * @param[in] cfg Specifies driver/hardware configuration. |
| 193 | * @return CDN_EOK on success |
| 194 | * @return EINVAL if illegal/inconsistent values in cfg. |
| 195 | * @return ENOTSUP if hardware has an inconsistent configuration or doesn't support feature(s) |
| 196 | * required by 'config' parameters. |
| 197 | */ |
| 198 | uint32_t lpddr4_init(lpddr4_privatedata * pd, const lpddr4_config * cfg) |
| 199 | { |
| 200 | uint32_t result = 0U; |
| 201 | uint16_t productid = 0U; |
| 202 | uint32_t version[2] = { 0, 0 }; |
| 203 | |
| 204 | result = lpddr4_initsf(pd, cfg); |
| 205 | if (result == (uint32_t) CDN_EOK) { |
| 206 | /* Validate Magic number */ |
| 207 | lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) cfg->ctlbase; |
| 208 | productid = (uint16_t) (CPS_FLD_READ(LPDDR4__CONTROLLER_ID__FLD, |
| 209 | CPS_REG_READ(& |
| 210 | (ctlregbase-> |
| 211 | LPDDR4__CONTROLLER_ID__REG)))); |
| 212 | version[0] = |
| 213 | (uint32_t) (CPS_FLD_READ |
| 214 | (LPDDR4__CONTROLLER_VERSION_0__FLD, |
| 215 | CPS_REG_READ(& |
| 216 | (ctlregbase-> |
| 217 | LPDDR4__CONTROLLER_VERSION_0__REG)))); |
| 218 | version[1] = |
| 219 | (uint32_t) (CPS_FLD_READ |
| 220 | (LPDDR4__CONTROLLER_VERSION_1__FLD, |
| 221 | CPS_REG_READ(& |
| 222 | (ctlregbase-> |
| 223 | LPDDR4__CONTROLLER_VERSION_1__REG)))); |
| 224 | if ((productid == PRODUCT_ID) && (version[0] == VERSION_0) |
| 225 | && (version[1] == VERSION_1)) { |
| 226 | /* Populating configuration data to pD */ |
| 227 | pd->ctlbase = ctlregbase; |
| 228 | pd->infohandler = |
| 229 | (lpddr4_infocallback) cfg->infohandler; |
| 230 | pd->ctlinterrupthandler = |
| 231 | (lpddr4_ctlcallback) cfg->ctlinterrupthandler; |
| 232 | pd->phyindepinterrupthandler = |
| 233 | (lpddr4_phyindepcallback) cfg-> |
| 234 | phyindepinterrupthandler; |
| 235 | } else { |
| 236 | /* Magic number validation failed - Driver doesn't support given IP version */ |
| 237 | result = (uint32_t) EOPNOTSUPP; |
| 238 | } |
| 239 | } |
| 240 | return result; |
| 241 | } |
| 242 | |
| 243 | /** |
| 244 | * Start the driver. |
| 245 | * @param[in] pD Driver state info specific to this instance. |
| 246 | */ |
| 247 | uint32_t lpddr4_start(const lpddr4_privatedata * pd) |
| 248 | { |
| 249 | uint32_t result = 0U; |
| 250 | uint32_t regval = 0U; |
| 251 | |
| 252 | result = lpddr4_startsf(pd); |
| 253 | if (result == (uint32_t) CDN_EOK) { |
| 254 | lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase; |
| 255 | |
| 256 | /* Enable PI as the initiator for DRAM */ |
| 257 | regval = |
| 258 | CPS_FLD_SET(LPDDR4__PI_INIT_LVL_EN__FLD, |
| 259 | CPS_REG_READ(& |
| 260 | (ctlregbase-> |
| 261 | LPDDR4__PI_INIT_LVL_EN__REG))); |
| 262 | regval = CPS_FLD_SET(LPDDR4__PI_NORMAL_LVL_SEQ__FLD, regval); |
| 263 | CPS_REG_WRITE((&(ctlregbase->LPDDR4__PI_INIT_LVL_EN__REG)), |
| 264 | regval); |
| 265 | |
| 266 | /* Start PI init sequence. */ |
| 267 | result = lpddr4_startsequencecontroller(pd); |
| 268 | } |
| 269 | return result; |
| 270 | } |
| 271 | |
| 272 | /** |
| 273 | * Read a register from the controller, PHY or PHY Independent Module |
| 274 | * @param[in] pD Driver state info specific to this instance. |
| 275 | * @param[in] cpp Indicates whether controller, PHY or PHY Independent Module register |
| 276 | * @param[in] regOffset Register offset |
| 277 | * @param[out] regValue Register value read |
| 278 | * @return CDN_EOK on success. |
| 279 | * @return EINVAL if regOffset if out of range or regValue is NULL |
| 280 | */ |
| 281 | uint32_t lpddr4_readreg(const lpddr4_privatedata * pd, lpddr4_regblock cpp, |
| 282 | uint32_t regoffset, uint32_t * regvalue) |
| 283 | { |
| 284 | uint32_t result = 0U; |
| 285 | |
| 286 | result = lpddr4_readregsf(pd, cpp, regvalue); |
| 287 | if (result == (uint32_t) CDN_EOK) { |
| 288 | lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase; |
| 289 | |
| 290 | if (cpp == LPDDR4_CTL_REGS) { |
| 291 | if (regoffset >= LPDDR4_CTL_REG_COUNT) { |
| 292 | /* Return if user provider invalid register number */ |
| 293 | result = EINVAL; |
| 294 | } else { |
| 295 | *regvalue = |
| 296 | CPS_REG_READ(lpddr4_addoffset |
| 297 | (&(ctlregbase->DENALI_CTL_0), |
| 298 | regoffset)); |
| 299 | } |
| 300 | } else if (cpp == LPDDR4_PHY_REGS) { |
| 301 | if (regoffset >= LPDDR4_PHY_REG_COUNT) { |
| 302 | /* Return if user provider invalid register number */ |
| 303 | result = EINVAL; |
| 304 | } else { |
| 305 | *regvalue = |
| 306 | CPS_REG_READ(lpddr4_addoffset |
| 307 | (&(ctlregbase->DENALI_PHY_0), |
| 308 | regoffset)); |
| 309 | } |
| 310 | |
| 311 | } else { |
| 312 | if (regoffset >= LPDDR4_PHY_INDEP_REG_COUNT) { |
| 313 | /* Return if user provider invalid register number */ |
| 314 | result = EINVAL; |
| 315 | } else { |
| 316 | *regvalue = |
| 317 | CPS_REG_READ(lpddr4_addoffset |
| 318 | (&(ctlregbase->DENALI_PI_0), |
| 319 | regoffset)); |
| 320 | } |
| 321 | } |
| 322 | } |
| 323 | return result; |
| 324 | } |
| 325 | |
| 326 | uint32_t lpddr4_writereg(const lpddr4_privatedata * pd, lpddr4_regblock cpp, |
| 327 | uint32_t regoffset, uint32_t regvalue) |
| 328 | { |
| 329 | uint32_t result = 0U; |
| 330 | |
| 331 | result = lpddr4_writeregsf(pd, cpp); |
| 332 | if (result == (uint32_t) CDN_EOK) { |
| 333 | lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase; |
| 334 | |
| 335 | if (cpp == LPDDR4_CTL_REGS) { |
| 336 | if (regoffset >= LPDDR4_CTL_REG_COUNT) { |
| 337 | /* Return if user provider invalid register number */ |
| 338 | result = EINVAL; |
| 339 | } else { |
| 340 | CPS_REG_WRITE(lpddr4_addoffset |
| 341 | (&(ctlregbase->DENALI_CTL_0), |
| 342 | regoffset), regvalue); |
| 343 | } |
| 344 | } else if (cpp == LPDDR4_PHY_REGS) { |
| 345 | if (regoffset >= LPDDR4_PHY_REG_COUNT) { |
| 346 | /* Return if user provider invalid register number */ |
| 347 | result = EINVAL; |
| 348 | } else { |
| 349 | CPS_REG_WRITE(lpddr4_addoffset |
| 350 | (&(ctlregbase->DENALI_PHY_0), |
| 351 | regoffset), regvalue); |
| 352 | } |
| 353 | } else { |
| 354 | if (regoffset >= LPDDR4_PHY_INDEP_REG_COUNT) { |
| 355 | /* Return if user provider invalid register number */ |
| 356 | result = EINVAL; |
| 357 | } else { |
| 358 | CPS_REG_WRITE(lpddr4_addoffset |
| 359 | (&(ctlregbase->DENALI_PI_0), |
| 360 | regoffset), regvalue); |
| 361 | } |
| 362 | } |
| 363 | } |
| 364 | |
| 365 | return result; |
| 366 | } |
| 367 | |
| 368 | static uint32_t lpddr4_checkmmrreaderror(const lpddr4_privatedata * pd, |
| 369 | uint64_t * mmrvalue, |
| 370 | uint8_t * mrrstatus) |
| 371 | { |
| 372 | |
| 373 | uint64_t lowerdata; |
| 374 | lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase; |
| 375 | uint32_t result = (uint32_t) CDN_EOK; |
| 376 | |
| 377 | /* Check if mode register read error interrupt occurred */ |
| 378 | if (lpddr4_pollctlirq(pd, LPDDR4_MRR_ERROR, 100) == 0U) { |
| 379 | /* Mode register read error interrupt, read MRR status register and return. */ |
| 380 | *mrrstatus = |
| 381 | (uint8_t) CPS_FLD_READ(LPDDR4__MRR_ERROR_STATUS__FLD, |
| 382 | CPS_REG_READ(& |
| 383 | (ctlregbase-> |
| 384 | LPDDR4__MRR_ERROR_STATUS__REG))); |
| 385 | *mmrvalue = 0; |
| 386 | result = EIO; |
| 387 | } else { |
| 388 | *mrrstatus = 0; |
| 389 | /* Mode register read was successful, read DATA */ |
| 390 | lowerdata = |
| 391 | CPS_REG_READ(& |
| 392 | (ctlregbase-> |
| 393 | LPDDR4__PERIPHERAL_MRR_DATA_0__REG)); |
| 394 | *mmrvalue = |
| 395 | CPS_REG_READ(& |
| 396 | (ctlregbase-> |
| 397 | LPDDR4__PERIPHERAL_MRR_DATA_1__REG)); |
| 398 | *mmrvalue = (uint64_t) ((*mmrvalue << WORD_SHIFT) | lowerdata); |
| 399 | /* Acknowledge MR_READ_DONE interrupt to clear it */ |
| 400 | result = lpddr4_ackctlinterrupt(pd, LPDDR4_MR_READ_DONE); |
| 401 | } |
| 402 | return result; |
| 403 | } |
| 404 | |
| 405 | uint32_t lpddr4_getmmrregister(const lpddr4_privatedata * pd, |
| 406 | uint32_t readmoderegval, uint64_t * mmrvalue, |
| 407 | uint8_t * mmrstatus) |
| 408 | { |
| 409 | |
| 410 | uint32_t result = 0U; |
| 411 | uint32_t tdelay = 1000U; |
| 412 | uint32_t regval = 0U; |
| 413 | |
| 414 | result = lpddr4_getmmrregistersf(pd, mmrvalue, mmrstatus); |
| 415 | if (result == (uint32_t) CDN_EOK) { |
| 416 | |
| 417 | lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase; |
| 418 | |
| 419 | /* Populate the calculated value to the register */ |
| 420 | regval = |
| 421 | CPS_FLD_WRITE(LPDDR4__READ_MODEREG__FLD, |
| 422 | CPS_REG_READ(& |
| 423 | (ctlregbase-> |
| 424 | LPDDR4__READ_MODEREG__REG)), |
| 425 | readmoderegval); |
| 426 | CPS_REG_WRITE(&(ctlregbase->LPDDR4__READ_MODEREG__REG), regval); |
| 427 | |
| 428 | /* Wait until the Read is done */ |
| 429 | result = lpddr4_pollctlirq(pd, LPDDR4_MR_READ_DONE, tdelay); |
| 430 | } |
| 431 | if (result == (uint32_t) CDN_EOK) { |
| 432 | result = lpddr4_checkmmrreaderror(pd, mmrvalue, mmrstatus); |
| 433 | } |
| 434 | return result; |
| 435 | } |
| 436 | |
| 437 | static uint32_t lpddr4_writemmrregister(const lpddr4_privatedata * pd, |
| 438 | uint32_t writemoderegval) |
| 439 | { |
| 440 | |
| 441 | uint32_t result = (uint32_t) CDN_EOK; |
| 442 | uint32_t tdelay = 1000U; |
| 443 | uint32_t regval = 0U; |
| 444 | lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase; |
| 445 | |
| 446 | /* Populate the calculated value to the register */ |
| 447 | regval = |
| 448 | CPS_FLD_WRITE(LPDDR4__WRITE_MODEREG__FLD, |
| 449 | CPS_REG_READ(& |
| 450 | (ctlregbase-> |
| 451 | LPDDR4__WRITE_MODEREG__REG)), |
| 452 | writemoderegval); |
| 453 | CPS_REG_WRITE(&(ctlregbase->LPDDR4__WRITE_MODEREG__REG), regval); |
| 454 | |
| 455 | result = lpddr4_pollctlirq(pd, LPDDR4_MR_WRITE_DONE, tdelay); |
| 456 | |
| 457 | return result; |
| 458 | } |
| 459 | |
| 460 | uint32_t lpddr4_setmmrregister(const lpddr4_privatedata * pd, |
| 461 | uint32_t writemoderegval, uint8_t * mrwstatus) |
| 462 | { |
| 463 | uint32_t result = 0U; |
| 464 | |
| 465 | result = lpddr4_setmmrregistersf(pd, mrwstatus); |
| 466 | if (result == (uint32_t) CDN_EOK) { |
| 467 | |
| 468 | /* Function call to trigger Mode register write */ |
| 469 | result = lpddr4_writemmrregister(pd, writemoderegval); |
| 470 | |
| 471 | if (result == (uint32_t) CDN_EOK) { |
| 472 | result = |
| 473 | lpddr4_ackctlinterrupt(pd, LPDDR4_MR_WRITE_DONE); |
| 474 | } |
| 475 | /* Read the status of mode register write */ |
| 476 | if (result == (uint32_t) CDN_EOK) { |
| 477 | lpddr4_ctlregs *ctlregbase = |
| 478 | (lpddr4_ctlregs *) pd->ctlbase; |
| 479 | *mrwstatus = |
| 480 | (uint8_t) CPS_FLD_READ(LPDDR4__MRW_STATUS__FLD, |
| 481 | CPS_REG_READ(& |
| 482 | (ctlregbase-> |
| 483 | LPDDR4__MRW_STATUS__REG))); |
| 484 | if ((*mrwstatus) != 0U) { |
| 485 | result = EIO; |
| 486 | } |
| 487 | } |
| 488 | } |
| 489 | |
| 490 | return result; |
| 491 | } |
| 492 | |
| 493 | uint32_t lpddr4_writectlconfig(const lpddr4_privatedata * pd, |
| 494 | const lpddr4_reginitdata * regvalues) |
| 495 | { |
| 496 | uint32_t result; |
| 497 | uint32_t regnum; |
| 498 | |
| 499 | result = lpddr4_writectlconfigsf(pd, regvalues); |
| 500 | if (result == (uint32_t) CDN_EOK) { |
| 501 | |
| 502 | /* Iterate through CTL register numbers. */ |
| 503 | for (regnum = 0; regnum < LPDDR4_CTL_REG_COUNT; regnum++) { |
| 504 | /* Check if the user has requested update */ |
| 505 | if (regvalues->updatectlreg[regnum]) { |
| 506 | result = |
| 507 | lpddr4_writereg(pd, LPDDR4_CTL_REGS, regnum, |
| 508 | (uint32_t) (regvalues-> |
| 509 | denalictlreg |
| 510 | [regnum])); |
| 511 | } |
| 512 | } |
| 513 | } |
| 514 | return result; |
| 515 | } |
| 516 | |
| 517 | uint32_t lpddr4_writephyindepconfig(const lpddr4_privatedata * pd, |
| 518 | const lpddr4_reginitdata * regvalues) |
| 519 | { |
| 520 | uint32_t result; |
| 521 | uint32_t regnum; |
| 522 | |
| 523 | result = lpddr4_writephyindepconfigsf(pd, regvalues); |
| 524 | if (result == (uint32_t) CDN_EOK) { |
| 525 | |
| 526 | /* Iterate through PHY Independent module register numbers. */ |
| 527 | for (regnum = 0; regnum < LPDDR4_PHY_INDEP_REG_COUNT; regnum++) { |
| 528 | /* Check if the user has requested update */ |
| 529 | if (regvalues->updatephyindepreg[regnum]) { |
| 530 | result = |
| 531 | lpddr4_writereg(pd, LPDDR4_PHY_INDEP_REGS, |
| 532 | regnum, |
| 533 | (uint32_t) (regvalues-> |
| 534 | denaliphyindepreg |
| 535 | [regnum])); |
| 536 | } |
| 537 | } |
| 538 | } |
| 539 | return result; |
| 540 | } |
| 541 | |
| 542 | uint32_t lpddr4_writephyconfig(const lpddr4_privatedata * pd, |
| 543 | const lpddr4_reginitdata * regvalues) |
| 544 | { |
| 545 | uint32_t result; |
| 546 | uint32_t regnum; |
| 547 | |
| 548 | result = lpddr4_writephyconfigsf(pd, regvalues); |
| 549 | if (result == (uint32_t) CDN_EOK) { |
| 550 | |
| 551 | /* Iterate through PHY register numbers. */ |
| 552 | for (regnum = 0; regnum < LPDDR4_PHY_REG_COUNT; regnum++) { |
| 553 | /* Check if the user has requested update */ |
| 554 | if (regvalues->updatephyreg[regnum]) { |
| 555 | result = |
| 556 | lpddr4_writereg(pd, LPDDR4_PHY_REGS, regnum, |
| 557 | (uint32_t) (regvalues-> |
| 558 | denaliphyreg |
| 559 | [regnum])); |
| 560 | } |
| 561 | } |
| 562 | } |
| 563 | return result; |
| 564 | } |
| 565 | |
| 566 | uint32_t lpddr4_readctlconfig(const lpddr4_privatedata * pd, |
| 567 | lpddr4_reginitdata * regvalues) |
| 568 | { |
| 569 | uint32_t result; |
| 570 | uint32_t regnum; |
| 571 | result = lpddr4_readctlconfigsf(pd, regvalues); |
| 572 | if (result == (uint32_t) CDN_EOK) { |
| 573 | /* Iterate through CTL register numbers. */ |
| 574 | for (regnum = 0; regnum < LPDDR4_CTL_REG_COUNT; regnum++) { |
| 575 | /* Check if the user has requested read (updateCtlReg=1) */ |
| 576 | if (regvalues->updatectlreg[regnum]) { |
| 577 | result = |
| 578 | lpddr4_readreg(pd, LPDDR4_CTL_REGS, regnum, |
| 579 | (uint32_t *) (®values-> |
| 580 | denalictlreg |
| 581 | [regnum])); |
| 582 | } |
| 583 | } |
| 584 | } |
| 585 | return result; |
| 586 | } |
| 587 | |
| 588 | uint32_t lpddr4_readphyindepconfig(const lpddr4_privatedata * pd, |
| 589 | lpddr4_reginitdata * regvalues) |
| 590 | { |
| 591 | uint32_t result; |
| 592 | uint32_t regnum; |
| 593 | |
| 594 | result = lpddr4_readphyindepconfigsf(pd, regvalues); |
| 595 | if (result == (uint32_t) CDN_EOK) { |
| 596 | /* Iterate through PHY Independent module register numbers. */ |
| 597 | for (regnum = 0; regnum < LPDDR4_PHY_INDEP_REG_COUNT; regnum++) { |
| 598 | /* Check if the user has requested read (updateCtlReg=1) */ |
| 599 | if (regvalues->updatephyindepreg[regnum]) { |
| 600 | result = |
| 601 | lpddr4_readreg(pd, LPDDR4_PHY_INDEP_REGS, |
| 602 | regnum, |
| 603 | (uint32_t *) (®values-> |
| 604 | denaliphyindepreg |
| 605 | [regnum])); |
| 606 | } |
| 607 | } |
| 608 | } |
| 609 | return result; |
| 610 | } |
| 611 | |
| 612 | uint32_t lpddr4_readphyconfig(const lpddr4_privatedata * pd, |
| 613 | lpddr4_reginitdata * regvalues) |
| 614 | { |
| 615 | uint32_t result; |
| 616 | uint32_t regnum; |
| 617 | |
| 618 | result = lpddr4_readphyconfigsf(pd, regvalues); |
| 619 | if (result == (uint32_t) CDN_EOK) { |
| 620 | /* Iterate through PHY register numbers. */ |
| 621 | for (regnum = 0; regnum < LPDDR4_PHY_REG_COUNT; regnum++) { |
| 622 | /* Check if the user has requested read (updateCtlReg=1) */ |
| 623 | if (regvalues->updatephyreg[regnum]) { |
| 624 | result = |
| 625 | lpddr4_readreg(pd, LPDDR4_PHY_REGS, regnum, |
| 626 | (uint32_t *) (®values-> |
| 627 | denaliphyreg |
| 628 | [regnum])); |
| 629 | } |
| 630 | } |
| 631 | } |
| 632 | return result; |
| 633 | } |
| 634 | |
| 635 | uint32_t lpddr4_getctlinterruptmask(const lpddr4_privatedata * pd, |
| 636 | uint64_t * mask) |
| 637 | { |
| 638 | uint32_t result = 0U; |
| 639 | uint64_t lowermask = 0U; |
| 640 | |
| 641 | result = lpddr4_getctlinterruptmasksf(pd, mask); |
| 642 | if (result == (uint32_t) CDN_EOK) { |
| 643 | lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase; |
| 644 | /* Reading the lower mask register */ |
| 645 | lowermask = |
| 646 | (uint64_t) (CPS_FLD_READ |
| 647 | (LPDDR4__INT_MASK_0__FLD, |
| 648 | CPS_REG_READ(& |
| 649 | (ctlregbase-> |
| 650 | LPDDR4__INT_MASK_0__REG)))); |
| 651 | /* Reading the upper mask register */ |
| 652 | *mask = |
| 653 | (uint64_t) (CPS_FLD_READ |
| 654 | (LPDDR4__INT_MASK_1__FLD, |
| 655 | CPS_REG_READ(& |
| 656 | (ctlregbase-> |
| 657 | LPDDR4__INT_MASK_1__REG)))); |
| 658 | /* Concatenate both register informations */ |
| 659 | *mask = (uint64_t) ((*mask << WORD_SHIFT) | lowermask); |
| 660 | } |
| 661 | return result; |
| 662 | } |
| 663 | |
| 664 | uint32_t lpddr4_setctlinterruptmask(const lpddr4_privatedata * pd, |
| 665 | const uint64_t * mask) |
| 666 | { |
| 667 | uint32_t result; |
| 668 | uint32_t regval = 0; |
| 669 | const uint64_t ui64one = 1ULL; |
| 670 | const uint32_t ui32irqcount = (uint32_t) LPDDR4_LOR_BITS + 1U; |
| 671 | |
| 672 | result = lpddr4_setctlinterruptmasksf(pd, mask); |
| 673 | if ((result == (uint32_t) CDN_EOK) && (ui32irqcount < 64U)) { |
| 674 | /* Return if the user given value is higher than the field width */ |
| 675 | if (*mask >= (ui64one << ui32irqcount)) { |
| 676 | result = EINVAL; |
| 677 | } |
| 678 | } |
| 679 | if (result == (uint32_t) CDN_EOK) { |
| 680 | lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase; |
| 681 | |
| 682 | /* Extracting the lower 32 bits and writing to lower mask register */ |
| 683 | regval = (uint32_t) (*mask & WORD_MASK); |
| 684 | regval = |
| 685 | CPS_FLD_WRITE(LPDDR4__INT_MASK_0__FLD, |
| 686 | CPS_REG_READ(& |
| 687 | (ctlregbase-> |
| 688 | LPDDR4__INT_MASK_0__REG)), |
| 689 | regval); |
| 690 | CPS_REG_WRITE(&(ctlregbase->LPDDR4__INT_MASK_0__REG), regval); |
| 691 | |
| 692 | /* Extracting the upper 32 bits and writing to upper mask register */ |
| 693 | regval = (uint32_t) ((*mask >> WORD_SHIFT) & WORD_MASK); |
| 694 | regval = |
| 695 | CPS_FLD_WRITE(LPDDR4__INT_MASK_1__FLD, |
| 696 | CPS_REG_READ(& |
| 697 | (ctlregbase-> |
| 698 | LPDDR4__INT_MASK_1__REG)), |
| 699 | regval); |
| 700 | CPS_REG_WRITE(&(ctlregbase->LPDDR4__INT_MASK_1__REG), regval); |
| 701 | } |
| 702 | return result; |
| 703 | } |
| 704 | |
| 705 | uint32_t lpddr4_checkctlinterrupt(const lpddr4_privatedata * pd, |
| 706 | lpddr4_ctlinterrupt intr, bool * irqstatus) |
| 707 | { |
| 708 | uint32_t result; |
| 709 | uint32_t ctlirqstatus = 0; |
| 710 | uint32_t fieldshift = 0; |
| 711 | |
| 712 | /* NOTE:This function assume irq status is mentioned in NOT more than 2 registers. |
| 713 | * Value of 'interrupt' should be less than 64 */ |
| 714 | result = lpddr4_checkctlinterruptsf(pd, intr, irqstatus); |
| 715 | if (result == (uint32_t) CDN_EOK) { |
| 716 | lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase; |
| 717 | |
| 718 | if ((uint32_t) intr >= WORD_SHIFT) { |
| 719 | ctlirqstatus = |
| 720 | CPS_REG_READ(& |
| 721 | (ctlregbase-> |
| 722 | LPDDR4__INT_STATUS_1__REG)); |
| 723 | /* Reduce the shift value as we are considering upper register */ |
| 724 | fieldshift = (uint32_t) intr - ((uint32_t) WORD_SHIFT); |
| 725 | } else { |
| 726 | ctlirqstatus = |
| 727 | CPS_REG_READ(& |
| 728 | (ctlregbase-> |
| 729 | LPDDR4__INT_STATUS_0__REG)); |
| 730 | /* The shift value remains same for lower interrupt register */ |
| 731 | fieldshift = (uint32_t) intr; |
| 732 | } |
| 733 | |
| 734 | /* MISRA compliance (Shifting operation) check */ |
| 735 | if (fieldshift < WORD_SHIFT) { |
| 736 | if (((ctlirqstatus >> fieldshift) & BIT_MASK) > 0U) { |
| 737 | *irqstatus = true; |
| 738 | } else { |
| 739 | *irqstatus = false; |
| 740 | } |
| 741 | } |
| 742 | } |
| 743 | return result; |
| 744 | } |
| 745 | |
| 746 | uint32_t lpddr4_ackctlinterrupt(const lpddr4_privatedata * pd, |
| 747 | lpddr4_ctlinterrupt intr) |
| 748 | { |
| 749 | uint32_t result = 0; |
| 750 | uint32_t regval = 0; |
| 751 | uint32_t localinterrupt = (uint32_t) intr; |
| 752 | |
| 753 | /* NOTE:This function assume irq status is mentioned in NOT more than 2 registers. |
| 754 | * Value of 'interrupt' should be less than 64 */ |
| 755 | result = lpddr4_ackctlinterruptsf(pd, intr); |
| 756 | if (result == (uint32_t) CDN_EOK) { |
| 757 | lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase; |
| 758 | |
| 759 | /* Check if the requested bit is in upper register */ |
| 760 | if (localinterrupt > WORD_SHIFT) { |
| 761 | localinterrupt = |
| 762 | (localinterrupt - (uint32_t) WORD_SHIFT); |
| 763 | regval = ((uint32_t) BIT_MASK << localinterrupt); |
| 764 | CPS_REG_WRITE(&(ctlregbase->LPDDR4__INT_ACK_1__REG), |
| 765 | regval); |
| 766 | } else { |
| 767 | regval = ((uint32_t) BIT_MASK << localinterrupt); |
| 768 | CPS_REG_WRITE(&(ctlregbase->LPDDR4__INT_ACK_0__REG), |
| 769 | regval); |
| 770 | } |
| 771 | } |
| 772 | |
| 773 | return result; |
| 774 | } |
| 775 | |
| 776 | uint32_t lpddr4_getphyindepinterruptmask(const lpddr4_privatedata * pd, |
| 777 | uint32_t * mask) |
| 778 | { |
| 779 | uint32_t result; |
| 780 | |
| 781 | result = lpddr4_getphyindepinterruptmsf(pd, mask); |
| 782 | if (result == (uint32_t) CDN_EOK) { |
| 783 | lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase; |
| 784 | /* Reading mask register */ |
| 785 | *mask = |
| 786 | CPS_FLD_READ(LPDDR4__PI_INT_MASK__FLD, |
| 787 | CPS_REG_READ(& |
| 788 | (ctlregbase-> |
| 789 | LPDDR4__PI_INT_MASK__REG))); |
| 790 | } |
| 791 | return result; |
| 792 | } |
| 793 | |
| 794 | uint32_t lpddr4_setphyindepinterruptmask(const lpddr4_privatedata * pd, |
| 795 | const uint32_t * mask) |
| 796 | { |
| 797 | uint32_t result; |
| 798 | uint32_t regval = 0; |
| 799 | const uint32_t ui32irqcount = |
| 800 | (uint32_t) LPDDR4_PHY_INDEP_DLL_LOCK_STATE_CHANGE_BIT + 1U; |
| 801 | |
| 802 | result = lpddr4_setphyindepinterruptmsf(pd, mask); |
| 803 | if ((result == (uint32_t) CDN_EOK) && (ui32irqcount < WORD_SHIFT)) { |
| 804 | /* Return if the user given value is higher than the field width */ |
| 805 | if (*mask >= (1U << ui32irqcount)) { |
| 806 | result = EINVAL; |
| 807 | } |
| 808 | } |
| 809 | if (result == (uint32_t) CDN_EOK) { |
| 810 | lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase; |
| 811 | |
| 812 | /* Writing to the user requested interrupt mask */ |
| 813 | regval = |
| 814 | CPS_FLD_WRITE(LPDDR4__PI_INT_MASK__FLD, |
| 815 | CPS_REG_READ(& |
| 816 | (ctlregbase-> |
| 817 | LPDDR4__PI_INT_MASK__REG)), |
| 818 | *mask); |
| 819 | CPS_REG_WRITE(&(ctlregbase->LPDDR4__PI_INT_MASK__REG), regval); |
| 820 | } |
| 821 | return result; |
| 822 | } |
| 823 | |
| 824 | uint32_t lpddr4_checkphyindepinterrupt(const lpddr4_privatedata * pd, |
| 825 | lpddr4_phyindepinterrupt intr, |
| 826 | bool * irqstatus) |
| 827 | { |
| 828 | uint32_t result = 0; |
| 829 | uint32_t phyindepirqstatus = 0; |
| 830 | |
| 831 | result = lpddr4_checkphyindepinterrupsf(pd, intr, irqstatus); |
| 832 | /* Confirming that the value of interrupt is less than register width */ |
| 833 | if ((result == (uint32_t) CDN_EOK) && ((uint32_t) intr < WORD_SHIFT)) { |
| 834 | lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase; |
| 835 | |
| 836 | /* Reading the requested bit to check interrupt status */ |
| 837 | phyindepirqstatus = |
| 838 | CPS_REG_READ(&(ctlregbase->LPDDR4__PI_INT_STATUS__REG)); |
| 839 | *irqstatus = |
| 840 | (((phyindepirqstatus >> (uint32_t) intr) & BIT_MASK) > 0U); |
| 841 | } |
| 842 | return result; |
| 843 | } |
| 844 | |
| 845 | uint32_t lpddr4_ackphyindepinterrupt(const lpddr4_privatedata * pd, |
| 846 | lpddr4_phyindepinterrupt intr) |
| 847 | { |
| 848 | uint32_t result = 0U; |
| 849 | uint32_t regval = 0U; |
| 850 | uint32_t ui32shiftinterrupt = (uint32_t) intr; |
| 851 | |
| 852 | result = lpddr4_ackphyindepinterruptsf(pd, intr); |
| 853 | /* Confirming that the value of interrupt is less than register width */ |
| 854 | if ((result == (uint32_t) CDN_EOK) && (ui32shiftinterrupt < WORD_SHIFT)) { |
| 855 | lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase; |
| 856 | |
| 857 | /* Write 1 to the requested bit to ACk the interrupt */ |
| 858 | regval = ((uint32_t) BIT_MASK << ui32shiftinterrupt); |
| 859 | CPS_REG_WRITE(&(ctlregbase->LPDDR4__PI_INT_ACK__REG), regval); |
| 860 | } |
| 861 | |
| 862 | return result; |
| 863 | } |
| 864 | |
| 865 | /* Check for caTrainingError */ |
| 866 | static void lpddr4_checkcatrainingerror(lpddr4_ctlregs * ctlregbase, |
| 867 | lpddr4_debuginfo * debuginfo, |
| 868 | bool * errfoundptr) |
| 869 | { |
| 870 | |
| 871 | uint32_t regval; |
| 872 | uint32_t errbitmask = 0U; |
| 873 | uint32_t snum; |
| 874 | volatile uint32_t *regaddress; |
| 875 | |
| 876 | regaddress = |
| 877 | (volatile uint32_t |
| 878 | *)(&(ctlregbase->LPDDR4__PHY_ADR_CALVL_OBS1_0__REG)); |
| 879 | errbitmask = (CA_TRAIN_RL) | (NIBBLE_MASK); |
| 880 | /* PHY_ADR_CALVL_OBS1[4] – Right found |
| 881 | PHY_ADR_CALVL_OBS1[5] – left found |
| 882 | both the above fields should be high and below field should be zero. |
| 883 | PHY_ADR_CALVL_OBS1[3:0] – calvl_state |
| 884 | */ |
| 885 | for (snum = 0U; snum < ASLICE_NUM; snum++) { |
| 886 | regval = CPS_REG_READ(regaddress); |
| 887 | if ((regval & errbitmask) != CA_TRAIN_RL) { |
| 888 | debuginfo->catraingerror = true; |
| 889 | *errfoundptr = true; |
| 890 | } |
| 891 | regaddress = |
| 892 | lpddr4_addoffset(regaddress, (uint32_t) SLICE_WIDTH); |
| 893 | } |
| 894 | } |
| 895 | |
| 896 | /* Check for wrLvlError */ |
| 897 | static void lpddr4_checkwrlvlerror(lpddr4_ctlregs * ctlregbase, |
| 898 | lpddr4_debuginfo * debuginfo, |
| 899 | bool * errfoundptr) |
| 900 | { |
| 901 | |
| 902 | uint32_t regval; |
| 903 | uint32_t errbitmask = 0U; |
| 904 | uint32_t snum; |
| 905 | volatile uint32_t *regaddress; |
| 906 | |
| 907 | regaddress = |
| 908 | (volatile uint32_t |
| 909 | *)(&(ctlregbase->LPDDR4__PHY_WRLVL_ERROR_OBS_0__REG)); |
| 910 | /* PHY_WRLVL_ERROR_OBS_X[1:0] should be zero */ |
| 911 | errbitmask = (BIT_MASK << 1) | (BIT_MASK); |
| 912 | for (snum = 0U; snum < DSLICE_NUM; snum++) { |
| 913 | regval = CPS_REG_READ(regaddress); |
| 914 | if ((regval & errbitmask) != 0U) { |
| 915 | debuginfo->wrlvlerror = true; |
| 916 | *errfoundptr = true; |
| 917 | } |
| 918 | regaddress = |
| 919 | lpddr4_addoffset(regaddress, (uint32_t) SLICE_WIDTH); |
| 920 | } |
| 921 | } |
| 922 | |
| 923 | /* Check for GateLvlError */ |
| 924 | static void lpddr4_checkgatelvlerror(lpddr4_ctlregs * ctlregbase, |
| 925 | lpddr4_debuginfo * debuginfo, |
| 926 | bool * errfoundptr) |
| 927 | { |
| 928 | |
| 929 | uint32_t regval; |
| 930 | uint32_t errbitmask = 0U; |
| 931 | uint32_t snum; |
| 932 | volatile uint32_t *regaddress; |
| 933 | |
| 934 | regaddress = |
| 935 | (volatile uint32_t |
| 936 | *)(&(ctlregbase->LPDDR4__PHY_GTLVL_STATUS_OBS_0__REG)); |
| 937 | /* PHY_GTLVL_STATUS_OBS[6] – gate_level min error |
| 938 | * PHY_GTLVL_STATUS_OBS[7] – gate_level max error |
| 939 | * All the above bit fields should be zero */ |
| 940 | errbitmask = GATE_LVL_ERROR_FIELDS; |
| 941 | for (snum = 0U; snum < DSLICE_NUM; snum++) { |
| 942 | regval = CPS_REG_READ(regaddress); |
| 943 | if ((regval & errbitmask) != 0U) { |
| 944 | debuginfo->gatelvlerror = true; |
| 945 | *errfoundptr = true; |
| 946 | } |
| 947 | regaddress = |
| 948 | lpddr4_addoffset(regaddress, (uint32_t) SLICE_WIDTH); |
| 949 | } |
| 950 | } |
| 951 | |
| 952 | /* Check for ReadLvlError */ |
| 953 | static void lpddr4_checkreadlvlerror(lpddr4_ctlregs * ctlregbase, |
| 954 | lpddr4_debuginfo * debuginfo, |
| 955 | bool * errfoundptr) |
| 956 | { |
| 957 | |
| 958 | uint32_t regval; |
| 959 | uint32_t errbitmask = 0U; |
| 960 | uint32_t snum; |
| 961 | volatile uint32_t *regaddress; |
| 962 | |
| 963 | regaddress = |
| 964 | (volatile uint32_t |
| 965 | *)(&(ctlregbase->LPDDR4__PHY_RDLVL_STATUS_OBS_0__REG)); |
| 966 | /* PHY_RDLVL_STATUS_OBS[23:16] – failed bits : should be zero. |
| 967 | PHY_RDLVL_STATUS_OBS[31:28] – rdlvl_state : should be zero */ |
| 968 | errbitmask = READ_LVL_ERROR_FIELDS; |
| 969 | for (snum = 0U; snum < DSLICE_NUM; snum++) { |
| 970 | regval = CPS_REG_READ(regaddress); |
| 971 | if ((regval & errbitmask) != 0U) { |
| 972 | debuginfo->readlvlerror = true; |
| 973 | *errfoundptr = true; |
| 974 | } |
| 975 | regaddress = |
| 976 | lpddr4_addoffset(regaddress, (uint32_t) SLICE_WIDTH); |
| 977 | } |
| 978 | } |
| 979 | |
| 980 | /* Check for DqTrainingError */ |
| 981 | static void lpddr4_checkdqtrainingerror(lpddr4_ctlregs * ctlregbase, |
| 982 | lpddr4_debuginfo * debuginfo, |
| 983 | bool * errfoundptr) |
| 984 | { |
| 985 | |
| 986 | uint32_t regval; |
| 987 | uint32_t errbitmask = 0U; |
| 988 | uint32_t snum; |
| 989 | volatile uint32_t *regaddress; |
| 990 | |
| 991 | regaddress = |
| 992 | (volatile uint32_t |
| 993 | *)(&(ctlregbase->LPDDR4__PHY_WDQLVL_STATUS_OBS_0__REG)); |
| 994 | /* PHY_WDQLVL_STATUS_OBS[26:18] should all be zero. */ |
| 995 | errbitmask = DQ_LVL_STATUS; |
| 996 | for (snum = 0U; snum < DSLICE_NUM; snum++) { |
| 997 | regval = CPS_REG_READ(regaddress); |
| 998 | if ((regval & errbitmask) != 0U) { |
| 999 | debuginfo->dqtrainingerror = true; |
| 1000 | *errfoundptr = true; |
| 1001 | } |
| 1002 | regaddress = |
| 1003 | lpddr4_addoffset(regaddress, (uint32_t) SLICE_WIDTH); |
| 1004 | } |
| 1005 | } |
| 1006 | |
| 1007 | /** |
| 1008 | * Internal Function:For checking errors in training/levelling sequence. |
| 1009 | * @param[in] pD Driver state info specific to this instance. |
| 1010 | * @param[in] debugInfo pointer to debug information. |
| 1011 | * @param[out] errFoundPtr pointer to return if error found. |
| 1012 | * @return CDN_EOK on success (Interrupt status high). |
| 1013 | * @return EINVAL checking or unmasking was not successful. |
| 1014 | */ |
| 1015 | static bool lpddr4_checklvlerrors(const lpddr4_privatedata * pd, |
| 1016 | lpddr4_debuginfo * debuginfo, bool errfound) |
| 1017 | { |
| 1018 | |
| 1019 | bool localerrfound = errfound; |
| 1020 | |
| 1021 | lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase; |
| 1022 | |
| 1023 | if (localerrfound == false) { |
| 1024 | /* Check for ca training error */ |
| 1025 | lpddr4_checkcatrainingerror(ctlregbase, debuginfo, |
| 1026 | &localerrfound); |
| 1027 | } |
| 1028 | |
| 1029 | if (localerrfound == false) { |
| 1030 | /* Check for Write leveling error */ |
| 1031 | lpddr4_checkwrlvlerror(ctlregbase, debuginfo, &localerrfound); |
| 1032 | } |
| 1033 | |
| 1034 | if (localerrfound == false) { |
| 1035 | /* Check for Gate leveling error */ |
| 1036 | lpddr4_checkgatelvlerror(ctlregbase, debuginfo, &localerrfound); |
| 1037 | } |
| 1038 | |
| 1039 | if (localerrfound == false) { |
| 1040 | /* Check for Read leveling error */ |
| 1041 | lpddr4_checkreadlvlerror(ctlregbase, debuginfo, &localerrfound); |
| 1042 | } |
| 1043 | |
| 1044 | if (localerrfound == false) { |
| 1045 | /* Check for DQ training error */ |
| 1046 | lpddr4_checkdqtrainingerror(ctlregbase, debuginfo, |
| 1047 | &localerrfound); |
| 1048 | } |
| 1049 | return localerrfound; |
| 1050 | } |
| 1051 | |
| 1052 | static bool lpddr4_seterror(volatile uint32_t * reg, uint32_t errbitmask, |
| 1053 | bool * errfoundptr, const uint32_t errorinfobits) |
| 1054 | { |
| 1055 | |
| 1056 | uint32_t regval = 0U; |
| 1057 | |
| 1058 | /* Read the respective observation register */ |
| 1059 | regval = CPS_REG_READ(reg); |
| 1060 | /* Compare the error bit values */ |
| 1061 | if ((regval & errbitmask) != errorinfobits) { |
| 1062 | *errfoundptr = true; |
| 1063 | } |
| 1064 | return *errfoundptr; |
| 1065 | } |
| 1066 | |
| 1067 | static void lpddr4_seterrors(lpddr4_ctlregs * ctlregbase, |
| 1068 | lpddr4_debuginfo * debuginfo, bool * errfoundptr) |
| 1069 | { |
| 1070 | |
| 1071 | uint32_t errbitmask = (BIT_MASK << 0x1U) | (BIT_MASK); |
| 1072 | /* Check PLL observation registers for PLL lock errors */ |
| 1073 | |
| 1074 | debuginfo->pllerror = |
| 1075 | lpddr4_seterror(&(ctlregbase->LPDDR4__PHY_PLL_OBS_0__REG), |
| 1076 | errbitmask, errfoundptr, PLL_READY); |
| 1077 | if (*errfoundptr == false) { |
| 1078 | debuginfo->pllerror = |
| 1079 | lpddr4_seterror(&(ctlregbase->LPDDR4__PHY_PLL_OBS_1__REG), |
| 1080 | errbitmask, errfoundptr, PLL_READY); |
| 1081 | } |
| 1082 | |
| 1083 | /* Check for IO Calibration errors */ |
| 1084 | if (*errfoundptr == false) { |
| 1085 | debuginfo->iocaliberror = |
| 1086 | lpddr4_seterror(& |
| 1087 | (ctlregbase-> |
| 1088 | LPDDR4__PHY_CAL_RESULT_OBS_0__REG), |
| 1089 | IO_CALIB_DONE, errfoundptr, IO_CALIB_DONE); |
| 1090 | } |
| 1091 | if (*errfoundptr == false) { |
| 1092 | debuginfo->iocaliberror = |
| 1093 | lpddr4_seterror(& |
| 1094 | (ctlregbase-> |
| 1095 | LPDDR4__PHY_CAL_RESULT2_OBS_0__REG), |
| 1096 | IO_CALIB_DONE, errfoundptr, IO_CALIB_DONE); |
| 1097 | } |
| 1098 | if (*errfoundptr == false) { |
| 1099 | debuginfo->iocaliberror = |
| 1100 | lpddr4_seterror(& |
| 1101 | (ctlregbase-> |
| 1102 | LPDDR4__PHY_CAL_RESULT3_OBS_0__REG), |
| 1103 | IO_CALIB_FIELD, errfoundptr, |
| 1104 | IO_CALIB_STATE); |
| 1105 | } |
| 1106 | } |
| 1107 | |
| 1108 | static void lpddr4_setphysnapsettings(lpddr4_ctlregs * ctlregbase, |
| 1109 | const bool errorfound) |
| 1110 | { |
| 1111 | |
| 1112 | uint32_t snum = 0U; |
| 1113 | volatile uint32_t *regaddress; |
| 1114 | uint32_t regval = 0U; |
| 1115 | |
| 1116 | /* Setting SC_PHY_SNAP_OBS_REGS_x to get a snapshot */ |
| 1117 | if (errorfound == false) { |
| 1118 | regaddress = |
| 1119 | (volatile uint32_t |
| 1120 | *)(&(ctlregbase->LPDDR4__SC_PHY_SNAP_OBS_REGS_0__REG)); |
| 1121 | /* Iterate through each PHY Data Slice */ |
| 1122 | for (snum = 0U; snum < DSLICE_NUM; snum++) { |
| 1123 | regval = |
| 1124 | CPS_FLD_SET(LPDDR4__SC_PHY_SNAP_OBS_REGS_0__FLD, |
| 1125 | CPS_REG_READ(regaddress)); |
| 1126 | CPS_REG_WRITE(regaddress, regval); |
| 1127 | regaddress = |
| 1128 | lpddr4_addoffset(regaddress, |
| 1129 | (uint32_t) SLICE_WIDTH); |
| 1130 | } |
| 1131 | } |
| 1132 | } |
| 1133 | |
| 1134 | static void lpddr4_setphyadrsnapsettings(lpddr4_ctlregs * ctlregbase, |
| 1135 | const bool errorfound) |
| 1136 | { |
| 1137 | |
| 1138 | uint32_t snum = 0U; |
| 1139 | volatile uint32_t *regaddress; |
| 1140 | uint32_t regval = 0U; |
| 1141 | |
| 1142 | /* Setting SC_PHY ADR_SNAP_OBS_REGS_x to get a snapshot */ |
| 1143 | if (errorfound == false) { |
| 1144 | regaddress = |
| 1145 | (volatile uint32_t |
| 1146 | *)(&(ctlregbase->LPDDR4__SC_PHY_ADR_SNAP_OBS_REGS_0__REG)); |
| 1147 | /* Iterate through each PHY Address Slice */ |
| 1148 | for (snum = 0U; snum < ASLICE_NUM; snum++) { |
| 1149 | regval = |
| 1150 | CPS_FLD_SET(LPDDR4__SC_PHY_ADR_SNAP_OBS_REGS_0__FLD, |
| 1151 | CPS_REG_READ(regaddress)); |
| 1152 | CPS_REG_WRITE(regaddress, regval); |
| 1153 | regaddress = |
| 1154 | lpddr4_addoffset(regaddress, |
| 1155 | (uint32_t) SLICE_WIDTH); |
| 1156 | } |
| 1157 | } |
| 1158 | } |
| 1159 | |
| 1160 | static void lpddr4_setsettings(lpddr4_ctlregs * ctlregbase, |
| 1161 | const bool errorfound) |
| 1162 | { |
| 1163 | |
| 1164 | /* Calling functions to enable snap shots of OBS registers */ |
| 1165 | lpddr4_setphysnapsettings(ctlregbase, errorfound); |
| 1166 | lpddr4_setphyadrsnapsettings(ctlregbase, errorfound); |
| 1167 | } |
| 1168 | |
| 1169 | static void lpddr4_setrxoffseterror(lpddr4_ctlregs * ctlregbase, |
| 1170 | lpddr4_debuginfo * debuginfo, |
| 1171 | bool * errorfound) |
| 1172 | { |
| 1173 | |
| 1174 | volatile uint32_t *regaddress; |
| 1175 | uint32_t snum = 0U; |
| 1176 | uint32_t errbitmask = 0U; |
| 1177 | uint32_t regval = 0U; |
| 1178 | |
| 1179 | /* Check for rxOffsetError */ |
| 1180 | if (*errorfound == false) { |
| 1181 | regaddress = |
| 1182 | (volatile uint32_t |
| 1183 | *)(&(ctlregbase->LPDDR4__PHY_RX_CAL_LOCK_OBS_0__REG)); |
| 1184 | errbitmask = (RX_CAL_DONE) | (NIBBLE_MASK); |
| 1185 | /* PHY_RX_CAL_LOCK_OBS_x[4] – RX_CAL_DONE : should be high |
| 1186 | phy_rx_cal_lock_obs_x[3:0] – RX_CAL_STATE : should be zero. */ |
| 1187 | for (snum = 0U; snum < DSLICE_NUM; snum++) { |
| 1188 | regval = |
| 1189 | CPS_FLD_READ(LPDDR4__PHY_RX_CAL_LOCK_OBS_0__FLD, |
| 1190 | CPS_REG_READ(regaddress)); |
| 1191 | if ((regval & errbitmask) != RX_CAL_DONE) { |
| 1192 | debuginfo->rxoffseterror = true; |
| 1193 | *errorfound = true; |
| 1194 | } |
| 1195 | regaddress = |
| 1196 | lpddr4_addoffset(regaddress, |
| 1197 | (uint32_t) SLICE_WIDTH); |
| 1198 | } |
| 1199 | } |
| 1200 | } |
| 1201 | |
| 1202 | uint32_t lpddr4_getdebuginitinfo(const lpddr4_privatedata * pd, |
| 1203 | lpddr4_debuginfo * debuginfo) |
| 1204 | { |
| 1205 | |
| 1206 | uint32_t result = 0U; |
| 1207 | bool errorfound = false; |
| 1208 | |
| 1209 | /* Calling Sanity Function to verify the input variables */ |
| 1210 | result = lpddr4_getdebuginitinfosf(pd, debuginfo); |
| 1211 | if (result == (uint32_t) CDN_EOK) { |
| 1212 | |
| 1213 | lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase; |
| 1214 | lpddr4_seterrors(ctlregbase, debuginfo, &errorfound); |
| 1215 | /* Function to setup Snap for OBS registers */ |
| 1216 | lpddr4_setsettings(ctlregbase, errorfound); |
| 1217 | /* Function to check for Rx offset error */ |
| 1218 | lpddr4_setrxoffseterror(ctlregbase, debuginfo, &errorfound); |
| 1219 | /* Function Check various levelling errors */ |
| 1220 | errorfound = lpddr4_checklvlerrors(pd, debuginfo, errorfound); |
| 1221 | } |
| 1222 | |
| 1223 | if (errorfound == true) { |
| 1224 | result = (uint32_t) EPROTO; |
| 1225 | } |
| 1226 | |
| 1227 | return result; |
| 1228 | } |
| 1229 | |
| 1230 | static void readpdwakeup(const lpddr4_ctlfspnum * fspnum, |
| 1231 | lpddr4_ctlregs * ctlregbase, uint32_t * cycles) |
| 1232 | { |
| 1233 | |
| 1234 | /* Read the appropriate register, based on user given frequency. */ |
| 1235 | if (*fspnum == LPDDR4_FSP_0) { |
| 1236 | *cycles = |
| 1237 | CPS_FLD_READ(LPDDR4__LPI_PD_WAKEUP_F0__FLD, |
| 1238 | CPS_REG_READ(& |
| 1239 | (ctlregbase-> |
| 1240 | LPDDR4__LPI_PD_WAKEUP_F0__REG))); |
| 1241 | } else if (*fspnum == LPDDR4_FSP_1) { |
| 1242 | *cycles = |
| 1243 | CPS_FLD_READ(LPDDR4__LPI_PD_WAKEUP_F1__FLD, |
| 1244 | CPS_REG_READ(& |
| 1245 | (ctlregbase-> |
| 1246 | LPDDR4__LPI_PD_WAKEUP_F1__REG))); |
| 1247 | } else { |
| 1248 | /* Default register (sanity function already confirmed the variable value) */ |
| 1249 | *cycles = |
| 1250 | CPS_FLD_READ(LPDDR4__LPI_PD_WAKEUP_F2__FLD, |
| 1251 | CPS_REG_READ(& |
| 1252 | (ctlregbase-> |
| 1253 | LPDDR4__LPI_PD_WAKEUP_F2__REG))); |
| 1254 | } |
| 1255 | } |
| 1256 | |
| 1257 | static void readsrshortwakeup(const lpddr4_ctlfspnum * fspnum, |
| 1258 | lpddr4_ctlregs * ctlregbase, uint32_t * cycles) |
| 1259 | { |
| 1260 | |
| 1261 | /* Read the appropriate register, based on user given frequency. */ |
| 1262 | if (*fspnum == LPDDR4_FSP_0) { |
| 1263 | *cycles = |
| 1264 | CPS_FLD_READ(LPDDR4__LPI_SR_SHORT_WAKEUP_F0__FLD, |
| 1265 | CPS_REG_READ(& |
| 1266 | (ctlregbase-> |
| 1267 | LPDDR4__LPI_SR_SHORT_WAKEUP_F0__REG))); |
| 1268 | } else if (*fspnum == LPDDR4_FSP_1) { |
| 1269 | *cycles = |
| 1270 | CPS_FLD_READ(LPDDR4__LPI_SR_SHORT_WAKEUP_F1__FLD, |
| 1271 | CPS_REG_READ(& |
| 1272 | (ctlregbase-> |
| 1273 | LPDDR4__LPI_SR_SHORT_WAKEUP_F1__REG))); |
| 1274 | } else { |
| 1275 | /* Default register (sanity function already confirmed the variable value) */ |
| 1276 | *cycles = |
| 1277 | CPS_FLD_READ(LPDDR4__LPI_SR_SHORT_WAKEUP_F2__FLD, |
| 1278 | CPS_REG_READ(& |
| 1279 | (ctlregbase-> |
| 1280 | LPDDR4__LPI_SR_SHORT_WAKEUP_F2__REG))); |
| 1281 | } |
| 1282 | } |
| 1283 | |
| 1284 | static void readsrlongwakeup(const lpddr4_ctlfspnum * fspnum, |
| 1285 | lpddr4_ctlregs * ctlregbase, uint32_t * cycles) |
| 1286 | { |
| 1287 | |
| 1288 | /* Read the appropriate register, based on user given frequency. */ |
| 1289 | if (*fspnum == LPDDR4_FSP_0) { |
| 1290 | *cycles = |
| 1291 | CPS_FLD_READ(LPDDR4__LPI_SR_LONG_WAKEUP_F0__FLD, |
| 1292 | CPS_REG_READ(& |
| 1293 | (ctlregbase-> |
| 1294 | LPDDR4__LPI_SR_LONG_WAKEUP_F0__REG))); |
| 1295 | } else if (*fspnum == LPDDR4_FSP_1) { |
| 1296 | *cycles = |
| 1297 | CPS_FLD_READ(LPDDR4__LPI_SR_LONG_WAKEUP_F1__FLD, |
| 1298 | CPS_REG_READ(& |
| 1299 | (ctlregbase-> |
| 1300 | LPDDR4__LPI_SR_LONG_WAKEUP_F1__REG))); |
| 1301 | } else { |
| 1302 | /* Default register (sanity function already confirmed the variable value) */ |
| 1303 | *cycles = |
| 1304 | CPS_FLD_READ(LPDDR4__LPI_SR_LONG_WAKEUP_F2__FLD, |
| 1305 | CPS_REG_READ(& |
| 1306 | (ctlregbase-> |
| 1307 | LPDDR4__LPI_SR_LONG_WAKEUP_F2__REG))); |
| 1308 | } |
| 1309 | } |
| 1310 | |
| 1311 | static void readsrlonggatewakeup(const lpddr4_ctlfspnum * fspnum, |
| 1312 | lpddr4_ctlregs * ctlregbase, uint32_t * cycles) |
| 1313 | { |
| 1314 | |
| 1315 | /* Read the appropriate register, based on user given frequency. */ |
| 1316 | if (*fspnum == LPDDR4_FSP_0) { |
| 1317 | *cycles = |
| 1318 | CPS_FLD_READ(LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F0__FLD, |
| 1319 | CPS_REG_READ(& |
| 1320 | (ctlregbase-> |
| 1321 | LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F0__REG))); |
| 1322 | } else if (*fspnum == LPDDR4_FSP_1) { |
| 1323 | *cycles = |
| 1324 | CPS_FLD_READ(LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F1__FLD, |
| 1325 | CPS_REG_READ(& |
| 1326 | (ctlregbase-> |
| 1327 | LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F1__REG))); |
| 1328 | } else { |
| 1329 | /* Default register (sanity function already confirmed the variable value) */ |
| 1330 | *cycles = |
| 1331 | CPS_FLD_READ(LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F2__FLD, |
| 1332 | CPS_REG_READ(& |
| 1333 | (ctlregbase-> |
| 1334 | LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F2__REG))); |
| 1335 | } |
| 1336 | } |
| 1337 | |
| 1338 | static void readsrdpshortwakeup(const lpddr4_ctlfspnum * fspnum, |
| 1339 | lpddr4_ctlregs * ctlregbase, uint32_t * cycles) |
| 1340 | { |
| 1341 | |
| 1342 | /* Read the appropriate register, based on user given frequency. */ |
| 1343 | if (*fspnum == LPDDR4_FSP_0) { |
| 1344 | *cycles = |
| 1345 | CPS_FLD_READ(LPDDR4__LPI_SRPD_SHORT_WAKEUP_F0__FLD, |
| 1346 | CPS_REG_READ(& |
| 1347 | (ctlregbase-> |
| 1348 | LPDDR4__LPI_SRPD_SHORT_WAKEUP_F0__REG))); |
| 1349 | } else if (*fspnum == LPDDR4_FSP_1) { |
| 1350 | *cycles = |
| 1351 | CPS_FLD_READ(LPDDR4__LPI_SRPD_SHORT_WAKEUP_F1__FLD, |
| 1352 | CPS_REG_READ(& |
| 1353 | (ctlregbase-> |
| 1354 | LPDDR4__LPI_SRPD_SHORT_WAKEUP_F1__REG))); |
| 1355 | } else { |
| 1356 | /* Default register (sanity function already confirmed the variable value) */ |
| 1357 | *cycles = |
| 1358 | CPS_FLD_READ(LPDDR4__LPI_SRPD_SHORT_WAKEUP_F2__FLD, |
| 1359 | CPS_REG_READ(& |
| 1360 | (ctlregbase-> |
| 1361 | LPDDR4__LPI_SRPD_SHORT_WAKEUP_F2__REG))); |
| 1362 | } |
| 1363 | } |
| 1364 | |
| 1365 | static void readsrdplongwakeup(const lpddr4_ctlfspnum * fspnum, |
| 1366 | lpddr4_ctlregs * ctlregbase, uint32_t * cycles) |
| 1367 | { |
| 1368 | |
| 1369 | /* Read the appropriate register, based on user given frequency. */ |
| 1370 | if (*fspnum == LPDDR4_FSP_0) { |
| 1371 | *cycles = |
| 1372 | CPS_FLD_READ(LPDDR4__LPI_SRPD_LONG_WAKEUP_F0__FLD, |
| 1373 | CPS_REG_READ(& |
| 1374 | (ctlregbase-> |
| 1375 | LPDDR4__LPI_SRPD_LONG_WAKEUP_F0__REG))); |
| 1376 | } else if (*fspnum == LPDDR4_FSP_1) { |
| 1377 | *cycles = |
| 1378 | CPS_FLD_READ(LPDDR4__LPI_SRPD_LONG_WAKEUP_F1__FLD, |
| 1379 | CPS_REG_READ(& |
| 1380 | (ctlregbase-> |
| 1381 | LPDDR4__LPI_SRPD_LONG_WAKEUP_F1__REG))); |
| 1382 | } else { |
| 1383 | /* Default register (sanity function already confirmed the variable value) */ |
| 1384 | *cycles = |
| 1385 | CPS_FLD_READ(LPDDR4__LPI_SRPD_LONG_WAKEUP_F2__FLD, |
| 1386 | CPS_REG_READ(& |
| 1387 | (ctlregbase-> |
| 1388 | LPDDR4__LPI_SRPD_LONG_WAKEUP_F2__REG))); |
| 1389 | } |
| 1390 | } |
| 1391 | |
| 1392 | static void readsrdplonggatewakeup(const lpddr4_ctlfspnum * fspnum, |
| 1393 | lpddr4_ctlregs * ctlregbase, |
| 1394 | uint32_t * cycles) |
| 1395 | { |
| 1396 | |
| 1397 | /* Read the appropriate register, based on user given frequency. */ |
| 1398 | if (*fspnum == LPDDR4_FSP_0) { |
| 1399 | *cycles = |
| 1400 | CPS_FLD_READ |
| 1401 | (LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F0__FLD, |
| 1402 | CPS_REG_READ(& |
| 1403 | (ctlregbase-> |
| 1404 | LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F0__REG))); |
| 1405 | } else if (*fspnum == LPDDR4_FSP_1) { |
| 1406 | *cycles = |
| 1407 | CPS_FLD_READ |
| 1408 | (LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F1__FLD, |
| 1409 | CPS_REG_READ(& |
| 1410 | (ctlregbase-> |
| 1411 | LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F1__REG))); |
| 1412 | } else { |
| 1413 | /* Default register (sanity function already confirmed the variable value) */ |
| 1414 | *cycles = |
| 1415 | CPS_FLD_READ |
| 1416 | (LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F2__FLD, |
| 1417 | CPS_REG_READ(& |
| 1418 | (ctlregbase-> |
| 1419 | LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F2__REG))); |
| 1420 | } |
| 1421 | |
| 1422 | } |
| 1423 | |
| 1424 | static void lpddr4_readlpiwakeuptime(lpddr4_ctlregs * ctlregbase, |
| 1425 | const lpddr4_lpiwakeupparam * |
| 1426 | lpiwakeupparam, |
| 1427 | const lpddr4_ctlfspnum * fspnum, |
| 1428 | uint32_t * cycles) |
| 1429 | { |
| 1430 | |
| 1431 | /* Iterate through each of the Wake up parameter type */ |
| 1432 | if (*lpiwakeupparam == LPDDR4_LPI_PD_WAKEUP_FN) { |
| 1433 | /* Calling appropriate function for register read */ |
| 1434 | readpdwakeup(fspnum, ctlregbase, cycles); |
| 1435 | } else if (*lpiwakeupparam == LPDDR4_LPI_SR_SHORT_WAKEUP_FN) { |
| 1436 | readsrshortwakeup(fspnum, ctlregbase, cycles); |
| 1437 | } else if (*lpiwakeupparam == LPDDR4_LPI_SR_LONG_WAKEUP_FN) { |
| 1438 | readsrlongwakeup(fspnum, ctlregbase, cycles); |
| 1439 | } else if (*lpiwakeupparam == LPDDR4_LPI_SR_LONG_MCCLK_GATE_WAKEUP_FN) { |
| 1440 | readsrlonggatewakeup(fspnum, ctlregbase, cycles); |
| 1441 | } else if (*lpiwakeupparam == LPDDR4_LPI_SRPD_SHORT_WAKEUP_FN) { |
| 1442 | readsrdpshortwakeup(fspnum, ctlregbase, cycles); |
| 1443 | } else if (*lpiwakeupparam == LPDDR4_LPI_SRPD_LONG_WAKEUP_FN) { |
| 1444 | readsrdplongwakeup(fspnum, ctlregbase, cycles); |
| 1445 | } else { |
| 1446 | /* Default function (sanity function already confirmed the variable value) */ |
| 1447 | readsrdplonggatewakeup(fspnum, ctlregbase, cycles); |
| 1448 | } |
| 1449 | } |
| 1450 | |
| 1451 | uint32_t lpddr4_getlpiwakeuptime(const lpddr4_privatedata * pd, |
| 1452 | const lpddr4_lpiwakeupparam * lpiwakeupparam, |
| 1453 | const lpddr4_ctlfspnum * fspnum, |
| 1454 | uint32_t * cycles) |
| 1455 | { |
| 1456 | |
| 1457 | uint32_t result = 0U; |
| 1458 | |
| 1459 | /* Calling Sanity Function to verify the input variables */ |
| 1460 | result = lpddr4_getlpiwakeuptimesf(pd, lpiwakeupparam, fspnum, cycles); |
| 1461 | if (result == (uint32_t) CDN_EOK) { |
| 1462 | lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase; |
| 1463 | lpddr4_readlpiwakeuptime(ctlregbase, lpiwakeupparam, fspnum, |
| 1464 | cycles); |
| 1465 | } |
| 1466 | return result; |
| 1467 | } |
| 1468 | |
| 1469 | static void writepdwakeup(const lpddr4_ctlfspnum * fspnum, |
| 1470 | lpddr4_ctlregs * ctlregbase, const uint32_t * cycles) |
| 1471 | { |
| 1472 | |
| 1473 | uint32_t regval = 0U; |
| 1474 | /* Write to appropriate register ,based on user given frequency. */ |
| 1475 | if (*fspnum == LPDDR4_FSP_0) { |
| 1476 | regval = |
| 1477 | CPS_FLD_WRITE(LPDDR4__LPI_PD_WAKEUP_F0__FLD, |
| 1478 | CPS_REG_READ(& |
| 1479 | (ctlregbase-> |
| 1480 | LPDDR4__LPI_PD_WAKEUP_F0__REG)), |
| 1481 | *cycles); |
| 1482 | CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_PD_WAKEUP_F0__REG), |
| 1483 | regval); |
| 1484 | } else if (*fspnum == LPDDR4_FSP_1) { |
| 1485 | regval = |
| 1486 | CPS_FLD_WRITE(LPDDR4__LPI_PD_WAKEUP_F1__FLD, |
| 1487 | CPS_REG_READ(& |
| 1488 | (ctlregbase-> |
| 1489 | LPDDR4__LPI_PD_WAKEUP_F1__REG)), |
| 1490 | *cycles); |
| 1491 | CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_PD_WAKEUP_F1__REG), |
| 1492 | regval); |
| 1493 | } else { |
| 1494 | /* Default register (sanity function already confirmed the variable value) */ |
| 1495 | regval = |
| 1496 | CPS_FLD_WRITE(LPDDR4__LPI_PD_WAKEUP_F2__FLD, |
| 1497 | CPS_REG_READ(& |
| 1498 | (ctlregbase-> |
| 1499 | LPDDR4__LPI_PD_WAKEUP_F2__REG)), |
| 1500 | *cycles); |
| 1501 | CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_PD_WAKEUP_F2__REG), |
| 1502 | regval); |
| 1503 | } |
| 1504 | } |
| 1505 | |
| 1506 | static void writesrshortwakeup(const lpddr4_ctlfspnum * fspnum, |
| 1507 | lpddr4_ctlregs * ctlregbase, |
| 1508 | const uint32_t * cycles) |
| 1509 | { |
| 1510 | |
| 1511 | uint32_t regval = 0U; |
| 1512 | /* Write to appropriate register ,based on user given frequency. */ |
| 1513 | if (*fspnum == LPDDR4_FSP_0) { |
| 1514 | regval = |
| 1515 | CPS_FLD_WRITE(LPDDR4__LPI_SR_SHORT_WAKEUP_F0__FLD, |
| 1516 | CPS_REG_READ(& |
| 1517 | (ctlregbase-> |
| 1518 | LPDDR4__LPI_SR_SHORT_WAKEUP_F0__REG)), |
| 1519 | *cycles); |
| 1520 | CPS_REG_WRITE(& |
| 1521 | (ctlregbase->LPDDR4__LPI_SR_SHORT_WAKEUP_F0__REG), |
| 1522 | regval); |
| 1523 | } else if (*fspnum == LPDDR4_FSP_1) { |
| 1524 | regval = |
| 1525 | CPS_FLD_WRITE(LPDDR4__LPI_SR_SHORT_WAKEUP_F1__FLD, |
| 1526 | CPS_REG_READ(& |
| 1527 | (ctlregbase-> |
| 1528 | LPDDR4__LPI_SR_SHORT_WAKEUP_F1__REG)), |
| 1529 | *cycles); |
| 1530 | CPS_REG_WRITE(& |
| 1531 | (ctlregbase->LPDDR4__LPI_SR_SHORT_WAKEUP_F1__REG), |
| 1532 | regval); |
| 1533 | } else { |
| 1534 | /* Default register (sanity function already confirmed the variable value) */ |
| 1535 | regval = |
| 1536 | CPS_FLD_WRITE(LPDDR4__LPI_SR_SHORT_WAKEUP_F2__FLD, |
| 1537 | CPS_REG_READ(& |
| 1538 | (ctlregbase-> |
| 1539 | LPDDR4__LPI_SR_SHORT_WAKEUP_F2__REG)), |
| 1540 | *cycles); |
| 1541 | CPS_REG_WRITE(& |
| 1542 | (ctlregbase->LPDDR4__LPI_SR_SHORT_WAKEUP_F2__REG), |
| 1543 | regval); |
| 1544 | } |
| 1545 | } |
| 1546 | |
| 1547 | static void writesrlongwakeup(const lpddr4_ctlfspnum * fspnum, |
| 1548 | lpddr4_ctlregs * ctlregbase, |
| 1549 | const uint32_t * cycles) |
| 1550 | { |
| 1551 | |
| 1552 | uint32_t regval = 0U; |
| 1553 | /* Write to appropriate register ,based on user given frequency. */ |
| 1554 | if (*fspnum == LPDDR4_FSP_0) { |
| 1555 | regval = |
| 1556 | CPS_FLD_WRITE(LPDDR4__LPI_SR_LONG_WAKEUP_F0__FLD, |
| 1557 | CPS_REG_READ(& |
| 1558 | (ctlregbase-> |
| 1559 | LPDDR4__LPI_SR_LONG_WAKEUP_F0__REG)), |
| 1560 | *cycles); |
| 1561 | CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SR_LONG_WAKEUP_F0__REG), |
| 1562 | regval); |
| 1563 | } else if (*fspnum == LPDDR4_FSP_1) { |
| 1564 | regval = |
| 1565 | CPS_FLD_WRITE(LPDDR4__LPI_SR_LONG_WAKEUP_F1__FLD, |
| 1566 | CPS_REG_READ(& |
| 1567 | (ctlregbase-> |
| 1568 | LPDDR4__LPI_SR_LONG_WAKEUP_F1__REG)), |
| 1569 | *cycles); |
| 1570 | CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SR_LONG_WAKEUP_F1__REG), |
| 1571 | regval); |
| 1572 | } else { |
| 1573 | /* Default register (sanity function already confirmed the variable value) */ |
| 1574 | regval = |
| 1575 | CPS_FLD_WRITE(LPDDR4__LPI_SR_LONG_WAKEUP_F2__FLD, |
| 1576 | CPS_REG_READ(& |
| 1577 | (ctlregbase-> |
| 1578 | LPDDR4__LPI_SR_LONG_WAKEUP_F2__REG)), |
| 1579 | *cycles); |
| 1580 | CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SR_LONG_WAKEUP_F2__REG), |
| 1581 | regval); |
| 1582 | } |
| 1583 | } |
| 1584 | |
| 1585 | static void writesrlonggatewakeup(const lpddr4_ctlfspnum * fspnum, |
| 1586 | lpddr4_ctlregs * ctlregbase, |
| 1587 | const uint32_t * cycles) |
| 1588 | { |
| 1589 | |
| 1590 | uint32_t regval = 0U; |
| 1591 | /* Write to appropriate register ,based on user given frequency. */ |
| 1592 | if (*fspnum == LPDDR4_FSP_0) { |
| 1593 | regval = |
| 1594 | CPS_FLD_WRITE(LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F0__FLD, |
| 1595 | CPS_REG_READ(& |
| 1596 | (ctlregbase-> |
| 1597 | LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F0__REG)), |
| 1598 | *cycles); |
| 1599 | CPS_REG_WRITE(& |
| 1600 | (ctlregbase-> |
| 1601 | LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F0__REG), |
| 1602 | regval); |
| 1603 | } else if (*fspnum == LPDDR4_FSP_1) { |
| 1604 | regval = |
| 1605 | CPS_FLD_WRITE(LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F1__FLD, |
| 1606 | CPS_REG_READ(& |
| 1607 | (ctlregbase-> |
| 1608 | LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F1__REG)), |
| 1609 | *cycles); |
| 1610 | CPS_REG_WRITE(& |
| 1611 | (ctlregbase-> |
| 1612 | LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F1__REG), |
| 1613 | regval); |
| 1614 | } else { |
| 1615 | /* Default register (sanity function already confirmed the variable value) */ |
| 1616 | regval = |
| 1617 | CPS_FLD_WRITE(LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F2__FLD, |
| 1618 | CPS_REG_READ(& |
| 1619 | (ctlregbase-> |
| 1620 | LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F2__REG)), |
| 1621 | *cycles); |
| 1622 | CPS_REG_WRITE(& |
| 1623 | (ctlregbase-> |
| 1624 | LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F2__REG), |
| 1625 | regval); |
| 1626 | } |
| 1627 | } |
| 1628 | |
| 1629 | static void writesrdpshortwakeup(const lpddr4_ctlfspnum * fspnum, |
| 1630 | lpddr4_ctlregs * ctlregbase, |
| 1631 | const uint32_t * cycles) |
| 1632 | { |
| 1633 | |
| 1634 | uint32_t regval = 0U; |
| 1635 | /* Write to appropriate register ,based on user given frequency. */ |
| 1636 | if (*fspnum == LPDDR4_FSP_0) { |
| 1637 | regval = |
| 1638 | CPS_FLD_WRITE(LPDDR4__LPI_SRPD_SHORT_WAKEUP_F0__FLD, |
| 1639 | CPS_REG_READ(& |
| 1640 | (ctlregbase-> |
| 1641 | LPDDR4__LPI_SRPD_SHORT_WAKEUP_F0__REG)), |
| 1642 | *cycles); |
| 1643 | CPS_REG_WRITE(& |
| 1644 | (ctlregbase-> |
| 1645 | LPDDR4__LPI_SRPD_SHORT_WAKEUP_F0__REG), regval); |
| 1646 | } else if (*fspnum == LPDDR4_FSP_1) { |
| 1647 | regval = |
| 1648 | CPS_FLD_WRITE(LPDDR4__LPI_SRPD_SHORT_WAKEUP_F1__FLD, |
| 1649 | CPS_REG_READ(& |
| 1650 | (ctlregbase-> |
| 1651 | LPDDR4__LPI_SRPD_SHORT_WAKEUP_F1__REG)), |
| 1652 | *cycles); |
| 1653 | CPS_REG_WRITE(& |
| 1654 | (ctlregbase-> |
| 1655 | LPDDR4__LPI_SRPD_SHORT_WAKEUP_F1__REG), regval); |
| 1656 | } else { |
| 1657 | /* Default register (sanity function already confirmed the variable value) */ |
| 1658 | regval = |
| 1659 | CPS_FLD_WRITE(LPDDR4__LPI_SRPD_SHORT_WAKEUP_F2__FLD, |
| 1660 | CPS_REG_READ(& |
| 1661 | (ctlregbase-> |
| 1662 | LPDDR4__LPI_SRPD_SHORT_WAKEUP_F2__REG)), |
| 1663 | *cycles); |
| 1664 | CPS_REG_WRITE(& |
| 1665 | (ctlregbase-> |
| 1666 | LPDDR4__LPI_SRPD_SHORT_WAKEUP_F2__REG), regval); |
| 1667 | } |
| 1668 | } |
| 1669 | |
| 1670 | static void writesrdplongwakeup(const lpddr4_ctlfspnum * fspnum, |
| 1671 | lpddr4_ctlregs * ctlregbase, |
| 1672 | const uint32_t * cycles) |
| 1673 | { |
| 1674 | |
| 1675 | uint32_t regval = 0U; |
| 1676 | /* Write to appropriate register ,based on user given frequency. */ |
| 1677 | if (*fspnum == LPDDR4_FSP_0) { |
| 1678 | regval = |
| 1679 | CPS_FLD_WRITE(LPDDR4__LPI_SRPD_LONG_WAKEUP_F0__FLD, |
| 1680 | CPS_REG_READ(& |
| 1681 | (ctlregbase-> |
| 1682 | LPDDR4__LPI_SRPD_LONG_WAKEUP_F0__REG)), |
| 1683 | *cycles); |
| 1684 | CPS_REG_WRITE(& |
| 1685 | (ctlregbase-> |
| 1686 | LPDDR4__LPI_SRPD_LONG_WAKEUP_F0__REG), regval); |
| 1687 | } else if (*fspnum == LPDDR4_FSP_1) { |
| 1688 | regval = |
| 1689 | CPS_FLD_WRITE(LPDDR4__LPI_SRPD_LONG_WAKEUP_F1__FLD, |
| 1690 | CPS_REG_READ(& |
| 1691 | (ctlregbase-> |
| 1692 | LPDDR4__LPI_SRPD_LONG_WAKEUP_F1__REG)), |
| 1693 | *cycles); |
| 1694 | CPS_REG_WRITE(& |
| 1695 | (ctlregbase-> |
| 1696 | LPDDR4__LPI_SRPD_LONG_WAKEUP_F1__REG), regval); |
| 1697 | } else { |
| 1698 | /* Default register (sanity function already confirmed the variable value) */ |
| 1699 | regval = |
| 1700 | CPS_FLD_WRITE(LPDDR4__LPI_SRPD_LONG_WAKEUP_F2__FLD, |
| 1701 | CPS_REG_READ(& |
| 1702 | (ctlregbase-> |
| 1703 | LPDDR4__LPI_SRPD_LONG_WAKEUP_F2__REG)), |
| 1704 | *cycles); |
| 1705 | CPS_REG_WRITE(& |
| 1706 | (ctlregbase-> |
| 1707 | LPDDR4__LPI_SRPD_LONG_WAKEUP_F2__REG), regval); |
| 1708 | } |
| 1709 | } |
| 1710 | |
| 1711 | static void writesrdplonggatewakeup(const lpddr4_ctlfspnum * fspnum, |
| 1712 | lpddr4_ctlregs * ctlregbase, |
| 1713 | const uint32_t * cycles) |
| 1714 | { |
| 1715 | |
| 1716 | uint32_t regval = 0U; |
| 1717 | /* Write to appropriate register ,based on user given frequency. */ |
| 1718 | if (*fspnum == LPDDR4_FSP_0) { |
| 1719 | regval = |
| 1720 | CPS_FLD_WRITE |
| 1721 | (LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F0__FLD, |
| 1722 | CPS_REG_READ(& |
| 1723 | (ctlregbase-> |
| 1724 | LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F0__REG)), |
| 1725 | *cycles); |
| 1726 | CPS_REG_WRITE(& |
| 1727 | (ctlregbase-> |
| 1728 | LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F0__REG), |
| 1729 | regval); |
| 1730 | } else if (*fspnum == LPDDR4_FSP_1) { |
| 1731 | regval = |
| 1732 | CPS_FLD_WRITE |
| 1733 | (LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F1__FLD, |
| 1734 | CPS_REG_READ(& |
| 1735 | (ctlregbase-> |
| 1736 | LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F1__REG)), |
| 1737 | *cycles); |
| 1738 | CPS_REG_WRITE(& |
| 1739 | (ctlregbase-> |
| 1740 | LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F1__REG), |
| 1741 | regval); |
| 1742 | } else { |
| 1743 | /* Default register (sanity function already confirmed the variable value) */ |
| 1744 | regval = |
| 1745 | CPS_FLD_WRITE |
| 1746 | (LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F2__FLD, |
| 1747 | CPS_REG_READ(& |
| 1748 | (ctlregbase-> |
| 1749 | LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F2__REG)), |
| 1750 | *cycles); |
| 1751 | CPS_REG_WRITE(& |
| 1752 | (ctlregbase-> |
| 1753 | LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F2__REG), |
| 1754 | regval); |
| 1755 | } |
| 1756 | } |
| 1757 | |
| 1758 | static void lpddr4_writelpiwakeuptime(lpddr4_ctlregs * ctlregbase, |
| 1759 | const lpddr4_lpiwakeupparam * |
| 1760 | lpiwakeupparam, |
| 1761 | const lpddr4_ctlfspnum * fspnum, |
| 1762 | const uint32_t * cycles) |
| 1763 | { |
| 1764 | |
| 1765 | /* Iterate through each of the Wake up parameter type */ |
| 1766 | if (*lpiwakeupparam == LPDDR4_LPI_PD_WAKEUP_FN) { |
| 1767 | /* Calling appropriate function for register write */ |
| 1768 | writepdwakeup(fspnum, ctlregbase, cycles); |
| 1769 | } else if (*lpiwakeupparam == LPDDR4_LPI_SR_SHORT_WAKEUP_FN) { |
| 1770 | writesrshortwakeup(fspnum, ctlregbase, cycles); |
| 1771 | } else if (*lpiwakeupparam == LPDDR4_LPI_SR_LONG_WAKEUP_FN) { |
| 1772 | writesrlongwakeup(fspnum, ctlregbase, cycles); |
| 1773 | } else if (*lpiwakeupparam == LPDDR4_LPI_SR_LONG_MCCLK_GATE_WAKEUP_FN) { |
| 1774 | writesrlonggatewakeup(fspnum, ctlregbase, cycles); |
| 1775 | } else if (*lpiwakeupparam == LPDDR4_LPI_SRPD_SHORT_WAKEUP_FN) { |
| 1776 | writesrdpshortwakeup(fspnum, ctlregbase, cycles); |
| 1777 | } else if (*lpiwakeupparam == LPDDR4_LPI_SRPD_LONG_WAKEUP_FN) { |
| 1778 | writesrdplongwakeup(fspnum, ctlregbase, cycles); |
| 1779 | } else { |
| 1780 | /* Default function (sanity function already confirmed the variable value) */ |
| 1781 | writesrdplonggatewakeup(fspnum, ctlregbase, cycles); |
| 1782 | } |
| 1783 | } |
| 1784 | |
| 1785 | uint32_t lpddr4_setlpiwakeuptime(const lpddr4_privatedata * pd, |
| 1786 | const lpddr4_lpiwakeupparam * lpiwakeupparam, |
| 1787 | const lpddr4_ctlfspnum * fspnum, |
| 1788 | const uint32_t * cycles) |
| 1789 | { |
| 1790 | uint32_t result = 0U; |
| 1791 | |
| 1792 | /* Calling Sanity Function to verify the input variables */ |
| 1793 | result = lpddr4_setlpiwakeuptimesf(pd, lpiwakeupparam, fspnum, cycles); |
| 1794 | if (result == (uint32_t) CDN_EOK) { |
| 1795 | /* Return if the user given value is higher than the field width */ |
| 1796 | if (*cycles > NIBBLE_MASK) { |
| 1797 | result = EINVAL; |
| 1798 | } |
| 1799 | } |
| 1800 | if (result == (uint32_t) CDN_EOK) { |
| 1801 | lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase; |
| 1802 | lpddr4_writelpiwakeuptime(ctlregbase, lpiwakeupparam, fspnum, |
| 1803 | cycles); |
| 1804 | } |
| 1805 | return result; |
| 1806 | } |
| 1807 | |
| 1808 | uint32_t lpddr4_geteccenable(const lpddr4_privatedata * pd, |
| 1809 | lpddr4_eccenable * eccparam) |
| 1810 | { |
| 1811 | uint32_t result = 0U; |
| 1812 | uint32_t fldval = 0U; |
| 1813 | |
| 1814 | /* Calling Sanity Function to verify the input variables */ |
| 1815 | result = lpddr4_geteccenablesf(pd, eccparam); |
| 1816 | if (result == (uint32_t) CDN_EOK) { |
| 1817 | lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase; |
| 1818 | |
| 1819 | /* Reading the ECC_Enable field from the register. */ |
| 1820 | fldval = |
| 1821 | CPS_FLD_READ(LPDDR4__ECC_ENABLE__FLD, |
| 1822 | CPS_REG_READ(& |
| 1823 | (ctlregbase-> |
| 1824 | LPDDR4__ECC_ENABLE__REG))); |
| 1825 | switch (fldval) { |
| 1826 | case 3: |
| 1827 | *eccparam = LPDDR4_ECC_ERR_DETECT_CORRECT; |
| 1828 | break; |
| 1829 | case 2: |
| 1830 | *eccparam = LPDDR4_ECC_ERR_DETECT; |
| 1831 | break; |
| 1832 | case 1: |
| 1833 | *eccparam = LPDDR4_ECC_ENABLED; |
| 1834 | break; |
| 1835 | default: |
| 1836 | /* Default ECC (Sanity function already confirmed the value to be in expected range.) */ |
| 1837 | *eccparam = LPDDR4_ECC_DISABLED; |
| 1838 | break; |
| 1839 | } |
| 1840 | } |
| 1841 | return result; |
| 1842 | } |
| 1843 | |
| 1844 | uint32_t lpddr4_seteccenable(const lpddr4_privatedata * pd, |
| 1845 | const lpddr4_eccenable * eccparam) |
| 1846 | { |
| 1847 | |
| 1848 | uint32_t result = 0U; |
| 1849 | uint32_t regval = 0U; |
| 1850 | |
| 1851 | /* Calling Sanity Function to verify the input variables */ |
| 1852 | result = lpddr4_seteccenablesf(pd, eccparam); |
| 1853 | if (result == (uint32_t) CDN_EOK) { |
| 1854 | lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase; |
| 1855 | |
| 1856 | /* Updating the ECC_Enable field based on the user given value. */ |
| 1857 | regval = |
| 1858 | CPS_FLD_WRITE(LPDDR4__ECC_ENABLE__FLD, |
| 1859 | CPS_REG_READ(& |
| 1860 | (ctlregbase-> |
| 1861 | LPDDR4__ECC_ENABLE__REG)), |
| 1862 | *eccparam); |
| 1863 | CPS_REG_WRITE(&(ctlregbase->LPDDR4__ECC_ENABLE__REG), regval); |
| 1864 | } |
| 1865 | return result; |
| 1866 | } |
| 1867 | |
| 1868 | uint32_t lpddr4_getreducmode(const lpddr4_privatedata * pd, |
| 1869 | lpddr4_reducmode * mode) |
| 1870 | { |
| 1871 | uint32_t result = 0U; |
| 1872 | |
| 1873 | /* Calling Sanity Function to verify the input variables */ |
| 1874 | result = lpddr4_getreducmodesf(pd, mode); |
| 1875 | if (result == (uint32_t) CDN_EOK) { |
| 1876 | lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase; |
| 1877 | /* Read the value of reduc parameter. */ |
| 1878 | if (CPS_FLD_READ |
| 1879 | (LPDDR4__REDUC__FLD, |
| 1880 | CPS_REG_READ(&(ctlregbase->LPDDR4__REDUC__REG))) == 0U) { |
| 1881 | *mode = LPDDR4_REDUC_ON; |
| 1882 | } else { |
| 1883 | *mode = LPDDR4_REDUC_OFF; |
| 1884 | } |
| 1885 | } |
| 1886 | return result; |
| 1887 | } |
| 1888 | |
| 1889 | uint32_t lpddr4_setreducmode(const lpddr4_privatedata * pd, |
| 1890 | const lpddr4_reducmode * mode) |
| 1891 | { |
| 1892 | uint32_t result = 0U; |
| 1893 | uint32_t regval = 0U; |
| 1894 | |
| 1895 | /* Calling Sanity Function to verify the input variables */ |
| 1896 | result = lpddr4_setreducmodesf(pd, mode); |
| 1897 | if (result == (uint32_t) CDN_EOK) { |
| 1898 | lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase; |
| 1899 | /* Setting to enable Half data path. */ |
| 1900 | regval = |
| 1901 | CPS_FLD_WRITE(LPDDR4__REDUC__FLD, |
| 1902 | CPS_REG_READ(& |
| 1903 | (ctlregbase-> |
| 1904 | LPDDR4__REDUC__REG)), *mode); |
| 1905 | CPS_REG_WRITE(&(ctlregbase->LPDDR4__REDUC__REG), regval); |
| 1906 | } |
| 1907 | return result; |
| 1908 | } |
| 1909 | |
| 1910 | uint32_t lpddr4_getdbireadmode(const lpddr4_privatedata * pd, bool * on_off) |
| 1911 | { |
| 1912 | |
| 1913 | uint32_t result = 0U; |
| 1914 | |
| 1915 | /* Calling Sanity Function to verify the input variables */ |
| 1916 | result = lpddr4_getdbireadmodesf(pd, on_off); |
| 1917 | |
| 1918 | if (result == (uint32_t) CDN_EOK) { |
| 1919 | lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase; |
| 1920 | /* Reading the field value from the register. */ |
| 1921 | if (CPS_FLD_READ |
| 1922 | (LPDDR4__RD_DBI_EN__FLD, |
| 1923 | CPS_REG_READ(&(ctlregbase->LPDDR4__RD_DBI_EN__REG))) == |
| 1924 | 0U) { |
| 1925 | *on_off = false; |
| 1926 | } else { |
| 1927 | *on_off = true; |
| 1928 | } |
| 1929 | } |
| 1930 | return result; |
| 1931 | } |
| 1932 | |
| 1933 | uint32_t lpddr4_getdbiwritemode(const lpddr4_privatedata * pd, bool * on_off) |
| 1934 | { |
| 1935 | |
| 1936 | uint32_t result = 0U; |
| 1937 | |
| 1938 | /* Calling Sanity Function to verify the input variables */ |
| 1939 | result = lpddr4_getdbireadmodesf(pd, on_off); |
| 1940 | |
| 1941 | if (result == (uint32_t) CDN_EOK) { |
| 1942 | lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase; |
| 1943 | /* Reading the field value from the register. */ |
| 1944 | if (CPS_FLD_READ |
| 1945 | (LPDDR4__WR_DBI_EN__FLD, |
| 1946 | CPS_REG_READ(&(ctlregbase->LPDDR4__WR_DBI_EN__REG))) == |
| 1947 | 0U) { |
| 1948 | *on_off = false; |
| 1949 | } else { |
| 1950 | *on_off = true; |
| 1951 | } |
| 1952 | } |
| 1953 | return result; |
| 1954 | } |
| 1955 | |
| 1956 | uint32_t lpddr4_setdbimode(const lpddr4_privatedata * pd, |
| 1957 | const lpddr4_dbimode * mode) |
| 1958 | { |
| 1959 | |
| 1960 | uint32_t result = 0U; |
| 1961 | uint32_t regval = 0U; |
| 1962 | |
| 1963 | /* Calling Sanity Function to verify the input variables */ |
| 1964 | result = lpddr4_setdbimodesf(pd, mode); |
| 1965 | |
| 1966 | if (result == (uint32_t) CDN_EOK) { |
| 1967 | lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase; |
| 1968 | |
| 1969 | /* Updating the appropriate field value based on the user given mode */ |
| 1970 | if (*mode == LPDDR4_DBI_RD_ON) { |
| 1971 | regval = |
| 1972 | CPS_FLD_WRITE(LPDDR4__RD_DBI_EN__FLD, |
| 1973 | CPS_REG_READ(& |
| 1974 | (ctlregbase-> |
| 1975 | LPDDR4__RD_DBI_EN__REG)), |
| 1976 | 1U); |
| 1977 | } else if (*mode == LPDDR4_DBI_RD_OFF) { |
| 1978 | regval = |
| 1979 | CPS_FLD_WRITE(LPDDR4__RD_DBI_EN__FLD, |
| 1980 | CPS_REG_READ(& |
| 1981 | (ctlregbase-> |
| 1982 | LPDDR4__RD_DBI_EN__REG)), |
| 1983 | 0U); |
| 1984 | } else if (*mode == LPDDR4_DBI_WR_ON) { |
| 1985 | regval = |
| 1986 | CPS_FLD_WRITE(LPDDR4__WR_DBI_EN__FLD, |
| 1987 | CPS_REG_READ(& |
| 1988 | (ctlregbase-> |
| 1989 | LPDDR4__WR_DBI_EN__REG)), |
| 1990 | 1U); |
| 1991 | } else { |
| 1992 | /* Default field (Sanity function already confirmed the value to be in expected range.) */ |
| 1993 | regval = |
| 1994 | CPS_FLD_WRITE(LPDDR4__WR_DBI_EN__FLD, |
| 1995 | CPS_REG_READ(& |
| 1996 | (ctlregbase-> |
| 1997 | LPDDR4__WR_DBI_EN__REG)), |
| 1998 | 0U); |
| 1999 | } |
| 2000 | CPS_REG_WRITE(&(ctlregbase->LPDDR4__RD_DBI_EN__REG), regval); |
| 2001 | } |
| 2002 | return result; |
| 2003 | } |
| 2004 | |
| 2005 | uint32_t lpddr4_getrefreshrate(const lpddr4_privatedata * pd, |
| 2006 | const lpddr4_ctlfspnum * fspnum, |
| 2007 | uint32_t * cycles) |
| 2008 | { |
| 2009 | uint32_t result = 0U; |
| 2010 | |
| 2011 | /* Calling Sanity Function to verify the input variables */ |
| 2012 | result = lpddr4_getrefreshratesf(pd, fspnum, cycles); |
| 2013 | |
| 2014 | if (result == (uint32_t) CDN_EOK) { |
| 2015 | lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase; |
| 2016 | |
| 2017 | /* Selecting the appropriate register for the user requested Frequency */ |
| 2018 | switch (*fspnum) { |
| 2019 | case LPDDR4_FSP_2: |
| 2020 | *cycles = |
| 2021 | CPS_FLD_READ(LPDDR4__TREF_F2__FLD, |
| 2022 | CPS_REG_READ(& |
| 2023 | (ctlregbase-> |
| 2024 | LPDDR4__TREF_F2__REG))); |
| 2025 | break; |
| 2026 | case LPDDR4_FSP_1: |
| 2027 | *cycles = |
| 2028 | CPS_FLD_READ(LPDDR4__TREF_F1__FLD, |
| 2029 | CPS_REG_READ(& |
| 2030 | (ctlregbase-> |
| 2031 | LPDDR4__TREF_F1__REG))); |
| 2032 | break; |
| 2033 | default: |
| 2034 | /* FSP_0 is considered as the default (sanity check already confirmed it as valid FSP) */ |
| 2035 | *cycles = |
| 2036 | CPS_FLD_READ(LPDDR4__TREF_F0__FLD, |
| 2037 | CPS_REG_READ(& |
| 2038 | (ctlregbase-> |
| 2039 | LPDDR4__TREF_F0__REG))); |
| 2040 | break; |
| 2041 | } |
| 2042 | } |
| 2043 | return result; |
| 2044 | } |
| 2045 | |
| 2046 | uint32_t lpddr4_setrefreshrate(const lpddr4_privatedata * pd, |
| 2047 | const lpddr4_ctlfspnum * fspnum, |
| 2048 | const uint32_t * cycles) |
| 2049 | { |
| 2050 | uint32_t result = 0U; |
| 2051 | uint32_t regval = 0U; |
| 2052 | |
| 2053 | /* Calling Sanity Function to verify the input variables */ |
| 2054 | result = lpddr4_setrefreshratesf(pd, fspnum, cycles); |
| 2055 | |
| 2056 | if (result == (uint32_t) CDN_EOK) { |
| 2057 | lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase; |
| 2058 | |
| 2059 | /* Selecting the appropriate register for the user requested Frequency */ |
| 2060 | switch (*fspnum) { |
| 2061 | case LPDDR4_FSP_2: |
| 2062 | regval = |
| 2063 | CPS_FLD_WRITE(LPDDR4__TREF_F2__FLD, |
| 2064 | CPS_REG_READ(& |
| 2065 | (ctlregbase-> |
| 2066 | LPDDR4__TREF_F2__REG)), |
| 2067 | *cycles); |
| 2068 | CPS_REG_WRITE(&(ctlregbase->LPDDR4__TREF_F2__REG), |
| 2069 | regval); |
| 2070 | break; |
| 2071 | case LPDDR4_FSP_1: |
| 2072 | regval = |
| 2073 | CPS_FLD_WRITE(LPDDR4__TREF_F1__FLD, |
| 2074 | CPS_REG_READ(& |
| 2075 | (ctlregbase-> |
| 2076 | LPDDR4__TREF_F1__REG)), |
| 2077 | *cycles); |
| 2078 | CPS_REG_WRITE(&(ctlregbase->LPDDR4__TREF_F1__REG), |
| 2079 | regval); |
| 2080 | break; |
| 2081 | default: |
| 2082 | /* FSP_0 is considered as the default (sanity check already confirmed it as valid FSP) */ |
| 2083 | regval = |
| 2084 | CPS_FLD_WRITE(LPDDR4__TREF_F0__FLD, |
| 2085 | CPS_REG_READ(& |
| 2086 | (ctlregbase-> |
| 2087 | LPDDR4__TREF_F0__REG)), |
| 2088 | *cycles); |
| 2089 | CPS_REG_WRITE(&(ctlregbase->LPDDR4__TREF_F0__REG), |
| 2090 | regval); |
| 2091 | break; |
| 2092 | } |
| 2093 | } |
| 2094 | return result; |
| 2095 | } |
| 2096 | |
| 2097 | uint32_t lpddr4_refreshperchipselect(const lpddr4_privatedata * pd, |
| 2098 | const uint32_t trefinterval) |
| 2099 | { |
| 2100 | uint32_t result = 0U; |
| 2101 | uint32_t regval = 0U; |
| 2102 | |
| 2103 | /* Calling Sanity Function to verify the input variables */ |
| 2104 | result = lpddr4_refreshperchipselectsf(pd); |
| 2105 | |
| 2106 | if (result == (uint32_t) CDN_EOK) { |
| 2107 | lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase; |
| 2108 | /* Setting tref_interval parameter to enable/disable Refresh per chip select. */ |
| 2109 | regval = |
| 2110 | CPS_FLD_WRITE(LPDDR4__TREF_INTERVAL__FLD, |
| 2111 | CPS_REG_READ(& |
| 2112 | (ctlregbase-> |
| 2113 | LPDDR4__TREF_INTERVAL__REG)), |
| 2114 | trefinterval); |
| 2115 | CPS_REG_WRITE(&(ctlregbase->LPDDR4__TREF_INTERVAL__REG), |
| 2116 | regval); |
| 2117 | } |
| 2118 | return result; |
| 2119 | } |